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The mental workload (MWL) of different occupational groups’ workers is the main

and direct factor of unsafe behavior, which may cause serious accidents. One of the

new and useful technologies to estimate MWL is the Brain computer interface (BCI)

based on EEG signals, which is regarded as the gold standard of cognitive status.

However, estimation systems involving handcrafted EEG features are time-consuming

and unsuitable to apply in real-time. The purpose of this study was to propose an end-

to-end BCI framework for MWL estimation. First, a new automated data preprocessing

method was proposed to remove the artifact without human interference. Then a

new neural network structure named EEG-TNet was designed to extract both the

temporal and frequency information from the original EEG. Furthermore, two types of

experiments and ablation studies were performed to prove the effectiveness of this

model. In the subject-dependent experiment, the estimation accuracy of dual-task

estimation (No task vs. TASK) and triple-task estimation (Lo vs. Mi vs. Hi) reached

99.82 and 99.21%, respectively. In contrast, the accuracy of different tasks reached

82.78 and 66.83% in subject-independent experiments. Additionally, the ablation studies

proved that preprocessing method and network structure had significant contributions

to estimation MWL. The proposed method is convenient without any human intervention

and outperforms other related studies, which becomes an effective way to reduce human

factor risks.

Keywords: mental workload, brain computer interface, deep neural network, occupational safety, ergonomics

1. INTRODUCTION

Information systems are increasingly approaching the boundaries of human competence due
to their increasing complexity and autonomy. A dynamic and automated adaptation of the
system to the user state is required to minimize user overload in high-demand scenarios
(Mühl et al., 2014). A reliable understanding of the user’s current status, particularly the
workload, is essential for timely and appropriate system adaptation (van Erp et al., 2010).
The workload is a direct factor in unsafe operations. Workers of special occupational groups
such as construction workers, car drivers, pilots are prone to physical exhaustion and lack of
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consciousness under high workloads for a long time, leading
to numbness of safety conditions and causing great insecurity.
Therefore, it is extremely important to effectively assess and
reduce the workload of operators in preventing unsafe behaviors
and reducing dangerous accidents. Thus, workload estimation
is an actively growing research field, for it possesses numerous
human factor applications in many occupational groups to
reduce safety risks (Roy et al., 2016; Yin et al., 2019).

The workload is mainly divided into physical workload
and mental workload (MWL). When the human body is
under different physical workloads, various physiological
parameters such as oxygen consumption, heart rate, pulmonary
ventilation, energy expenditure rate, and various chemical
enzymes related to energy conversion show changes.
(Roscoe, 1992; Abdelhamid and Everett, 2002). However,
the estimation of MWL is more complicated than physical
workload, while the former is more closely associated
with safety.

There are two types of MWL estimation methods, subjective
and objective estimation methods (Hogervorst et al., 2014;
Charles and Nixon, 2019). The subjective test is a self-recorded
and a questionnaire-based test in which the subject’s workload is
scored. Among a large number of subjective estimation methods,
the National Aeronautics and Space Administration’s Task Load
Index (NASA TLX) (Hart, 2006) and Subjective Workload
Assessment Technique (SWAT) (Reid and Nygren, 1988) are the
most popular subjective estimation methods. Additionally, the
objective estimation methods are used to estimate their workload
by collecting the object’s physiological signals.

The objective test has developed rapidly in recent years
due to developments in sensor technology. The rationality for
the objective test based on physiological signals is that when
people are under MWL, the parameters of each physiological
condition deviate from the normal state. Thus, it is possible
to detect changes in the body’s physiological signals to
estimate MWL.The changed physiological parameters include
cardiac activity, electrical brain activity, eye movements, and
metabolic changes (Fairclough and Houston, 2004). Therefore,
many physiological indicators have been used to estimate
MWL, such as electrocardiograms (ECG), eye movements,
electroencephalography (EEG) measurements, respiration, and
electromyography (EMG). Among these physiological indicators,
EEG is widely used because MWL changes are closely linked
to brain cortical activity and because it is non-smooth, non-
invasive, and highly discriminative (Wilson et al., 1994; Dehais
et al., 2020; Pieper et al., 2021; Liu et al., 2022; Yu et al., 2022). This
is why EEG is also known as the gold standard. In conclusion,
EEG had the best and most reliable estimation performance of
MWL.

To sum up, in terms of accuracy and practicality, EEG is
optimal for estimating the MWL. The entire framework also can
be referred to as a brain-computer interface (BCI) by means of
computer algorithms that decode information from the brain
and thus access the state of the human. In this study, an end-to-
end BCI framework using EEG is proposed to estimate workers’
MWL continuously, which can directly decode EEG without
feature extraction.

1.1. Related Study
1.1.1. Handcrafted Features-Based BCI Framework
Brain-computer interface, as a new human-computer interaction
technology, provides a new method of communication with the
outside world and enables direct human control of machines. In
recent years, with deep cross-fertilization of artificial intelligence
technology in neuroscience, cybernetics, computer science, and
other related fields, research on BCI cognitive status computing
systems based on EEG. There are a large number of BCI
frameworks for MWL assessment have been proposed in recent
years, and most of the research has used handcrafted features.
Lim et al. (2018) assessed the MWL induced by the single-session
simultaneous capacity (SIMKAP) experiment. They collected
the 14-channels of EEG and extracted different bands’ power
spectral density (PSD). The Neighborhood Component Analysis
(NCA) was used to select critical features and the Support
Vector Regression (SVR) model was trained to assess the MWL.
A helmet with EEG sensors was designed by Wang et al.
(2017) to meet the requirements of the construction industry,
and they designed different construction activities to induce
different levels of MWL. The results showed that Gamma waves
and Fp1 and Tp10 channels are good candidates for MWL
estimation in the frequency domain. However, the unavoidable
limitations of current BCI frameworks which use handcrafted
features should not be ignored. The extraction of EEG signal
features requires researchers to master interdisciplinary theories
and research results in stochastic signal analysis and cognitive
neuroscience, raising the threshold for researching this field
(Cheng et al., 2022). Thus, the incomprehensibility of domain
knowledge can limit the extracted features that cannot effectively
represent the implicit MWL-related information in the original
signal. In addition, restricted by the performance of computing
units of wearable devices, algorithms with high computational
complexity cannot be applied on brain-computer interface
systems. The computation of EEG features, especially non-
linear features such as entropy value and complexity, requires
much time and, thus, cannot meet the needs of brain-computer
interface systems.

1.1.2. Deep Learning-Based BCI Framework
To solve the feature extraction problem, inspired by the success
of the feature extraction ability of convolutional neural network,
decoding EEG according to CNN, which constructing the end-
to-end BCI framework are receiving increasing attention. There
are some related end-to-end studies in the field of EEG-based
BCI frameworks for other tasks, such as emotion recognition,
word imagined, and epileptic seizure recognition (Xu et al., 2020;
Datta and Boulgouris, 2021; Hu et al., 2021). Furthermore, unlike
the images, EEG signals are typically time-series signals, and the
evolutionary trends in neural activity during complex or simple
cognitive processing are of equal interest. Therefore, combined
models by merging CNN and Long short-term memory (LSTM)
network was proposed and attempted to extract features by CNN
and obtain the temporal information by LSTM layers. However,
most CNN-LSTM studies use 1-D or 2-D convolutional kernels
and full connected layers to process EEG data. The original
EEG was transformed into 1-D or 2-D tensors, which were then
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FIGURE 1 | The detailed flowchart of this study.

fed into the LSTM layers. The above algorithms disrupt the
temporal information and the transformed data does not have a
real time sequence in the “time step” dimension (Xu et al., 2020).
Therefore, the effect of LSTM layers is weakened because of the
wrong temporal information.

1.2. Contribution
To fill the research gap mentioned above, in this study, a
convenient and efficient end-to-end BCI framework for MWL
estimation was proposed. The contributions of the article can be
summarized as follows:

First, our proposed end-to-end BCI framework for workers’
MWL estimation, which decodes mental workload related
relevant information directly from raw EEG, is able to avoid the
time consumption associated with complex feature extraction
and thus meet the hardware requirements of brain-computer
interface systems.

Second, this method uses a combination of filters, ASR,
and ICA with ADJUST to obtain relatively pure EEG signals
without manual involvement. Additionally, the MWL related
neural information is decoded smoothly from the original EEG
by the designed time fixed 3-D-CNN layers while the temporal
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dimension is unchanged. Then the following bi-LSTM layers can
be used to extract temporal features.

Third, according to two types of comparison experiments
and ablation studies, the estimation effectiveness of EEG-TNet
can be proved.

2. NEURAL NETWORK PRELIMINARY

In this section, some preliminary knowledge about the
neural network including convolutional layer, LSTM, and fully
connected layers were introduced, which are the basis of our
EEG-TNet method.

2.1. Convolutional Layer
In this study, convolutional layers include four normal
convolutional layers, a depthwise convolutional, and a pointwise
convolutional. For the normal convolutional, the input of the
convolutional layer is Xin(Cin,Din,Hin,Win), and the output
yout(Cout ,Dout ,Hout ,Wout). The formula of the convolutional
layer can be described as follows:

yout = b+

Cin−1∑

k=0

w ⋆ xin (1)

Where the ⋆ is the valid 3D cross-correlation operation. The
shape of yout(Cout ,Dout ,Hout ,Wout) can be calculated according
to the kernel size (KD,KH ,KW) and the kernel number
Cout . Specifically, the depthwise separable convolution (Chollet,
2017) which consists of depthwise convolutional and pointwise
convolutional was used in our research to extract spatial
information from EEG with a lower number of convolutional
parameters (Chollet, 2017).

2.2. LSTM Layer
By designing time-fixed 3D convolutional layers, we retain
the EEG information in each time step and further analyze
the temporal information using LSTM networks (Hochreiter
and Schmidhuber, 1997). Recurrent neural networks (RNN)
have an excellent memory capability owing to their distinctive
self-connected structure, which has an absolute advantage in
processing temporal data (Mikolov et al., 2010). The LSTM
network is a popular expansion of RNN to address the gradient
disappearance problem while RNN only processes long-term
data. The LSTM introduces a gating mechanism to control
the rate of accumulation of information, including adding new
information and forgetting previous information by using the
gates. There are three gates including input gate it , forget gate
ft , cell gate gt , and output gate ot , respectively. Specifically, the
forget gate ft controls the rates of previous information required
to be forgotten about the internal state ct−1 at the last moment.

ft = σ (Wf [ht−1, xt]+ bf ) (2)

The input gate it determines the rates of new information which
is allowed to be added to the current ct . Two steps are required
to achieve this. First, calculate the input gate it and cell gate gt

are calculated. Second, update memory cells Ct by combining
forgetting gates ft and input gates it .

it = σ (Wi[ht−1, xt]+ bi) (3)

gt = tanh(Wc[ht−1, xt]+ bC) (4)

Ct = ft ∗ Ct−1 + it ∗ gt (5)

Ultimately, we need to determine the output, which is based
on the state of our memory cells Ct . First, a sigmoid layer is
used to determine which parts of the memory cell state will be
output. Second, the memory cell is processed through tanh and
multiplied by ot .

ot = σ (Wo[ht−1, xt]+ bo) (6)

ht = ot ∗ tanh(Ct) (7)

2.3. Fully Connected Layer
The fully connected layer serves as an “estimator” in the entire
neural network structure. The procedures such as convolutional
layers, pooling, LSTM, and activation function translate the
original data to the hidden feature space. The fully connected
layer transfers them to the sample labeling space. As Equation
(8) shows, the fully connected layer multiplies the weight matrix
with the input vector and then adds the bias.

y = xAT + b (8)

whereAT is the learnable parameter and b is the bias. In addition,
a softmax activation function may be used to calculate the likely
distribution of the output classes. In the final FC layer, the
softmax function is utilized, which is defined as follows:

Si =
ei

∑k
j=1 e

j
for i = 1, ...k. (9)

where i is the input vector, the output Si is between o to 1, and∑
i Si = 1

3. METHODS

The detailed procedure of this study can be summarized in
several steps, which are described by the detailed flowchart
shown in Figure 1. In this study, first, we preprocessed the data
from the STEW database (Lim et al., 2018) by our designed
automated methods. Then the processed EEG was directly
imported to the proposed EEG-TNet to estimate the MWL. The
comparison studies and ablation studies were performed to prove
the effectiveness of the proposed end-to-end EEG-TNet model.
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FIGURE 2 | The framework of the EEG-TNet model. The EEG-TNet model consists of Data segmentation, dimension expansion, time fixed 3-D-CNN layers, Bi-LSTM

layer, fully connected layers, and softmax operation.

3.1. MWL EEG Database
The database used in this study is STEW (Lim et al., 2018), which
contains EEG data of 48 subjects under different MWL levels.
Specifically, the subjects performed the Simultaneous Capacity
(SIMKAP) test to induce MWL. After the test, all the subjects
were required to finish the subjective questionnaire to report
their MWL, which is a 9-point rating scale. During the whole
experiments, the EEG signals were recorded using an Emotiv
EPOC EEG headset with 14 electrodes (AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8, AF4) and two reference
channels (CMS, DRL). The sampling frequency was 128 Hz and
the resolution was 16-bit A/D. In this study, the classifier was
proposed to finish two tasks, the first one is classified “No Task”
vs. “SIMKAP Task”, which was a binary classification. The second
task was classifying Low vs. Moderate vs. High MWL, which was
divided by a rating scale. A detailed definition of the label can be
found in the article (Lim et al., 2018).

3.2. Data Preprocessing
To meet the requirements of the automation process, we
eliminated parts of the preprocessing process that require manual
intervention, such as manual artifact removal and manual
judgment of ICA components to remove artifacts, especially
eye movement artifacts (Fan et al., 2021; Peng et al., 2021).
This undoubtedly reduces the quality of the data and, therefore,
the accuracy of the recognition, but it makes sense for real-
world applications (Rosanne et al., 2021). Table 1 shows the
comparison of traditional preprocessing steps and ours. The
whole preprocessing steps are

1. High-pass filter raw data at 1 Hz and low-pass filter raw data
at 40 Hz.

2. Notch filter raw data at 50 Hz to avoid power line interference.
3. Perform Artifact Subspace Reconstruction (ASR) (Chang

et al., 2018).
4. Perform Independent Component Analysis (ICA).
5. ADJUST (Mognon et al., 2011) was performed to automated

inspect the artifact component from ICA.
6. Average re-reference the data channels.

3.3. EEG-TNet Architecture
The architecture of our EEG-TNet framework is inspired by
the network architecture EEGNet of Lawhern et al. (2018),
which is a widely used end-to-end EEG BCI framework. The
detailed framework of our proposed EEG-TNet model can be
summarized in three steps, which are shown in Figure 2. Step
1 is to segment the raw EEG to the required size and expand a
new dimension for the model need, which is used to keep the
temporal dimension stable. Step 2 is to extract the temporal and
spatial information from each EEG fragment without between-
fragments temporal information loss according to the designed
temporal fixed 3-D-CNN layers. Step 3 is to extract the temporal
information between each EEG fragment by using the LSTM
layer. The output of the last time step in the last layer is used
to compute the final status according to the fully connected layer
and the softmax function.

3.3.1. Data Conversion
The original EEG signals are defined as D = (d1, d2, ...dS) ∈

R
S×C, where S is the time- series length of the original EEG,
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TABLE 1 | Comparison of traditional preprocessing steps and ours.

Traditional steps Human interference Ours Human interference Goal

Filters NO Filters NO Remove low-frequency drifts and

power line interference

Manual artifacts remove YES ASR NO Remove drifts like muscle activity,

sensor motion

ICA with manual judgment YES ICA with ADJUST NO Remove artifacts especially eye

movement artifact

and C denotes the channel number. Similar to the previous BCI
task, the original EEG was segmented and constructed by using
the overlapping sliding window and non-overlapping sliding
window. The input dataset X̂ = (x̂1, x̂2, ...x̂M) ∈ R

M×T×C×L,
where M is the number of samples. The sample size of each
sample x̂i ∈ X̂ ∈ (1, 2, ...,M) was (T×C×L), the C× L is the size
of per EEG fragments, which is set as 64× 14 in this study, which
means the 0.5s EEG signals of two forehead channels. In addition,
the number of EEG fragments was T, the larger T represents
the longer EEG data considered per sample. Most of the related
studies analyze the input sample as a graph, where C × L is the
height andwidth of the graph, and the dimensionT is the channel
size of EEG, such as the RGB. However, after 2-d convolutional
layers, the temporal information between each fragment might
be lost. In this step, we expand a new dimension whose size
is 1 to meet the requirement of channel size. Furthermore,
dimension T was considered the depth of the sample, which is
stale during the whole convolutional process. Finally, the dataset
X = (x1.x2..., xN) ∈ R

N×T×1×C×L.

3.3.2. Time-Fixed Convolutional Layer
Four convolutional layers were used in the EEG-TNet model.
To ensure the temporal dimension is unchanged, the KD of
the kernel size (KD,KH ,KD) is set as 1 during the whole
convolutional processing. First, eight 3-d normal convolutional
filters of size (1,1,2/L) were used to extract frequency features
from the EEG signal (Lawhern et al., 2018). Then 16
convolutional filers of size (1,C,1) are fitted for the channel
information aggregation. Subsequently, an average pooling
operation (kernel size = 1 × 1 × 4) is performed to aggregate
information and reduce the data dimension. Then, 16 depthwise
separable convolutions are constructed, which consists of 16
depthwise convolutional filters (1 × 1 × 16) and pointwise
convolutional filters (1× 1× 1).

3.3.3. Bi-LSTM Layer
As we introduced before, the traditional LSTM layer receives
the inputs solely in the forward direction through hidden states,
which only retains the past information. Bidirectional LSTM
(BLSTM) has been proposed to solve the problem, which has
two layers named forward layer and backward layer. The forward
layer is computed forward from moment 1 to moment t, and
the output of the forward hidden layer is obtained and saved
at each moment. In the backward layer, the output of the
backward implicit layer is obtained and stored at each moment
by computing the backward layer from moment t to moment 1.

The final output is obtained at each moment by combining the
output of the forward and backward layers at the corresponding
moment. In this study, as shown in Figure 2, the output sample
shape of the time-fixed convolutional layers is T × 1 × 1 × 8, so
that both the forward layer and backward of Bi-LSTM have 8 cells
to fill the data shape.

4. RESULTS

In this section, two types of experiments were conducted to
evaluate the MWL estimation performance using the proposed
EEG-TNet BCI framework. The first type of experiment is
subject-dependent while the second one is subject-independent.

4.1. Subject-Dependent Experiment
In the subject-dependent experiment, we adopt a similar
experimental protocol as that of Chakladar et al. (2020), Kingphai
and Moshfeghi (2021), Zhu et al. (2021). The five-fold cross-
validation method was applied to evaluate the performance
of the framework. As shown in Figure 2, specifically, the first
80% of all samples were selected as the training set and the
remaining 20% of the samples were kept aside as the test
dataset. Then the other 20% of the samples were selected as
the second test set, the last 80% of samples were the second
training set. Divide all samples like this five times and the average
accuracy of the five experiments was taken as the final result.
In addition, five-fold cross-validation was also applied to find
optimal hyperparameters.

The proposed EEG-TNet framework was compared with
the other four baseline methods for MWL estimation on the
STEW dataset under the subject-dependent experiments setting,
as shown in Table 2. The results showed that the proposed
EEG-TNet framework achieved higher estimation accuracies
than the other four methods. Although most of the recent
studies use many kinds of features like frequency features
[PSD (Chakladar et al., 2020; Kingphai and Moshfeghi, 2021)],
non-linear features [Approximate Entropy (ApEn) (Chakladar
et al., 2020; Kingphai and Moshfeghi, 2021)], linear features
[autoregressive coefficient (AR) (Chakladar et al., 2020)], and
the graph-based features (clustering coefficient, mean degree)
(Zhu et al., 2021). However, traditional machine learning models
(SVM and random forest cannot learn the full EEG information.
Moreover, some combined deep neural networks (CNN-LSTM,
BLSTM-LSTM) show better performance than machine learning
models, it is still well below our proposed model.
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TABLE 2 | Comparisons of the estimation accuracy (%) of subject-dependent experiments among the various methods.

References Method Features No task vs. task Lo vs. Mi vs. Hi

Zhu et al. (2021) SVM Graph features 89.60 79.50

Chakladar et al. (2020) Random Forest Frequency features Linear features

Non-Linear features

83.00 78.46

Chakladar et al. (2020) CNN-LSTM Frequency features Linear features

Non-Linear features

85.21 76.76

Kingphai and Moshfeghi (2021) BLSTM-LSTM Frequency features Non-Linear features 91.15 89.44

EEG-TNet None 99.82 99.21

The bold values indicate the best performance accuracies.

4.2. Subject-Independent Experiment
The leave-subject-out (LSO) cross-validation method was used
to evaluate the performance of the proposed framework in the

subject-independent experiments. As shown in Figure 3, in the
LSO cross-validation experimental protocol, the EEG samples

of 36 subjects (80% of a total of 45 subjects) were selected for

training the model and the last EEG samples of 8 subjects (20%
of a total of 45 subjects) were used to test the model performance.
The whole process was repeated five times so that all the subjects’
samples were taken as the test set. The average accuracy of the
five experiments was taken as the final result. Similarly, the
hyperparameters were found according to the five-fold cross-
validation in the training set.

Compared with the subject-dependent experiments, there are
fewer studies that perform the subject-independent experiments
because of their difficulty. The proposed EEG-TNet framework
was compared with the other three baseline methods under the
subject-independent experiments setting, as shown in Table 3. It
is worth noting that no studies were conducted with either dual-
task estimation (No Task vs. Task) or triple task estimation (Lo vs.
Mi vs. Hi) subject-independent experiments simultaneously until
now (Lim et al., 2018; Pandey et al., 2020).

Table 3 summarized the comparative results regarding the

average estimation accuracy under the subject-independent
experiments setting. Pandey et al. (2020) realized that

handcrafted features would slow down the speed of computing

and significantly increased the evaluation time, making it
challenging to apply them in practical scenarios. Therefore,

he used an end-to-end structure similar to ours to finish the

dual-task estimation(No Task vs. Task). However, the results
were unsatisfactory, with his best assessment only reaching

61.08%, which is only a tiny improvement over the random
classification (50%).

For practical reasons, we need to focus more on triple-task

estimation (Lo vs. Mi vs. Hi) than on the dual-task estimation

(No Task vs. Task). Lim et al. (2018) contributed the STEW
dataset, where he extracted the PSD of different bans as features
and used SVM as a classifier. Although their recognition results
were slightly higher than our results, comparing the confusion
matrices shows that our estimation results are more balanced
and valid. As Figure 4 shows, the accuracy of their results was
99.54% for low MWL, down to 46.15% for medium workloads
and only 31.07% for high MWL, which was even lower than the

random results (33.33%). In contrast, our estimation accuracies
range from 52.00 to 74.72%. On the most difficult estimation task
with high MWL, our results were nearly twice as good as theirs.

5. DISCUSSION

5.1. Practicability
The main objective of this study is to propose a practical
and effective MWL estimation method for workers of special
occupational groups, which can be used to ensure safety during
the course of their work. EEG signals are regarded as the
gold standard and BCI systems based on EEG signals have
natural advantages. However, most BCI systems cannot meet
the requirements of online evaluation due to the high manual
involvement in signal noise reduction, complex and time-
consuming feature extraction, and other disadvantages. In order
to solve the disadvantage of manual involvement in signal noise
reduction, this system uses a combination of filters, ASR, and
ICA with ADJUST to obtain relatively pure EEG signals without
manual involvement.

The classification model is at the heart of the BCI system,
because of the system’s computing time, deploymentmethod, and
evaluation accuracy depends on it. In most related BCI systems,
the handcrafted features were used to estimate the MWL, which
may be computationally demanding and not suitable for a real-
time system. This study exploited deep neural networks’ powerful
feature extraction and classification capabilities to design the
EEG-TNet network as the computational core of an end-to-
end BCI framework. This study improves the traditional neural
network model named EEG-Net and extracts features through
the processes of data segmentation, dimension expansion, time
fixed 3-D-CNN layers, Bi-LSTM layer, fully connected layer,
and softmax operation. The time-fixed method was designed to
ensure the temporal segment order, and a Bi-LSTM layer was
added at the end for temporal information analysis. Moreover,
the total time cost of this model is only 386.74 ms in our machine
[System: Ubuntu 20.04, CPU: Intel(R) Core(TM) i7-8700K CPU
@ 3.70GHz, Memory: 32 GB, GPU: GeForce RTX 2080Ti]. The
low time cost proves that the proposed EEG-TNet can meet the
requirements of real-time application.

5.2. Estimation Performance
The most important metric for evaluating a model is estimation
accuracy. Unlike other research areas, both subject-dependent
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FIGURE 3 | The divided methods of different experiments.

TABLE 3 | Comparisons of the estimation accuracy (%) of subject-independent experiments among the various methods.

References Method Features No task vs. task Lo vs. Mi vs. Hi

Pandey et al. (2020) KNN None 61.08 \

Pandey et al. (2020) MLP None 58.68 \

Pandey et al. (2020) LSTM None 57.30 \

Lim et al. (2018) SVM Frequency features \ 69.00

EEG-TNet None 82.78 66.83

The bold values indicate the best performance accuracies.

FIGURE 4 | Confusion matrix of EEG-TNet and Lim’s work.

experiments and subject-independent experiments need to be
considered in the field of human factors engineering. In most

cases, subject-dependent experiments are more accurate because
such experimental methods allow the model to obtain EEG data
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FIGURE 5 | Ablation studies.

for each individual during the training phase. Information on
individual differences can be extracted. As shown in Table 2,
most studies have achieved more than 80% or even more than
90% recognition accuracy, while our recognition accuracy is close
to 100%.

However, the subject-dependent experimental approach
is often not applicable to practical scenarios. Training a
unique classification model for each worker would be time-
consuming and costly, so subject-independent experiments use
unseen subjects’ data as the test set, satisfying the need for
“Plug-and-Play”. However, head shape, scalp impedance, and
psychological state can all affect the EEG data, resulting in
large variations in EEG data among subjects. The accuracy of
the method is poor. Therefore, as shown in Table 3, almost
all of the previous methods do not apply to estimating the
MWL of workers. In the dual-task estimation, the method
proposed by Pandey et al. (2020) was only marginally
more accurate than random. In contrast, our method was

able to achieve 82.78%, which is sufficient for use in
realistic scenarios.

The triple task estimation(Lo vs. Mi vs. Hi) is the most urgent
from the point of view of ensuring safety in different fields like
transportation and construction. Accurate assessment of the high
or moderate MWL of workers helps managers to allocate tasks
rationally and to avoid overloading workers with work that could
lead to human factor accidents. Although the estimation accuracy
of the method proposed by Lim et al. (2018) appears to be slightly
higher than our proposed EEG-TNet method. By analyzing
and comparing the confusion matrices of the two methods
in Figure 4, the method of Lim et al. (2018) may not apply
to worker workload estimation. According to their confusion
matrix, we can find that the low MWL was assessed at 99.54%,
which means that almost all low load situations were successfully
identified. However, the estimation accuracy for moderate MWL
dropped to 46.15%, and only 31.07% of the samples with high
MWL were correctly estimated, with an accuracy rate even lower
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than the random results (33.33%). More notably, 37.57% of
the medium workload samples and 38.40% of the high MWL
samples were misclassified as low MWL. In many occupational
fields, underestimating workers’ workload by managers can lead
to their scheduling of excessive workloads, leading to workers
being overloaded, making the chances of unsafe behavior much
higher. In our assessment results, just 5.25% of the moderately
loaded and 19.78% of the high loaded sample were incorrectly
underestimated as low workloads. Compared to Lim et al. (2018),
the likelihood of underestimation was 7 times and 2 times
lower, respectively.

To verify the effectiveness of our model, ablation experiments
are performed on the STEW database. There are two kinds
of ablation experiments: (1) Ablation experiments on the
effectiveness of designed automated preprocessing method (2)
Ablation experiments on the effectiveness of Bi-LSTM. As
Figure 5 shows, estimation accuracy significantly decreased
when the data pre-processing process or LSTM layer was
removed, not only in subject-dependent experiments but also in
subject-independent experiments.

However, there were some limitations to this study. First, this
study used the multi-channel EEG to build the EEG-TNet model.
However, collecting multi-channel EEG needs gel-based EEG
caps or clumsy dry electrode EEG caps, which is too troublesome
to fill the practical usage. Additionally, the increase in the number
of channels also brings a significant increase in computational
complexity. Furthermore, although the estimation accuracy for
high MWL is much larger than the previous study, it is still not
enough for application scenarios. Finally, the STEW database
only contains 48 students’ EEG data under different levels
of MWL, which were not selected to be representative. It is
important to analyze the EEG signals of different occupational
groups, ages, and work experiences.

6. CONCLUSION

This study proposed an end-to-end BCI framework named
EEG-TNet for the estimation of worker MWL using EEG
signals and conducted different types of experiments to assess
the effectiveness of the EEG-TNet framework. In the subject-
dependent experiments, the estimation accuracy of dual-task
estimation (No task vs. TASK) and that of triple-task estimation
(Lo vs. Mi vs. Hi) reach 99.82 and 99.21% respectively. Compared
with the state-of-the-art methods proposed in previous studies,
the accuracy is improved by 8.67 and 9.77%, respectively.
Although there is a substantial decrease in estimation accuracy
in subject-independent experiments, the accuracy of different

tasks still reaches 82.78 and 66.83% respectively. Especially, in the

subject-independent experiments, compared to previous study,
the likelihood of underestimation was 7 times and 2 times
lower respectively, which means that our proposed EEG-TNet
model can fill the requirement of real-time application. In the
future, we will extend the research by designing new network
structures such as graph neural networks (GNN) to improve
the estimation accuracy of high MWL and designing a closed-
loop system that includes real-time estimation and feedback
systems. Additionally, building a new database that includes
more occupational groups will also be our future direction.
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