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Brain-inspired Hyper-dimensional(HD) computing is a novel and efficient computing

paradigm. However, highly parallel architectures such as Processing-in-Memory(PIM)

are bottle-necked by reduction operations required such as accumulation. To reduce

this bottle-neck of HD computing in PIM, we present Stochastic-HD that combines

the simplicity of operations in Stochastic Computing (SC) with the complex task

solving capabilities of the latest HD computing algorithms. Stochastic-HD leverages

deterministic SC, which enables all of HD operations to be done as highly parallel

bitwise operations and removes all reduction operations, thus improving the throughput

of PIM. To this end, we propose an in-memory hardware design for Stochastic-HD that

exploits its high level of parallelism and robustness to approximation. Our hardware uses

in-memory bitwise operations along with associative memory-like operations to enable

a fast and energy-efficient implementation. With Stochastic-HD, we were able to reach

a comparable accuracy with the Baseline-HD. Furthermore, by proposing an integrated

Stochastic-HD retraining approach Stochastic-HD is able to reduce the accuracy loss

to just 0.3%. We additionally accelerate the retraining process in our hardware design to

create an end-to-end accelerator for Stochastic-HD. Finally, we also add support for HD

Clustering to Stochastic-HD, which is the first to map the HD Clustering operations to

the stochastic domain. As compared to the best PIM design for HD, Stochastic-HD is

also 4.4% more accurate and 43.1× more energy-efficient.

Keywords: Hyper-dimensional computing, stochastic computing, brain inspired cognitive architecture, machine

learning, processing in memory

1. INTRODUCTION

Brain-inspired Hyper-dimensional (HD) computing has been proposed as a light-weight
computing method to perform cognitive tasks on devices with limited resources (Kanerva,
2009; Imani et al., 2017a) for cognitive tasks such as activity recognition, object
recognition, language recognition, and bio-signal classification (Rasanen and Saarinen,
2015; Rahimi et al., 2016b; Imani et al., 2017b). HD computing works by emulating
the sparse distributed memory used in the brain that stores information in spare high
dimensional vectors. HD computing has three main stages, (1) Encoding: mapping
data into hypervectors (HVs). (2) Training: combining encoded HVs to create a model
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TABLE 1 | Execution time breakdown of a naive-PIM implementation (Imani et al.,

2019f).

Similarity check

breakdown

XOR Accumulation Accumulation (D×

larger memory)

Naive PIM (Imani et al.,

2019f)

3.3 ns 13,504 ns 97 ns

representing each class with a HV. (3) Inference: comparing
the incoming sample with the trained model to find the most
similar class.

HD computing has highly parallelizable operations by
operating on independent HVs with 10, 000 dimensions.
However, during encoding and inference, there are numerous
element-wise multiplies and subsequent accumulations due to
matrix multiplication(dimension 10, 000) which, when mapped
to processing-in-memory (PIM) architecture, have to be
performed sequentially.

Table 1 shows the breakdown of inference and the percentage
of time spent working in parallel or sequentially due to these
operations. The XOR operations are able to work completely in
parallel, while the accumulation (which includes the element-
wise multiplication) needs to work sequentially as the operations
are not simple bit operations.

These operations cause a clear bottleneck for HD computing
in PIM architecture. Although this can be alleviated by
significantly increasing the memory size, that comes at a D×
increase in area, where D = 4, 000. Prior work leveraged simple
analog PIM memory to implement HD Computing (Imani et al.,
2019g) to solve this issue but they lose, on average, 3% of the
accuracy of HD Computing because the analog circuits are too
aggressive at approximation. To alleviate this issue, we utilize
Stochastic Computing (SC) operations,a computing paradigm
that uses random bitstreams to convert complex computations
to simple bit-wise operations on the streams (Gaines, 1969), in
their place, which are much more hardware friendly for PIM
architectures. Additionally, with SC, we are able to maintain
the accuracy of HD better than previous aggressive analog
PIM architectures.

In this paper, we leverage Stochastic Computing (SC) during
the encoding, training, and inference phase of HD computing
to create an end-to-end stochastic implementation of HD. We
propose, Stochastic-HD, which combines both HD computing
and SC to perform classification tasks in PIM with highly parallel
operations. To do this, we utilize deterministic SC (Jenson and
Riedel, 2016), which uses a more structured way instead of typical
randomly generated bitstreams to represent the bitstreams thus
results in better accuracy. Stochastic computing enables our
design to remove previous reduction operation bottle-necks for
a more efficient and fast design. By integrating retraining in the
stochastic domain and creating an end-to-end implementation,
this version of Stochastic-HD, is able to reach a comparable
accuracy with the Baseline-HD losing only 0.3% in accuracy
on average. Furthermore, this work is the first to extend
Stochastic-HD to support HD Clustering. We additionally,
extend our hardware accelerator to support retraining, as well

as HD Clustering in Stochastic-HD creating an end-to-end
accelerator for Stochastic-HD Classification and Clustering. As
compared to the best PIM design for HD (Imani et al., 2019g),
Stochastic-HD is also 4.4% more accurate and 43.1× more
energy-efficient.

2. RELATED WORK

2.1. Hyper-dimensional Computing
Prior work applied the idea of HD Computing to different
classification problems such as language recognition, speech
recognition, face detection, EMG gesture detection, human-
computer interaction, and sensor fusion prediction (Rasanen and
Saarinen, 2015; Rahimi et al., 2016a,b; Imani et al., 2018, 2019d;
Kim et al., 2018). Prior works also proposed binary encoding to
accelerate HD Computing (Imani et al., 2019a,b,e,g; Morris et al.,
2019).

Prior work has also proposed hardware accelerators for HD
Computing such as FPGAs (Salamat et al., 2019), and PIM
architectures (Gupta et al., 2018; Imani et al., 2019g). Although
GPUs and FPGAs provide a suitable degree of parallelism that
makes them amenable to machine learning algorithms such as
deep neural networks, the complexity of their resources, e.g.,
floating point units or DSP blocks, is by far beyond HD’s
requirements, making such devices inefficient for HD. PIM
architectures tackle this problem as they are comprised highly
parallel arrays with intrinsically non-complex computational
capability, which is sufficient for HD operations. Additionally,
PIM can eliminate the high cost data movement in the traditional
von Neumann architectures as, in PIM, data resides where
computation is performed. Adding a PIM accelerator for HD
computing to perform cognitive tasks provides significant speed
up over utilizing the on-board CPU and saves energy with less
data movement.

Previous work also mapped HD computing to deterministic
stochastic computing (Hao et al., 2021). However, this design
only supported HD Classification encoding and similarity check
to perform inference. The key piece missing from prior work
is integrated retraining and supporting other machine learning
applications such as clustering.Without integrated retraining and
simply converting hypervectors to the stochastic domain, there
is a significant accuracy loss of 1.3% on average. In this work,
we extend the capabilities of this design to support retraining.
This closes the accuracy loss gap to just 0.3% compared to
exact operations on average. Furthermore, to the best of our
knowledge this is the first work to propose HD Clustering in the
stochastic domain.

2.2. Stochastic Computing
Prior work has utilized SC (Gaines, 1969; Qian et al., 2010; Alaghi
and Hayes, 2013) as a low-cost computing paradigm which
process random bitstreams for implementations of convolutional
neural networks (Kim et al., 2016; Ardakani et al., 2017; Lee et al.,
2017). To calculate p × q for p, q ∈ [0, 1], SC will generates two
random independent binary bitstreams, where the probability of
a “1” in the first and second bitstream is p and q. For example, the
stream 1010011110 could represent 0.6 since it consists of six 1’s
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with a total of ten bits. With converting numbers into bitstreams
and using a single AND operation to perform multiplication,
SC successfully reduced the power and cost of complex but
necessary operations such as multiplication in conventional
implementation of neural networks. The usage of long bitstreams
to represent data also ensures that SC implementations are
noise tolerant.

However, as shown below, when the bitstream length is not
long enough, with random arrangements of 1’s and 0’s, the
result of ANDing two bitstreams may not be exact. The random
fluctuations resulted from the generation of bitsteams cause
the computation of SC to be only approximately correct. The
accuracy increases only when the bitstream is long enough to
better approximate the probability. This significantly reduced the
accuracy of SC based implementation.

6/8 11011101
4/8 10011001

4/8 10011001

6/8 10111011
4/8 01101010

3/8 00101010

To resolve this problem, prior work proposed deterministic
Stochastic Computing as an algorithm that computes on
deterministic bit streams. This version of stochastic computing
enables reduced area, reduced latency, and produces completely
accurate results (Jenson and Riedel, 2016). By properly
structuring input bitstreams, completely accurate results can be
produced with no random-fluctuation or correlation errors. For
example, as shown below, by using 100 to represent 1

3 and 1110

to represent 3
4 , then repeat these two small streams until it pairs

every bit from one bitstream with every bit of the other bitstream
exactly once, to get an accurate result of 3

12 :

1/3 100100100100
3/4 111011101110

3/12 100000100100

Deterministic Stochastic Computing can also perform scaled
addition and subtraction with a MUX operation. For example, as
shown in Figure 1, we have a bitstream of 000110 representing
2
6 as the first input, 101011 representing 4

6 as the second input,

and 010011 representing 3
6 as the scale factor. By taking theMUX

operation between these bitstreams, we get 101010 representing
3
6 , which is equal to ( 36 )(

2
6 ) + (1 - 3

6 )(
4
6 ).

2.3. Processing in Memory
HD Computing is light-weight enough to run with acceptable
performance on CPUs (Imani et al., 2019b). However, utilizing
a parallel architecture can significantly speed up HD execution
time. Imani et al. showed two orders of magnitude speed up
when HD runs on GPU (Imani et al., 2017a). Salamat et al.
proposed a framework that facilitates fast implementation of
HD algorithms on FPGA (Salamat et al., 2019). Due to the bit-
level operations in HD, which are more suitable for FPGAs than
GPUs, they claimed up to 12× energy and 1.7× speed up over
GPUs. HD requires much less memory than DNNs, but the
required memory capacity is still beyond the local cache of many

FIGURE 1 | Stochastic implementation of addition.

devices. Thus, an excessive amount of energy and time is spent
moving data between these devices and their main memory (off-
chip memory in the case of FPGAs). This problem is further
exasperated with the use of stochastic bitstreams as we now need
a long stream of bits (100s) for each value rather than a small
amount such as 16− bit floating point.

To resolve this, prior work used PIM architectures, where
processing occurs in memory, reducing the time and energy
of data movement (Imani et al., 2019c, 2020; Li et al., 2020).
In FELIX (Gupta et al., 2018), a digital PIM architecture was
proposed. However, digital PIM operations are significantly
slower than equivalent analog PIM operations. Digital PIM also
suffers in performance with reduction operations. Prior work has
also implemented HD Computing in an analog PIM ReRAM
architecture to achieve faster execution times as in analog PIM,
the accumulation is not a bottleneck (Morris et al., 2021).
However, the bottleneck in analog PIM is the use of ADCs. ADCs
are the highest energy overhead in the architecture (Shafiee et al.,
2016). This is mitigated in prior work by reducing the ADC
bitwidth and computing with inexact conversions (Morris et al.,
2021). In this work, we eliminate the issue of ADCs with a hybrid
approach between analog and digital PIM by removing the use of
ADCs entirely.

3. HD WITH STOCHASTIC COMPUTING

In this paper, we propose Stochastic-HD, a novel algorithm
that takes the advantages of both HD computing and Stochastic
computing. Although HD computing is more efficient than
more traditional methods with its simple highly parallel
operations. The main bottle-neck in highly parallel architectures
such as PIM is the need for reduction operations such as
accumulation at the end of a dot product. By mapping HD
Classification and HD Clustering to the stochastic domain,
we are able to perform all operations as highly parallel
bitwise operations and remove all reduction operations. We
first go over Stochastic-HD Classification that consists of
three main modules shown in Figure 2: encoding, training,
and testing.
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FIGURE 2 | Overview of how baseline HD Classification is constructed and performs training and inference.

3.1. Encoding
3.1.1. Baseline HD
HD computing encodingmaps each n dimensional feature vector
to a D dimensional binary hypervector. We utilizes a random
projection encoding presented in Imani et al. (2019f). The goal
of encoding is to map a feature vector F = {f1, f2, . . . , fn}(fi ∈
N) to a D (e.g., D = 10, 000) dimensional space vector:
H = {h1, h2, . . . , hD}. The encoding first generates D dense
bipolar vectors with the same dimensionality as original domain,
P = {p1, p2, . . . , pD}, where pi ∈ {−1, 1}n. Thus, to encode a
feature vector into a hypervector, we perform a matrix vector
multiplication between the projection matrix and the feature
vector using H = sign(PF), where sign is a sign function
which maps the result of the dot product to +1 or -1. However,
this encoding process is very computationally expensive as it
consists of thousands of arithmetic operations with a high
dimension D. As a result, we want to apply SC as a light-weight
hardware-friendly encoding algorithm to enable parallelism to
solve this problem.

3.1.2. Stochastic HD
Instead of using multiplication, we use logical AND and XOR to
accomplish the same calculation. Since the projectionmatrix P =

{p1, p2, . . . , pD} has pi ∈ {−1, 1}n, to apply SC, we use a sign bit of
0 to represent a positive value and 1 to represent a negative value
before normal stochastic bitstreams (Zhakatayev et al., 2018). We
do the same for the feature vectors F = {f1, f2, . . . , fn}.

As for the stochastic bitstreams, as the example shows in
Section 2.2, we generate the stochastic bitstreams first by looking
for two fractions to represent the two values we want to
multiply with, and then convert them into small bitstreams.
As a result, we first cast the input data from float into int.
Since in the original process, after matrix multiplication, the
value would be cast into +1 or -1, casting the input data
from float into int does not cause significant accuracy drop.
In addition, since each multiplication of projection matrix and
feature vector is composed of multiplication of +1/-1 with fi, to
apply deterministic SC, we could directly use a stream of 1’s,

of length max(abs(|fi|)) to represent each element in projection

matrix, and represent each feature fi by using
fn

max(abs(fi))
and

thus corresponding bitstream. Thus, with all values converted
into bitstreams, we were able to take XOR for sign bit and AND
for the rest bits to generate accurate results for the original
multiplication calculation. After this, we count the number of
1’s for both positive sign bits and negative sign bits and do
subtraction. If the result is positive, we will cast the result
into +1, and otherwise -1. With our implementation, all the
multiplications and additions are converted into parallelizable
AND or XOR operations, which is more efficient in hardware.

It is noteworthy that this conversion to the stochastic
domain is only done once for the projection matrix and
the same matrix can then be stored and reused for all
encoding operations. Furthermore, for training, we only
perform the conversion of the feature vector once as
well because we store the encoded HVs. It is only during
inference that we need to convert a feature vector to the
stochastic domain online. Finally, for all of our conversions,
we make use of a simple pulse generator because we
are not generating random numbers, but deterministic
ones (Li et al., 2016).

3.2. Initial Training
During initial training, the model is initialized through
element-wise addition of all encoded hypervectors in each
existing class. The result of training is k hypervectors each
with D dimensions, where k is the number of classes. For
example, the ith class hypervector can be computed as: Ci =∑

∀j∈classi
Hj. In addition, to limit the data range of the

class hypervectors for shorter stochastic bitstream length, we
quantized the class hypervector uniformly. This makes sure
that the range of the class hypervectors and the range of
test hypervectors are not the same, which is important in
similarity checking because we want to make sure that simple
repetition of stochastic sequence is able to map each bit
exactly once.
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FIGURE 3 | Comparison of similarity check of Baseline HD and Stochastic HD.

3.3. Similarity Check and Inference
3.3.1. Baseline HD
As shown in Figure 3, similarity checking is done by taking
cosine similarity of each query and the class hypervector.
However, this implementation requires thousands of
multiplications and additions, which is significantly
computationally expensive. As a result, to enable more
hardware-level parallelism, we provide similarity checking
with SC.

3.3.2. Stochastic-HD
Figure 3 compares the similarity checking of Baseline HD
Computing and Stochastic-HD. Instead of cosine similarity,
Stochastic-HD uses deterministic SC to generate bitstreams
for each data point hi in the Query Hk

i and in the
class hypervectors of the encoded model. Then, we put
these two bitstreams through an AND gate to produce
the result bitstream. To compare the similarity, we simply
count the number of 1′s of each result bitstreams, and
the one with most 1′s represents a larger value, thus
closer similarity.

As in Section 2.2, the way we generate the deterministic
stochastic bitstreams is to first look for two fractions that
represents the values from query and class hypervector, and then
convert them into small bitstreams. Since we are able to get
an integer encoding from Stochastic-HD encoding and initial
training, we first make all the values in the encoded hypervector
to be positive values. Then, the fraction is naturally generated

by hn
max(hi)

and Hn
max(Hi)

for the nth element of query and class

hypervector as shown in Figure 4. This means that the bitstream
length for query and class hypervector is max(hi) and max(Hi),
and the number of 1’s in the bitstream is hn and Hn. Next, we
repeat these small bitstreams to form two large two bitstreams
until it pairs every bit from one bitstream with every bit of
the other bitstream exactly once. This means that we repeat
max(Hi) and max(hi) times for each hi and Hi respectively as
shown in Figure 4.

Now with two bitstreams, we will input them into an AND
gate and then count the number of 1′s to represent the similarity.
For example, in Figure 4, to calculate the similarity between

Query h and Class hypervector Hk, suppose that hn
max(hi)

is 1
3 and

Hn
max(Hi)

is 3
4 , then the small bitstreams we generated for them

is 100 and 1110. Then, repeat them until every bit in the first
bitstream matches every bit in the other bitstream exactly once:
100100100100 (repeat max(Hi) = 4 times) and 111011101110
(repeat max(hi) = 3 times). With all conversion done for all
elements in two hypervectors, we will input these two bitstreams
into anANDgate array. The number of 1’s in the output represent
the similarity. And the class with highest similarity would be
our prediction.

By supporting both encoding and similarity check, Stochastic-
HD can support inference. First, the new incoming sample is
encoded into a stochastic hypervector using the same encoding
used to train the initial model. This hypervector will be used
as the query hypervector. Then, the query hypervector is input
to the similarity checking phase and the most similar class
hypervector is chosen as the output.

3.4. Retraining
3.4.1. Baseline HD
Baseline HD performs retraining by first encoding the input
sample into a HV, called the query HV. HD Computing
then computes the similarity between operation between the
query HV and the initially trained class HVs. As discussed,
this operation is costly as it uses cosine similarity as the
similarity metric, which limits parallelism with the accumulation.
If the output class is correct, the HD model is not updated.
However, if the output is incorrect, the model is updated by
i) adding the incorrectly classified hypervector to the correct
class (C̃correct = Ccorrect + H), and (ii) subtracting it from the
class to which it is wrongly matched (C̃wrong = Cwrong − H).
Performing this retraining operation over the entire training set
for multiple epochs yields a more accurate model. One advantage
of HD Computing is unlike other machine learning methods,
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FIGURE 4 | An overview of similarity checking is done with Stochastic-HD

the initial model is fairly accurate and HD Computing only
needs a few iterations of retraining, rather than hundreds or
thousands (Imani et al., 2017b).

3.4.2. Stochastic-HD
Retraining in Stochastic-HD is very similar to baseline retraining,
however, there are key differences. In Stochastic-HD, we replace
the costly encoding step and similarity step with deterministic
stochastic operations to increase parallelism. Again, if the output
class is correct, our model does not need to be updated. If it
is wrong, we need to update our stochastic bitstreams for the
class HVs. Stochastic-HD needs to perform the same update
as the baseline design, but on stochastic bitstreams instead of
traditional number representations. To do this, we perform
stochastic addition and subtraction. We cannot directly compute
the addition or subtraction as it can result in values greater than
1. Instead we perform scaled addition and subtraction. This is
implemented in deterministic stochastic computing with a simple
MUX. As a result, the update equations for Stochastic-HD are
as follows: i) adding the incorrectly classified hypervector to the
correct class (C̃correct = sCcorrect + (1− s)H), and (ii) subtracting
it from the class to which it is wrongly matched (C̃wrong =

sCwrong − (1− s)H), where s is the scale factor. s Can be seen as a
learning rate. With a larger scale factor the impact of retraining is
less as more proportion is given to the class HV and less to the
query. With a smaller scale factor the model is able to change
more dramatically based on the query HVs value. We further
explore this parameter in Section 5.

3.5. HD Clustering
3.5.1. Baseline-HD
The first step of HD Clustering is to encode the data into high-
dimensional space. HD Clustering then operates on the encoded
HVs as the main datatype. HDClustering initially selects random
centers. It then iterates through all of the encoded data points
while comparing them with the cluster centers using a similarity
metric and assigning each point to the center it is most similar to.
In K-means, that similarity metric is the Euclidean distance. In

HD Clustering, we utilize cosine similarity for non-binary values,
but Euclidean distance could also be used. However, HD maps
data into high dimensional space, D = 10, 000, so calculating
cosine similarity is muchmore efficient so this is what we evaluate
in this paper. After all the points are labeled, the new centers
are chosen and the process is repeated until convergence or the
maximum number of iterations is reached. Convergence occurs
when no point is assigned to a different cluster compared to the
previous iteration.

3.5.2. Stochastic-HD
The Stochastic version of HD Clustering has two key differences
from the standard HD Clustering algorithm: (1) the exact
encoding used by the state of the art HD Clustering algorithms
is replaced with our Stochastic encoding from Section 3.1. (2)
The similarity check is replaced with our Stochastic similarity
from Section 3.3.

4. STOCHASTIC-HD HARDWARE DESIGN

In both encoding and similarity checking, there are vector-matrix
multiplications (VMM) that involve dot products between the
input vector and each column of the matrix. In this section,
we detail our implementation of stochastic VMM in Stochastic-
HD. We first propose an in-memory search-based binary vector
matrix multiplication and then extend it to support input
bitstreams in Stochastic-HD. We show how the same memory
block design can be used for both Stochastic-HD encoding,
similarity check, and retraining.

4.1. Search-Based Binary VMM
AnalogPIM is based on the magnitude of accumulated current,
while in-memory search is based on discharging speed of
wordlines. We propose a hybrid approach that provides us with
higher precision but without using DACs/ADCs. The memory
layout of our implementation can be seen in Figure 5. In
associative search, when the data stored in a memory row
is the same as the input query, that wordline discharges the
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FIGURE 5 | Stochastic-HD memory architecture overview.

fastest (Imani et al., 2017c). Moreover, a match between “1”
and “1” takes the same time to discharge the memory as a
match between “0” and “0”. Also, the discharging is slower for a
mismatch as compared to a match (Imani et al., 2017c). However,
in our case, we need to implement an AND operation and
differentiate the match operation between (1-1) from the rest of
the three combinations (0-0, 0-1, 1-0).

In our design, we only apply “1”s at the input query, while
leaving the lines corresponding to input “0” floating. This avoids
the occurrence of 0-0. Floating the lines results in the current
flowing through highly resistive path, which is similar to 1-0 and
0-1 mismatch cases. Although our floating input has a higher
resistive path as compared to the mismatch current paths, both
are the similar inmagnitude as compared to the low resistive path
of 1-1 match. Floating columns have traditionally posed issues
with crossbar arrays, such as computation errors and limiting
the scalability of the array. However, in our design, we do not
need exact results for two reasons. First, HDComputing has been
shown to be resilient to errors in computation (Morris et al.,
2021). Second, during our inference operation, we do not need
the exact sorted ordering of the similarities, we just need to know
the top match. Furthermore, to solve scalability issues, we do not
perform the matching along the entire crossbar, we perform the
operation in chunks (Imani et al., 2016).

The discharging characteristic of a whole memory row
represents the accumulative effect of all the AND operations
between the input and stored hypervectors. Hence, the search
output of each row represents a dot-product between the input
query and the memory row. With more occurrences of “1-1”
in the hypervectors, the faster the discharge, the higher the dot
product value. This happens for all rows in parallel. The output
of the entire memory block is a vector-matrix multiplication. We
can increase the precision of the output dot product by sampling
the output. Unlike AnalogPIM designs, we sample the output in
the time domain. For example, to generate a dot product with

4 bits of precision, we use the same search circuits but latch the
output at 16 different time instants (Gupta et al., 2022). Figure 5
has an example of a query search for a hypervector and how the
hypervectors are laid out in memory. The class hypervectors are
stored in the rows of the memory and shown by Ck

ij where k

is the class label, i is the dimension, and j is the stochastic bit.
Clearly, the entire bitstream of a hypervector cannot fit in one
row, so the hypervectors are spit up between multiple crossbars.
For searching the input buffer distributes the query hypervector
along the vertical bitlines. Then, the sense amplifier connected to
the horizontal bitlines detects the highest match by sampling the
discharge rate.

4.2. Encoding With Stochastic-HD Binary
VMM
We perform search-based binary VMM n times for n-bit input
bitstreams. In addition to the AND operation between stochastic
bitstreams, we perform XOR operations between the input sign-
bits and the stored projection matrix. To perform XOR, we
activate the bitlines corresponding to both “0” and “1” for the
sign-bit, unlike AND operation where we just activate “1”s. We
use the accumulators at the memory periphery to add the dot
product outputs of the n iterations. Since the final encoded
hypervector consists of {-1, 1}, we take the sign bit of the
accumulated output. Since each bit of stochastic bitstream has the
same significance, we don’t require shift-and-accumulate circuits
used by traditional analogPIM designs and can utilize simple
accumulators with low bit-precision. This operation reintroduces
an accumulation into our design as a potential bottleneck.
However, as this is during encoding, we only need to perform
this operation once for training and retraining as we store the
resulting encoded hypervectors for reuse. This operation is still
used during inference to encode the query. However, because we
can utilize simple accumulators with low precision, our resulting
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architecture is still 43× more energy efficient than the SoA PIM
designs for HD Computing (Imani et al., 2019g).

4.3. Similarity Check With Stochastic-HD
Binary VMM
During the similarity check, we need to take a dot product
between an encoded hypervector with input elements {-1, 1} and
a class hypervector with multi-bit elements. To implement this
in Stochastic-HD PIM, we distribute a class hypervector over
multiple memory rows. Each memory row stores 1 bit of the class
bitstream for all dimensions. The dot product outputs of all rows
corresponding to a class are added together to get the final dot
product of the input with that class. The class with the highest
dot product is selected as the output class.

4.4. Retraining With Stochastic-HD
As mentioned in Section 2, deterministic stochastic computing
addition and subtraction is implemented with simple MUX
blocks. Since in HD Computing we only need to modify two
class HVs during each retraining sample, the correct class and
the incorrect class. In our circuit, we perform each update to the
correct class and incorrect class separately. We perform the AND
part of the MUX operation by distributing the class hypervector
over multiple memory rows and again only apply “1”s at the
input query as the scale factor to perform the AND operation.We
perform the same operation in a separate memory block for the
AND operation between the query hypervector and the inverted
scale factor. Our design then takes the OR operation between
the output of both operations to finish the MUX operation.
Subtraction is implemented by simply flipping the sign bit of the
second operand.

4.5. Clustering With Stochastic-HD
As described in Section 3.5, for HD Clustering, instead of
using Euclidean distance, we use cosine similarity to measure
the distance between the samples and the cluster centers. This
makes mapping HD Clustering onto Stochastic-HD simple. The
similarity checking in HD Classification and HD Clustering is
the same, therefore, we can use the same similarity checking
accelerator block used for HD Classification to accelerate the
similarity checking in HD Clustering. Additionally, we use
the same encoding for Clustering and Classification, so that
accelerator can be reused as well. Therefore, to map HD
Clustering to Stochastic-HD, we input the samples in the original
feature domain into our encoding block. Then, to update the
distances between the samples and the cluster centers, we input
the cluster centers into the inference accelerator as the class HVs
and the samples as the query HVs. This then gives us both the
distance in similarity between each sample and all the cluster
centers as well as the cluster that each sample is most similar
to. The next step of the HD Clustering algorithm, which is to
chose the next cluster centers is too complex to accelerate in PIM.
However, 98% of the time is spent on encoding and similarity
checking. Therefore, offloading updating the cluster centers to
the host CPU does not incur a significant amount of overhead.

5. EXPERIMENTAL RESULTS

5.1. Experiment Setup
We implemented key components of Stochastic-HD at the circuit
level to get accurate performance and energy consumption
estimates. For this we simulate with Cadence Virtuoso with a 45
nm CMOS process technology. We use the VTEAM memristor
model (Kvatinsky et al., 2015) for our memory design simulation
with RON and ROFF of 10k� and 10M� respectively. We leverage
these models in cycle-accurate simulation of Stochastic-HD.
Furthermore, to account for any process variability, we utilize
Monte Carlo simulations with 10% process variability. Themodel
and simulation parameters are also tuned to the WINBOND
Rram chip (Ho et al., 2017).

We tested Stochastic-HD encoding, similarity checking, and
retraining performance on CPU using Python. For comparison,
we utilized a quantized version of HD computing as the baseline
HD, which is also implemented in Python (Imani et al., 2019a).
We use D = 2048 as the default dimensionality across
all tests except when varying the dimensionality. We use an
Intel i7 7600 CPU with 16GB memory for our baseline CPU.
We use performance counters to measure CPU power and
execution time.

For Naive-PIM, we implement HD Classification and
Clustering using the digital processing in memory technology
proposed in Gupta et al. (2018).

We tested our proposed classification approach on six
applications: Speech Recognition (ISOLET)1, Face Detection
(FACE) (Griffin et al., 2007), Activity Recognition (UCIHAR)2

(PAMAP2)3. Gesture recognition(EMG) (Benatti et al., 2014),
Cardiotocography (CARDIO)4. For clustering, we tested on six
datasets from the Fundamental Clustering Problem Suite (Ultsch,
2005). All dataset details are shown in Table 2.

5.2. Stochastic-HD Scale Factor
Figure 6 shows the impact of the scale factor in our scaled
addition during retraining on the accuracy of Stochastic-HD.
As stated in Section 3.4, deterministic stochastic computing
does not support simple addition and subtraction. Instead it is
implemented as scaled addition and subtraction. Therefore, in
Stochastic-HD, we have a scale factor parameter to tune. As the
figure shows, with too low of a scale factor, such as 0.5, the class
hypervectors are modified too heavily by the query. It is clear
from the figure, that the class hypervector needs to be weighted
more heavily than the query used to retrain the class hypervector.
However, at the other end of the curve, if the class hypervector
is weighted too much, the model does not change enough and
does not increase in accuracy. As the curve shows, a scale factor
of 0.9 gave the best results on the ISOLET dataset. This pattern

1UCI Machine Learning Repository: Isolet Data Set. Available online at: http://

archive.ics.uci.edu/ml/datasets/ISOLET.
2UCI Learning Repository: Daily and Sports Activities Data Set. Available online

at: https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities. https://

archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.
3UCI Machine Learning Repository: Pamap2 Physical Activity Monitoring Data

Set: Available online at: https://archive.ics.uci.edu/ml/datasets/pamap2+physical+

activity+monitoring.
4UCI Machine Learning Repository: Cardiotocography Data Set. Available online

at: https://archive.ics.uci.edu/ml/datasets/cardiotocography.
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TABLE 2 | Dataset information.

Dataset Type # Classes # Train data # Test data # Features

UCIHAR2 Classification 6 6,213 1,554 561

CARDIO4 Classification 2 1,913 213 21

FACE (Griffin et al., 2007) Classification 2 22,441 2,494 608

ISOLET1 Classification and clustering 26 6,238 1,559 617

Hepta (Ultsch, 2005) Clustering 7 N/A 212 3

Tetra (Ultsch, 2005) Clustering 4 N/A 400 3

Two diamonds (Ultsch, 2005) Clustering 2 N/A 800 2

Wingnut (Ultsch, 2005) Clustering 2 N/A 1,016 2

Iris (Ultsch, 2005) Clustering 3 N/A 135 3

FIGURE 6 | Impact of scale factor on the accuracy of Stochastic-HD on the

ISOLET dataset.

FIGURE 7 | Classification accuracy comparison of Stochastic-HD with a CPU

implementation (exact computation).

remained true for all our tested datasets and we use a scale factor
of 0.9 for all of our tests.

5.3. Stochastic-HD Classification Accuracy
Comparison
Figure 7 compares the classification accuracy of the baseline
HD Computing, which uses exact operations with Stochastic-
HD, which uses SC operations that are approximate. We also

TABLE 3 | Impact of dimensionality on accuracy of Stochastic-HD and

baseline-HD of ISOLET dataset.

Dimension 1,000 3,000 5,000 7,000 9,000

Baseline-HD 89.8% 93.8% 94.0% 94.4% 94.2%

Stochasitc-HD 77.9% 88.1% 89.4% 88.7% 91.2%

compare with Stochastic-HD supporting retraining. As the figure
shows, Stochastic-HD is comparable in accuracy to baseline HD.
It is noteworthy that our design using deterministic stochastic
operations does not achieve the same accuracy as the baseline.
This is because, although deterministic operations can have a
one to one matching with conventional operations, it requires
that the stochastic bitstream length be sufficient. In some cases,
our bitstreams do not reach that requirement and result in
some inaccurate computations. For the datasets ISOLET and
UCIHAR, Stochastic-HD is slightly less accurate, losing 5%
and 7% in accuracy respectively. These two datasets have more
classes that have less separation than the other four datasets.
This leads them to be more sensitive to approximate methods
like SC, causing Stochastic-HD to be less accurate on them.
However, for the other four datasets, Stochastic-HD is able to
achieve the same accuracy. Furthermore, with the additional
support of integrated retraining for Stochastic-HD, we are able
to close the gap between the exact baseline HD and Stochastic-
HD. Overall, compared to a baseline with exact computations,
Stochastic-HD loses just 1.3% in accuracy on average and
Stochastic-HD with retraining loses just 0.3% in accuracy
on average.

Table 3 demonstrates the impact on the dimensionality
of the HD model on accuracy for both the Baseline-HD
implementation and Stochastic-HD on ISOLET dataset. As
the table shows, the accuracy very slightly increases as the
dimensionality is also increased for both the Baseline-HD
and Stochastic-HD. However, the more interesting comparison
is with the Baseline-HD with a dimensionality of 1000 vs
Stochastic-HD at 5000 dimensions. The Baseline-HD model is
able to achieve the same accuracy as Stochastic-HD at this
dimensionality and performance scales with dimensionality.
However, this would only lead to a 15.9× speedup and 441, 889×
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FIGURE 8 | Clustering accuracy comparison of Stochastic-HD with a CPU implementation (exact computation).

FIGURE 9 | Comparison of the inference execution time and energy consumption of Stochastic-HD with CPU and Naive-PIM (Imani et al., 2019f,g). (A) Execution

time. (B) Energy.

energy efficiency gain with a naive implementation of the
Baseline-HD in PIM.However, with Stochastic-HDwe are able to
achieve 174× speedup and 3, 588, 126× energy efficiency gain by
mapping all of our inference operations to the stochastic domain.
Thus, every operation is a simple bitwise computation that is
easily implemented in PIM as well as parallelized. This is in
contrast to themuchmore complex operations needed for a naive
implementation of the Baseline-HD such as the element-wise
multiplications and accumulations.

5.4. Stochastic-HD Clustering Accuracy
Comparison
Figure 8 compares the clustering accuracy of baseline HD with
exact operations to Stochastic-HD clustering. We report mutual
information score as the scoring metric for clustering. As the

figure shows, Stochastic-HD is able to achieve comparable
accuracy on all of the tested datasets. Overall, the average
difference in mutual information score between baseline HD
clustering and Stochastic-HD clustering is just 0.004 and the
highest difference is 0.02.

5.5. Stochastic-HD vs. State-of-the-Art
Accelerators
5.5.1. Inference
Figure 9 compares the execution time and the energy
consumption of Stochastic-HD with a CPU implementation
of the Baseline-HD as well as a Naive PIM implementation
during inference. Naive-PIM simply maps the necessary
operations for inference described in the state-of-the-art HD
implementation in Imani et al. (2019f) onto the memory
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FIGURE 10 | Comparison of the end-to-end execution time and energy consumption of Stochastic-HD with CPU and Naive-PIM (Imani et al., 2019f,g). (A) Execution

time. (B) Energy.

FIGURE 11 | Comparison of the clustering execution time and energy consumption of Stochastic-HD with CPU and Naive-PIM (Imani et al., 2019f,g). (A) Execution

time. (B) Energy.

architecture as described in the state-of-the-art PIM work in
Gupta et al. (2018). However, as noted in Section 1, simply
implementing the Baseline-HD model into PIM leads to the
element-wise multiplication and subsequent accumulation
to bottleneck the parallelism and therefore performance. By
applying SC in Stochastic-HD we are able to use simple bitwise
operations throughout the inference process. With Stochastic-
HD we achieve 52.8× speedup and 378× energy efficiency
gain over Naive-PIM. However, Naive-PIM (Gupta et al.,
2018; Imani et al., 2019f) can achieve the same accuracy as the
software implementation.

5.5.2. End-to-End
We also compare the execution time and the energy consumption
of Stochastic-HD with a CPU implementation of the Baseline-
HD as well as a Naive PIM implementation for an end-to-end
HD Computing solution in Figure 10. This includes encoding,
training, retraining, and inference, whereas the previous figure
only compares inference, which includes encoding the query
and performing the similarity check. With Stochastic-HD with
integrated retraining, we achieve 70× speedup and 456×
energy efficiency gain over Naive-PIM, while closing the gap in
accuracy further.
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5.5.3. Clustering
We compare the execution time and the energy consumption
of Stochastic-HD Clustering with a CPU implementation of the
Baseline-HD clustering as well as a Naive PIM implementation of
HD Clustering in Figure 11. This comparison shows the time it
takes to encode and cluster all of the datapoints for one clustering
iteration. With Stochastic-HD, we achieve 74× speedup and
392× energy efficiency gain over Naive-PIM.

5.5.4. State-Of-the-Art
We compared Stochastic-HD with two state-of-the-art HD-PIM
implementations in Datta et al. (2019) and SearcHD (Imani
et al., 2019g). Stochastic-HD provides 13% higher accuracy on
average than the (Datta et al., 2019) and 4.4% higher accuracy
than SearcHD. Our results show that Datta et al. (2019) is 6.1×
faster and SearcHD is 2.6× faster than Stochastic-HD. However,
Stochastic-HD can achieve 10,618× energy efficiency over the
design in Datta et al. (2019) and 43.1× energy efficiency over
SearcHD. The higher energy efficiency of Stochastic-HD is due to
the simpler bitwise stochastic operations. As compared to the best
PIM design for HD (Imani et al., 2019g), Stochastic-HD is 4.4%
more accurate and 43.1× more energy-efficient. Slightly worse
performance of Stochastic-HD is the result of the Stochastic-HD’s
area-efficient approach as it uses the minimal memory required.
Our design can however be extended to a bigger chip to achieve
better performance. For example, a Stochastic-HD chip with 14×
(174×) larger area provides 11× (134×) faster inference than the
area-efficient Stochastic-HD, while consuming similar energy.
This is due to the stochastic nature of our computations that
can be parallelized. In contrast, the designs in Datta et al. (2019);
Imani et al. (2019g) are limited to the parallelism provided by HD
computing and incur the latency of multi-bit computations. As a
result, the bigger Stochastic-HD chips are both faster and more
accurate than the existing designs (Datta et al., 2019; Imani et al.,
2019g).

5.6. Memory Overhead
While the encoding module in Stochastic-HD uses the same
memory area as the traditional implementations, the memory
area consumed by the similarity checking module and the
retraining module increases with the bitstream length. In our
evaluation, Stochastic-HD’s similarity checking and retraining
consumes 6× larger memory area as compared to the similarity
check in baseline PIM designs. However, since encoding module
consumes 66% of the total area, the similarity checking module
consumes 5% of the total area, the retraining module consumes
3% of the total area, and the last 26% is consumed by memory

peripherals such as the controller and SA, the total memory area
overhead of Stochastic-HD is 40%.

6. CONCLUSION

In this paper, we implement Stochastic Computing(SC) end-
to-end in HD Computing Classification and Clustering. We
propose, Stochastic-HD, which combines both HD Computing
and SC to perform classification tasks in PIM with highly
parallel operations. We use SC because a naive implementation
of existing HD work in digital PIM results in a bottleneck
when we need element-wise multiplications and subsequent
accumulations for the dot product operation. With Stochastic-
HD, we represent each element of the query hypervectors with
bitstreams, and replace the bottleneck operations with simple
bitwise operations. With Stochastic-HD, we were able to reach
a comparable accuracy with the Baseline-HD losing just 0.3%
in accuracy while achieving 70× speedup and 456× energy
efficiency gain over Naive-PIM (Gupta et al., 2018; Imani et al.,
2019f) during classification. Furthermore, we achieve the same
accuracy during clustering while achieving a 74× speedup and
392× energy efficiency gain over Naive-PIM. As compared to the
best PIM design for HD (Imani et al., 2019g), Stochastic-HD is
also 4.4% more accurate and 43.1×more energy-efficient.
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