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Objective: The cognitive performance of individuals with white matter hyperintensities
(WMH) tends to vary considerably. This study aimed to explore the relationship of the
synchronous spontaneous activities in homotopic areas across hemispheres, named
as voxel-mirrored homotopic connectivity (VMHC), with the cognitive performance of
individuals with WMH.

Materials and Methods: Eighty-two WMH subjects without cognitive impairment (CI),
56 WMH subjects with CI, and 92 healthy subjects (HS) underwent neuropsychological
tests and multimodal magnetic resonance imaging scans. VMHC maps were analyzed
among the three groups. Correlative analyses were performed between VMHC values
and cognitive function.

Results: No significant difference in WMH volume, brain volume, or gray matter atrophy
rate was shown between WMH subjects with and without CI. In contrast, those with
CI displayed lower VMHC in the bilateral cuneus and calcarine and higher VMHC in the
lentiform nucleus and caudate nucleus (LNCN) than those without CI. Furthermore, the
VMHC in the LNCN was negatively associated with the global function and the memory
function in WMH subjects.

Conclusion: The enhanced VMHC in the LNCN was associated with the development
of CI in individuals with WMH. This finding may contribute to the exploration of surrogate
markers for the CI caused by WMH.

Keywords: white matter hyperintensities, voxel-mirrored homotopic connectivity, cognitive impairment, cognitive
heterogeneity, functional magnetic resonance imaging
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INTRODUCTION

White matter hyperintensities (WMH) is commonly detected
on magnetic resonance imaging (MRI) scans of the brain in
the elderly. As the population ages, as much as 72–96% of
the elderly would show WMH (Zhuang et al., 2018; Lampe
et al., 2019). WMH in the elderly usually reflects axonal loss
and demyelination resulting from chronic ischemia related
to cerebral small vessel disease (Gouw et al., 2011). Many
evidences have shown that the burden of WMH is negatively
associated with cognitive function (Prins and Scheltens, 2015;
Alber et al., 2019; Wu et al., 2019), and the increase of
WMH burden is significantly paralleled by cognitive decline
(LADIS Study Group, 2011; Schmidt et al., 2012). On the other
hand, the cognitive performance of individuals with WMH
tends to vary considerably, and a portion of these individuals
even maintain normal cognitive function (Stern, 2002; Jokinen
et al., 2016). The mechanisms underlying the high heterogeneity
remain relatively unknown. Exploring the mechanisms is of
value to the identification of surrogate markers related to the
cognitive impairment (CI) in these individuals, thus directing the
prevention of CI.

Functional magnetic resonance imaging (fMRI) technique
detects alterations in synchronous activities of functionally
related areas, also named as functional connectivity (FC),
associated with aging or pathology. Voxel-mirrored homotopic
connectivity (VMHC) refers to the voxel-based intrinsic FC
between homotopic areas across hemispheres. VMHC reliably
and reproducibly measures interhemispheric communication
underlying the coherent cognitive function and behavior.
A study on healthy individuals found that the VMHC in
frontal, parietal, and temporal regions decreased with aging,
and correlated with cognitive decline (Zhao et al., 2020). Other
studies showed that the abnormal VMHC in frontal, parietal,
or temporal regions was significantly associated with CI in
individuals with stroke, Alzheimer’s Disease (AD), or type 2
diabetes mellitus (Li et al., 2018; Yao et al., 2020; Zhang et al.,
2021). On the other hand, less evidence on the relationship
between VMHC and cognitive function has been shown in
individuals with WMH, despite that WMH may disrupt white
matter tracts that connect hemispheres. Exploring the pattern
of VMHC and its relationship with cognitive function in
individuals with WMH may contribute to the identification of
surrogate markers for CI.

The present study enrolled WMH subjects without CI, WMH
subjects with CI, and healthy subjects (HS), and all subjects
underwent multimodal MRI scanning and neuropsychological
testing. We aimed to (1) identify the difference in the VMHC
patterns among the three groups; (2) determine the relationship
between the VMHC and cognitive function.

MATERIALS AND METHODS

Subjects
The present study enrolled 138 subjects with WMH and 92 HS
subjects. All the subjects were recruited from the Department

of Neurology in The Affiliated Drum Tower Hospital of Nanjing
University from January 2017 to December 2020. All the
subjects have provided informed consent. The study had been
approved by the Ethics Committee of The Affiliated Drum
Tower Hospital of Nanjing University Medical School. All
subjects underwent neuropsychological tests and multimodal
MRI scans. As described previously (Chen et al., 2019),
the inclusion criteria for subjects with WMH were: (1) age
>50 years; and (2) presence of WMH on brain MRI (Fazekas
grade 1∼3), no cerebral microbleeds or recent subcortical
infarction. A HS group included those cognitively normal
[measured by Montreal Cognitive Assessment (MoCA)]
participants showing no clinical symptoms of cerebral small
vessel disease, no presence of visible WMH on MRI (Fazekas
grade 0), and no other MRI presentative characteristics of
cerebral small vessel disease. The exclusion criteria were:
(1) history of ischemic stroke with cerebral infarction
diameter >15 mm, or cardiogenic cerebral infarction; (2)
other cognitive disorders such as AD, Parkinson’s disease,
Lewy body dementia, etc.; (3) intracranial hemorrhage,
brain trauma, brain tumor and mental system disease, and
severe somatic diseases, such as thyroid disease, anemia,
malignant tumor, etc.; and (4) diseases such as multiple
sclerosis, radiation brain injury, and other white matter
diseases caused by poisoning, immunity, metabolism, infection
and other factors.

Neuropsychological Assessments
All the participants completed a series of neuropsychological
tests. Neuropsychological assessments included global
cognitive function, memory function, executive function,
visuospatial ability and information processing speed. Global
cognitive function was measured using the Mini-Mental
State Examination (MMSE) and MoCA. An Auditory-
verbal Learning Test-delayed recall (AVLT-DR) and a
Rey-Osterrieth complex Figure Test (CFT) with its 20-min
delayed recall (CFT-DR) were used to measured memory
function. A Stroop Color and Word Test C (Stroop C)
and Trail Making Tests (TMT)-B were used to measure
executive function. An immediate recall of CFT was used
to measure visuospatial performance. A Stroop Color
and Word Test A (Stroop A) and TMT-A were used to
measure information processing speed. Raw data of each
neuropsychological test (except the MoCA and MMSE)
were Z-transformed according to the following equation:

Zi =
(ri −m)

S

Zi represents the Z scores for the ith subject, ri represents
the raw score for the ith subject, m represents the average
score for each test for all subjects, and S represents the
standard deviation of the test scores for all subjects. We
performed Z-transformation across all subjects in all
groups, and then the Z-transformed values of the relevant
neuropsychological tests were averaged to obtain each
cognitive domain. The purpose of the Z-transform is to
facilitate the unification of different neuropsychological
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test data into a unified cognitive domain data. Due to the
high sensitivity of the MoCA test for CI (Nasreddine et al.,
2005), WMH subjects were diagnosed with CI when MoCA
scores was ≤19 (education years: 1–6) or ≤24 (education
years ≥7). According to the scores of neuropsychological
tests, all subjects with WMH were divided into a WMH
without CI group (n = 82) and a WMH with CI group
(n = 56).

Magnetic Resonance Imaging
Procedures
As described previously (Ye et al., 2019), all subjects were
scanned using a 3-Tesla magnetic resonance scanner (Ingenia
3.0T, Philips Medical Systems, Eindhoven, Netherlands) with a
32-channel head coil at the Drum Tower Hospital. All subjects
were instructed to relax, close their eyes, and stay awake
during scanning. Resting-state functional images, including 230
volumes, were acquired by a gradient-echo-planar imaging
sequence: repetition time = 2,000 ms, echo time = 30 ms, flip
angle = 90◦, matrix = 64× 64, voxel size = 3 mm× 3 mm× 3 mm,
field of view = 192 mm× 192 mm, thickness = 4.0 mm,
gap = 0 mm, and number of slices = 35. 3D T1-weighted
turbo fast echo sagittal images with high resolution were
acquired with the following parameters: repetition time = 9.8 ms,
echo time = 4.6 ms, flip angle = 8◦, matrix = 256 × 256,
field of view = 256 mm× 256 mm, thickness = 1.0 mm,
gap = 0 mm, and number of slices = 192. 3D fluid-
attenuated inversion recovery (FLAIR) sagittal images were
obtained with the following imaging parameters: repetition
time = 4,500 ms, echo time = 344 ms, flip angle = 90◦,
matrix = 272 × 272, thickness = 1.0 mm, gap = 0 mm, and
number of slices = 200.

Magnetic Resonance Imaging Data
Preprocessing and Static Voxel-Mirrored
Homotopic Connectivity Analysis
The fMRI data were preprocessed using a toolbox for Data
Processing Assistant for Resting-State fMRI (DPARSF) v2.31

on Statistical Parametric Mapping software (SPM12)2. The
preprocessing procedures included (1) removal of the first
10 time points to allow for T1 equilibration effects; (2)
time correction for acquisition time delay among slices;
(3) realignment to correct motion effects (subjects with
head motion artifacts exceeding 2◦ in rotation or 2 mm in
translation were excluded); (4) spatial normalization of the
resulting images into the standard Montreal Neurological
Institute (MNI) space and re-sample into a voxel size
of 3 mm × 3 mm × 3 mm; (5) spatial smoothing
with a Gaussian kernel of 6 mm× 6 mm× 6 mm; (6)
nuisance covariates regression [white matter, cerebrospinal
fluid, global signal, 6-head motion parameters, 6-head
motion parameters at one time point earlier, and the 12
corresponding squared items (Friston 24-parameter model) as

1http://resting-fmri.sourceforge.net
2http://www.fil.ion.ucl.ac.uk/spm

covariates]; and (7) linear detrending and temporal bandpass
filter (0.01–0.1 Hz).

After preprocessing, the Pearson’s correlation coefficient
between the residual time series of each voxel and its mirrored
counterpart in the opposite hemisphere was calculated to obtain
VMHC maps. Details of the VMHC calculations have been
described in a previous study (Zuo et al., 2010). Detailed
procedures are shown in Supplementary Material.

White Matter Hyperintensities
Segmentation and Quantification
The volume of WMH lesions was evaluated on T1 and T2-
FLAIR images using the Lesion Segmentation Tool (LST) toolbox
version 2.0.1513 for SPM12. Detailed procedures are shown
in Supplementary Material. Notably, although the HS group
included subjects with Fazekas grade 0 of WMH, the LST toolbox
may detect tiny WMH lesions invisible on MRI. Thus, the HS
group may have a small amount of WMH burden.

Volume Assessment of Brain
As illustrated in a previous study (Ye et al., 2017), brain
volume was estimated utilizing the Voxel-Based Morphometry 8
(VBM8) toolbox for SPM12. Detailed procedures are shown in
Supplementary Material.

Statistical Analysis
In the analysis for demographic characteristics, cognitive
function, and volume data, normally distributed data
were presented as mean ± standard deviation (SD)
and analyzed using a one-way analysis of variance
(ANOVA). Non-normally distributed data were presented
as medians (quartiles) and analyzed using a Kruskal–
Wallis test. The Chi-square test was applied in the
analysis of gender. To improve the normal distribution
of WMH volume data, the raw data were converted into
log10 values.

In the analysis for VMHC data, an analysis of covariance
(ANCOVA) was performed to identify the differences of VMHC
maps among groups, controlling for age, gender, and education.
The Resting State fMRI Data Analysis Toolkit (REST) 1.8
software4 was used in this procedure. The threshold was set at
a corrected P < 0.01, determined by Monte Carlo simulation
for multiple comparisons (voxel-wise P < 0.01). The full-width
at half-maximum (FWHM) was estimated on VMHC maps
and was used to calculate the threshold of the cluster size
with the program AlphaSim in the REST software. Then, the
average VMHC value of each region with significant group
differences was derived in each subject. A post hoc test was
conducted to reveal the detailed difference in the VMHC among
the three groups.

We performed partial correlation analyses to test the
relationship between the cognitive function and the VMHC
values in each brain region with significant group differences,
controlling for age, gender, and education. The Statistical Package

3www.statistical-modelling.de/lst.html
4http://restfmri.net/forum/index.php
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TABLE 1 | Demographic, neuropsychological, and brain volume data.

Items HS group (n = 92) WMH without CI group (n = 82) WMH with CI group (n = 56) F or χ2 P-value

Age (year) 60.32 ± 7.42 64.63 ± 7.6 64.77 ± 8.3 8.891 <0.001a,b

Male (%) 51 (55.43) 40 (48.78) 24 (42.86) 1.136 0.323

Education (year) 12 (9–16) 12 (9–15) 9 (9–12) – 0.026b

MMSE 29 (28–30) 29 (28–30) 28 (26–29) – <0.001b,c

MoCA 27 (25–28) 26 (25–27) 22 (19–23) – <0.001b,c

Memory 0.38 ± 0.76 0.18 ± 0.65 −0.19 ± 0.70 11.261 <0.001b,c

Executive function 0.34 (−0.20–1.00) 0.25 (−0.28–0.73) −0.26 (−0.65–0.07) – <0.001b,c

Visuospatial ability 0.56 (0.01–1.11) 0.29 (−0.26–0.77) −0.26 (−0.53–0.29) – <0.001b,c

Processing speed 0.42 ± 0.77 0.34 ± 0.76 −0.25 ± 0.7 15.001 <0.001b,c

Gray matter atrophy (%) 41.35 ± 1.91 41.79 ± 2.16 41.02 ± 2.14 2.441 0.089

Brain volume (ml) 1350.4 ± 123.57 1344.88 ± 104.1 1340.15 ± 126.83 0.137 0.872

LogWMH −0.03 ± 0.50 0.49 ± 0.31 0.54 ± 0.34 50.393 <0.001a,b

Education, MMSE, MoCA, executive function, and visuospatial ability data are presented as medians (quartiles) and were analyzed using a Kruskal–Wallis test. Chi-
square test was applied in the comparisons of gender. Other data are presented as mean ± stand deviation (SD) and were analyzed using a one-way ANOVA. A log10
transformation was performed on the WMH volume data to improve the normal distribution of the data. Significance is highlighted in bold (P < 0.05).
aP < 0.05, differs between WMH without CI group and HS group.
bP < 0.05, differs between WMH with CI group and HS group.
cP < 0.05, differs between WMH without CI group and WMH with CI group.
CI, cognitive impairment; HS, healthy subjects; MMSE, Mini-Mental State Examination; MoCA, Montreal cognitive assessment; WMH, white matter hyperintensity.

FIGURE 1 | The differences in VMHC among groups. (A) Statistical maps showed VMHC differences in the bilateral cuneus and calcarine and the bilateral LNCN
among the WMH without CI group, the WMH with CI group, and the HS group. The threshold was set at a corrected P < 0.01, determined by Monte Carlo
simulation for multiple comparisons (voxel wise P < 0.01, cluster size >1,161 mm3). The color bar indicates the F-value. (B,C) In the bilateral cuneus and calcarine,
both the WMH without CI group and the WMH with CI group had lower VMHC than the HS group, and the WMH with CI group had even lower VMHC than the WMH
without CI group. (D,E) In the bilateral LNCN, the WMH without CI group displayed lower VMHC than the HS group, and the WMH with CI group had comparable
VMHC to the HS group and higher VMHC than the WMH without CI group. Histogram indicated mean value and standard error of VMHC. ***P < 0.001. CI, cognitive
impairment; HS, healthy subjects; LNCN, lentiform nucleus and caudate nucleus; VMHC, voxel-mirrored homotopic connectivity; WMH, white matter hyperintensity.

TABLE 2 | Brain regions with significant differences in VMHC between groups.

Brain regions Peak MNI coordinates x, y, z (mm) Peak F-value BA Cluster size (mm3)

Left cuneus and calcarine −9, −90, 3 8.0726 17, 18 1161

Right cuneus and calcarine 9, −90, 3 8.0726 17, 18 1161

Left lentiform nucleus and caudate nucleus −24, 3, 6 8.7673 – 891

Right lentiform nucleus and caudate nucleus 24, 3, 6 8.7673 – 891

The thresholds were set at a corrected P < 0.01 determined by Monte Carlo simulation for multiple comparisons (voxel-wise P < 0.01). BA, Brodmann area; MNI,
Montreal neurological institute.

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 899473

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-899473 June 22, 2022 Time: 14:30 # 5

Zhu et al. VMHC and Cognition in WMH

FIGURE 2 | The association between the VMHC in the LNCN and cognitive function in WMH subjects. (A) The VMHC was negatively associated with the MoCA
scores. (B) The VMHC was negatively associated with the memory function. The significance level for correlation analyses was set at P < 0.05. Partial correlation
analyses were conducted between the residuals of variables after regression on the nuisance variables. LNCN, lentiform nucleus and caudate nucleus; MoCA,
Montreal cognitive assessment; VMHC, voxel-mirrored homotopic connectivity; WMH, white matter hyperintensity.

for Social Sciences (SPSS) 19.0 software was used, and the
significance was set at a P < 0.05.

RESULTS

Demographic Characteristics
As described in Table 1, both the WMH without CI
group and the WMH with CI group were significantly
older than the HS group. No significant difference in
gender was shown among the three groups. Although
the WMH with CI group displayed significantly poorer
performance in all cognitive domains than the WMH
without CI group, there was no significant difference in
gray matter atrophy rate, brain volume, or WMH volume
between the two groups.

Difference in Voxel-Mirrored Homotopic
Connectivity Among Groups
As shown in Figure 1A, the group difference of VMHC was
shown in the bilateral cuneus and calcarine and the bilateral
lentiform nucleus and caudate nucleus (LNCN) (P < 0.01,
FWHM = 5.6 mm, cluster size >1,161 mm3, Monte Carlo
corrected at the cluster-level). Specifically, in the bilateral cuneus
and calcarine, both the WMH without CI group and the WMH
with CI group had lower VMHC than the HS group, and
the WMH with CI group had even lower VMHC than the
WMH without CI group (Figures 1B,C). In the bilateral LNCN,
however, only the WMH without CI group displayed lower
VMHC than the HS group, and the WMH with CI group had
comparable VMHC to the HS group and higher VMHC than
the WMH without CI group (Figures 1D,E). Detailed coordinate
information on the regions described above is available in
Table 2.

The Association of Voxel-Mirrored
Homotopic Connectivity With Cognitive
Function
In WMH subjects, the VMHC in the bilateral LNCN was
significantly negatively correlated with both MOCA scores
(r = −0.249, P = 0.005) and memory function (r = −0.180,
P = 0.042) (Figures 2A,B).

DISCUSSION

The main findings of this study were as follows: (1) compared
with WMH subjects without CI, those with CI displayed
decreased VMHC in the cuneus and calcarine but increased
VMHC in the LNCN; (2) the VMHC in the LNCN was
associated with global function and memory function in WMH
subjects. These findings contribute to the understanding of
the relationship between interhemispheric connectivity and the
cognitive heterogeneity in subjects with WMH.

Voxel-mirrored homotopic connectivity reflects the major
role of interhemispheric communication in the integration of
brain function underlying coherent behavior and cognition
(Kelly et al., 2011). Interhemispheric coordination is of great
importance for cognitive processes and handling complicated
tasks (Belger and Banich, 1992; Wang et al., 2013). Ding
et al. (2015) found that patients with subcortical vascular
cognitive impairment displayed decreased VMHC in bilateral
lingual gyrus, putamen, and precentral gyrus than patients
with subcortical cerebrovascular disease and normal cognitive
function. The decreased VMHC in the occipital regions was
also shown in the present study, but we did not find
altered VMHC in the putamen and precentral gyrus. This
divergence may be due to the different grouping method
and inclusion criteria for subjects. The striatum, including
the caudate nucleus and the lentiform nucleus, is involved in
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motivation (Wolfram et al., 1997), implicit learning (Packard
and Knowlton, 2002; Graybiel, 2008), inhibitory control,
working memory, and set-shifting/flexibility (Grahn et al.,
2008; McNab and Klingberg, 2008). The striatum is involved
in integrating information from multiple cortical regions,
thereby constituting a network that underlies decision making
(Nagano-Saito et al., 2014). As shown in previous studies,
the dysfunction of the striatum was associated with CI
in multiple conditions or disorders (Asensio et al., 2010;
Bailey and Goldman, 2017). Lewis et al. (2003) revealed
that selective impairments in working memory and executive
dysfunction were associated with reduced activity in the
striatum in patients with Parkinson’s disease. Our findings
support the role of the striatum in the development of CI in
subjects with WMH.

In this study, the WMH without CI group displayed
lower VMHC in the LNCN than both the HS group and
the WMH with CI group, and no significant difference was
shown between the latter two groups. This may suggest
a U-shape curve of the VMHC in the LNCN related to
the CI in subjects with WMH; that is, the VMHC may
decrease significantly in WMH subjects with normal cognitive
function, but then increase with the onset of CI. The decreased
VMHC in WMH subjects with normal cognitive function
may reflect the impaired inter-hemispheric connectivity
related to disrupted white matter tracts. Then, with the
onset of CI, compensatory enhancement in interhemispheric
connectivity may be induced by the functional deterioration.
The U-shaped curve of FC was also shown in previous
studies. Meng et al. (2018) founded that compared with
healthy control subjects, the baseline FC in the nucleus
basalis of Meynert decreased in patients with mild cognitive
impairment but increased in patients with AD and treated
with cholinesterase inhibitor. Taya et al. (2018) explored global
and local characteristic (clustering coefficient, normalized
clustering coefficient, characteristic path length, normalized
characteristic path length, and small-worldness) of an
electroencephalogram-based network during performing
a piloting task. They showed that the characteristic path
length of the network firstly decreased and then increased
during the training on a piloting task (Taya et al., 2018).
A possible explanation for the U-shaped curve is that the
connectivity between brain regions is disrupted by brain
pathology or unfamiliar tasks, followed by enhanced connectivity
to maintain cognitive performance after adapting to the
pathology or tasks.

In WMH subjects, the VMHC in the LNCN was negatively
correlated with both global function and memory function.
The characteristic changes of the VMHC in the LNCN may
be involved in the development of CI in subjects with
WMH. On the other hand, comparable WMH volume, brain
volume, and gray matter atrophy rate were shown between
the two groups and could not be used to explain the
difference in cognitive function. Thus, the altered VMHC may
be more relevant to the CI and might contribute to the
exploration for potential imaging biomarkers for the CI in
individuals with WMH.

Both the WMH with CI group and the WMH without CI
group showed decreased VMHC in the bilateral occipital lobes
relative to the HS group, and the VMHC in the WMH with
CI group was even lower than the WMH without CI group.
The occipital cortex is mainly involved in visual information
processing (Thiebaut de Schotten et al., 2014) and is also related
to multiple functions such as memory (Cansino et al., 2017)
and motor perception (Hidaka et al., 2017). The dysfunction
of the occipital lobe affects not only the processing of visual
information but also the performance of various cognitive tasks
(Tohid et al., 2015). Zhang et al. (2021) found significantly
decreased VMHC in the occipital lobe in patients with type
2 diabetes mellitus. And the decreased VMHC was associated
with poor global function. Wang et al. (2015) showed that AD
patients had significantly weaker VMHC in the occipital lobe
than mild cognitive impairment subjects, and the VMHC in
the occipital gyrus was positively correlated with the cognitive
performance. Although we did not find significant association
of the VMHC in the occipital lobe with cognitive function in
subjects with WMH, the group difference in the VMHC between
the two WMH groups might suggest a role of the VMHC in the
development of CI.

Our study has several limitations. First, periventricular
WMH burden and deep WMH burden were not analyzed
in the present study, despite that periventricular WMH and
deep WMH reflect different etiological and functional features
(Kim et al., 2008). Although no significant difference in
the total WMH burden was shown between the two WMH
groups, there might be difference in periventricular WMH
burden or/and deep WMH burden underlying the cognitive
differences between groups. Second, in the present cross-
sectional study, only the association relationships rather than
the causal relationships were obtained between the VMHC
alterations and cognitive function. Longitudinal studies would
be helpful for exploring the causal relationships. Finally,
the diagnosis of CI was based on clinical criteria, and
we did not assess pathological markers to exclude other
cognitive disorders. The CI might not be caused by the
WMH burden in some cases but by other pathologies,
e.g., AD pathology.

CONCLUSION

The increased VMHC in the striatum was related to the
presence of CI in subjects with WMH. The abnormal
interhemispheric connectivity may be associated with the
cognitive heterogeneity in individuals with WMH and may
contribute to the exploration of surrogate markers for CI in
these individuals.
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