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Brain-computer interface (BCI) based on motor imagery (MI) can help patients with limb

movement disorders in their normal life. In order to develop an efficient BCI system, it

is necessary to decode high-accuracy motion intention by electroencephalogram (EEG)

with low signal-to-noise ratio. In this article, a MI classification approach is proposed,

combining the difference in EEG signals between the left and right hemispheric electrodes

with a dual convolutional neural network (dual-CNN), which effectively improved the

decoding performance of BCI. The positive and inverse problems of EEG were solved by

the boundary element method (BEM) and weighted minimum norm estimation (WMNE),

and then the scalp signals were mapped to the cortex layer. We created nine pairs of new

electrodes on the cortex as the region of interest. The time series of the nine electrodes

on the left and right hemispheric are respectively used as the input of the dual-CNN

model to classify four MI tasks. The results show that this method has good results

in both group-level subjects and individual subjects. On the Physionet database, the

averaged accuracy on group-level can reach 96.36%, while the accuracies of four MI

tasks reach 98.54, 95.02, 93.66, and 96.19%, respectively. As for the individual subject,

the highest accuracy is 98.88%, and its four MI accuracies are 99.62, 99.68, 98.47, and

97.73%, respectively.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), motor imagery (MI), convolutional

neural network (CNN), weighted minimum norm estimation (WMNE)

1. INTRODUCTION

The electroencephalogram (EEG) signal is the electrical activity of neurons in the brain recorded
by EEG sensors. It has high temporal resolution and low spatial resolution (Nakamura et al., 2005).
Currently, motor imagery EEG (MI-EEG) has received widespread attention because it can decode
motion intention (Pfurtscheller et al., 2006). The brain-computer interface (BCI) can detect the
intention of theMI-EEG signal and convert it into an executable output by themachine (Millan and
Del, 2002). In other words, it can communicate with external devices by decoding MI tasks, so as to
achieve two-way feedback between the user and the BCI system. The external device receives signals
from the brain to control the device, and the device feeds back the control results to the brain for
judgment (Jin et al., 2020). MI-BCI can help some disabled patients independently control external
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devices such as wheelchairs (Wang and Bezerianos, 2017)
and artificial limbs (Condori et al., 2016; Cho et al., 2019).
Bhattacharyya et al. (2021) designed a real-time BCI
neurofeedback system to reflect the expected tasks of hand
movement and imagery.

Effective feature extraction can achieve high-precision
decoding on MI-BCI. Entropy and sensor-imotor rhythm
(SMR) are currently popular features in MI-BCI. In SMR-based
BCI, He et al. (2015) reviewed the principles and approaches
of developing an SMR EEG based BCI and found that the
SMR based noninvasive BCI has the potential to provide
communication and control capabilities. Yuan and He (2014)
described the characteristic features of SMR from the human
brain and discussed their underlying neural sources, also
reviewed the functional components of SMR-based BCI, together
with its current clinical applications. Serafeim et al. (2018)
trained two severely impaired participants with chronic spinal
cord injury (SCI) following mutual learning approach in a virtual
BCI race game, it substantiates the effectiveness of this type of
training. In entropy-based BCI, Stefano et al. (2019) proposed
a novel approach based on the entropy of the EEG signals to
provide a continuous identification of motion intention. The
result shows that the proposed system can be used to predict
motion in real-time at a frame rate of 8 Hz with 80 ± 5% of
accuracy. Lei et al. (2012) extracted the sample entropy of the
EEG and used support vector machines for pattern classification,
it is found that sample entropy can effectively distinguish
the characteristics of the brain in different states. Hsu (2015)
extracted wavelet fuzzy approximate entropy and used SVM
for classification, the results indicate that the proposed system
including wavelet-based fuzzy approximate entropy (wfApEn)
obtains better performance in average classification.

Recently, there have been many studies on the cortex. Hou
et al. (2019) created ten regions of interest in the cortex and
performed a time-frequency analysis on them. Edelman B. et al.
(2015) explored the cortex dynamics during movements of
an unaffected body part in tetraplegic subjects with chronic
spinal cord injury. Kim and Kim (2018) analyzed the motor
cortex of primates and provided an effective method to decode
invasive BCI.

A convolutional neural network (CNN) is a practical tool
in many fields, such as image classification (Krizhevsky et al.,
2017), sentence classification (Kim, 2014), and EEG decoding
(Schirrmeister et al., 2017). It reduces the data preprocessing
steps and manual feature processing steps. Also, deep learning
has made outstanding contributions to the improvement of MI-
BCI (Li et al., 2018; Zhang et al., 2018; Cho et al., 2019; Robinson
et al., 2019). Nakagome et al. (2020) used neural networks and
machine learning algorithms to decode EEG. The results indicate
that neural networks are of great significance in the decoding
of EEG signals. Tortora et al. (2020) used a trained long short
term memory deep neural network to decode EEG gait, and
the proposed decoding method obtains more than 90% robust
reconstruction. Al-Saegh et al. (2021) gathered 40 related articles
on deep neural network architecture and MI-EEG tasks, and the
results show that deep neural networks play a positive role in
MI-EEG classification.

Brain-computer interface is a technology that reads EEG
signals, records and decodes brain activities, manipulates the
activities of specific brain regions, and affects its functions. Based
on this, accurate decoding of EEG signals is very important for
BCI systems. Since EEG signal is dynamic time series data with
a low signal-to-noise ratio, the decoding accuracy of EEG signals
has always been a challenge. Although many scholars have made
remarkable achievements in this field, there is still a gap between
the BCI system and practical application standards, and there is
still much room for improvement in the classification method
and accuracy of EEG signals.

The contributions of this article are summarized as follows: In
this article, we proposed a MI signals classification method via
the difference of EEG signals between left and right hemispheric
electrodes. Based on the Physionet database, the EEG signal on
the scalp layer is inversely mapped to the cortex of the brain,
and then 9 pairs of new electrode pairs are created, which
contain higher SNR information. The time-frequency analysis
method is used to extract feature information from the time
and frequency series of cortical electrodes. The dual-CNNmodel
proposed in this article has the same settings, including 4 layers
of CNN for learning EEG features, 4 layers of max pooling
for dimension reduction, a Flatten operation for converting
multidimensional data into one-dimensional data, and 1-layer
fully connected (FC) layer for classification. This method
combines the electrode channel information of the symmetrical
regions of interest on the left and right hemispheres of the cortex
with the CNN, which realizes the high-precision classification
task and provides a new idea for simplifying the design of the
BCI system.

The remainder of this article is organized as follows: Section
2 is the Materials and Methods. Section 3 is the Classification
Accuracies of the Subjects. Section 4 is a Discussion. Finally,
Section 5 is the Conclusion of this article.

2. MATERIALS AND METHODS

2.1. The Framework
The overall block diagram is shown in Figure 1. In this study,
we first preprocessed the EEG on the scalp layer and then
preprocessed it on the cortex layer. The noise covariance matrix
of each subject was calculated in the cortex preprocessing, and
the real head model was constructed with the help of the colin27
template and BEM algorithm.We used distributed current model
(DCD) and WMNE algorithm to build a source model and then
limited the source to the cortex layer. Then, manually created
nine pairs of new electrodes on the left and right hemispheric
of the cortex. Finally, the time series carried by the nine pairs
of electrodes on the left and right hemispheric were used as the
input of the dual-CNN classification model. The preprocessing
process and the CNNmodel structure will be introduced in detail
in the following Sections 2.3 and 2.4.2.

2.2. Dataset
The dataset we used was created by the developers of BCI2000
at a sampling frequency of 160Hz in a standard environment
(Schalk et al., 2004). It is obtained through the corresponding
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FIGURE 1 | The framework of the proposed approach.

10-10 system 64-channel EEG (excluding electrodes Nz, F9, F10,
FT9, FT10, A1, A2, TP9, TP10, P9, and P10). The dataset records
4 MI tasks (left fist, right fist, both fists, and both feet) of 109
subjects. Each subject consists of 84 trails with 21 trails per class,
each trail takes 1–2 min, and the duration of each MI task is
slightly more than 4 s. The four tasks are as follows:

(1) A target appears on the left side of the screen. The subject
imagines opening and closing the left fist until the target
disappears. Then the subject relaxes.

(2) A target appears on the right side of the screen. The subject
imagines opening and closing the right fist until the target
disappears. Then the subject relaxes.

(3) A target appears on the top of the screen. The subject
imagines opening and closing both fists until the target
disappears. Then the subject relaxes.

(4) A target appears on the bottom of the screen. The subject
imagines opening and closing either both feet until the
target disappears. Then the subject relaxes. Detailed data
description is given at https://archive.physionet.org/pn4/
eegmmidb/.

2.3. Data Preprocessing
Data preprocessing is divided into two parts: scalp layer
preprocessing and cortex layer preprocessing. In the scalp layer

preprocessing, wemarked 4MI tasks (left fist, right fist, both fists,
and both feet) of each subject as T1, T2, T3, and T4, respectively.
Since each MI task is slightly more than 4 s, we used a time
window of 4s to unify the size of 4 MI tasks, and then performed
8–30 Hz band-pass filter processing for each MI task.

The positive problem of EEG is the use of EEG sensors to
collect electrical signals generated by a large number of neurons
in the brain (Wheless and Castillo, 2004). However, the signals
transmitted from the brain to the scalp are already very weak
and cannot accurately represent the activities inside the brain.
Therefore, inverting EEG into the brain will improve the quality
of EEG and also help improve its decoding intention. The process
of using EEG to acquire signals inside the brain is an inverse
problem (Becker, 2015). Solving the positive problem of EEG is
the basis for solving its inverse problem.

The positive problem of EEG is also called the forward model
of EEG, which can be described as follows (Baillet and Garnero,
1997; Engemann and Gramfort, 2015):

y = b+ ε = Lx+ ε (1)

Where n represents the number of sensors of EEG, p represents
the number of dipoles in source space, L ∈ Rn×p is gain matrix or
leadfield, and ε is noise.
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FIGURE 2 | Cortex preprocessing.

According to Maxwell equations (Noraini et al., 2013), the
electromagnetic field Rn in Formula (1) is the linear combination
of the fields generated by all sources x ∈ Rp : b = Lx. Solving the
L matrix in Equation (1), finding sources that can best explain
the value of EEG, and tracing the neurons in the brain is called
the inverse problem of EEG (Janati et al., 2020).

The solution of the EEG forward problem consists of two
parts: the head model and the algorithm. The head model is
obtained by magnetic resonance imaging (MRI) of each subject.
Since there is no permission to access the MRI of each subject, we
used the high-precision colin27 template to build the head model
(Collins et al., 1998).

In this part, we first completed the calibration of MRI and
EEG and then calculated the noise covariance matrix according
to baseline data for each subject to solve the problem of noise
differences between different subjects. Then we used the BEM
(Mosher et al., 1999; Gramfort, 2010) to solve the EEG positive
problem and built a three-layer (cortex, skull, and scalp) head
volume conduction model, also L was solved in the Equation (1).

Since the number of sources in the brain is far greater than
the number of EEG sensors on the scalp, the result of the EEG
inverse problem is not unique. It requires us to limit the source
to a certain range. There are many cells on the cortex layer, they
are close to the scalp, and the direction is basically perpendicular
to the scalp, which is the main source of EEG (Okada, 1993).

According to this, we used the DCD model to limit the source
to the cortex layer of the brain. DCD model divides the entire
cortex into discrete fixed sub-regions, each sub-region is placed
with a current dipole perpendicular to the cortex, and this dipole
is the source.

We used WMNE to solve the EEG inverse problem, as shown
below (Phillips et al., 2002; Wu et al., 2003; Hassan et al., 2014):

I = LT(LLT + λω)−1R (2)

Then we got a source model, the preprocessing of the cortex layer
on the source model is shown in Figure 2. Similar to the research
method of EEG source imaging, the region of interest can be
selected by identifying particular gyral landmarks on the subject
special cortex model (Edelman B. J. et al., 2015). According to
Lun et al. (2020) we selected 18 scouts on the motor cortex as
the region of interest. Nine sources on the left hemispheric are
termed FC5, FC3, FC1, C5, C3, C1, CP5, CP3, CP1, and nine
sources on the right hemispheric are termed FC6, FC4, FC2,
C6, C4, C2, CP6, CP4, CP2. Each of the scouts was extended to
20 vertices, each vertex with one source (dipole) in constrained
dipoles orientations. While the positions of the 18 sources are the
projection on the cortex of nine pairs of electrodes (FC5, FC3,
FC1, C5, C3, C1, CP5, CP3, CP1; FC6, FC4, FC2, C6, C4, C2,
CP6, CP4, CP2), we marked these 18 sources as nine pairs of new
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TABLE 1 | Proposed CNN architecture.

Layer Input size Map Convolution Pooling Output size

kernel size size

L1 Input 1,280×9 1 - - 640×9,640×9

L2 Conv_L1,Conv_R1 640×9 25 11×9×25 - 630×1×25

L3 Pool_L1, Pool_R1 630×1×25 25 - 3×1 210×1×25

L4 Conv_L2,Conv_R2 210×1×25 50 11×1×50 - 200××50

L5 Pool_L2, Pool_R2 200×1×50 50 - 3×1 66×1×50

L6 Conv_L3,Conv_R3 66×1×50 100 11×1×100 - 56×1×100

L7 Pool_L3, Pool_R3 56×1×100 100 - 3×1 18×1×100

L8 Conv_L4,Conv_R4 18×1×100 200 11×1×200 - 8×1×200

L9 Pool_L4, Pool_R4 8×1×200 200 - 2×1 4×1×200

L10 Flatten_L,Flatten_R 4×1×200 1 - - 800

L11 Flatten_L-Flatten_R 800 1 - - 800

L12 FC 800 1 - - 128

L13 Softmax 128 1 - - 4

electrodes on the left and right hemispheric. The time series of
nine pairs of new electrodes on the left and right hemispheric
were extracted by brainstorming in MATLAB (Tadel et al., 2011).

2.4. CNN Theory and CNN Structure
2.4.1. CNN Theory
Convolutional neural network is generally composed of a
convolution layer, pooling layer, and fully connected layer to
complete feature extraction and classification (Schirrmeister
et al., 2017; Kaldera et al., 2019).When the convolution operation
is performed layer by layer, CNN can not only automatically
extract rich features but also convey depth information. The
initial layer of convolution is used to extract local features, and
the end layer is used to extract global features. Among them, the
convolutional layer contains multiple filters to extract features
that are useful for classification (Liu and Liu, 2017). It uses the
output of the previous layer as the input of the next layer to
extract features, as follows (Ji et al., 2013):

xlj = f (
∑

i∈Mj

xl−1
i ∗ klij + blj) (3)

Where xlj is the output of the jth channel of the l layer in the

convolutional layer, f (·) is the activation function, Mj is the set

of selection inputs, and xl−1
i is the output of the ith channel of

l − 1 layer in the convolutional layer, ∗ represents convolution
operation, klij is convolution kernel matrix, and blj is offset value.

The pooling layer is generally used after the convolutional
layer to reduce the number of parameters. It mainly includes
average pool and max pool, which can be described as follows:

xlj = f (β l
jdown(x

l−1
j )+ blj) (4)

Where f (·) is the activation function, down(·) is the down-
sampling function, β l

j is the weight coefficient of the jth

channel of the lth layer in the pooling layer, and blj is bias

(Zang et al., 2020).

Rectified linear unit (ReLU) is a commonly used activation
function in convolution and pooling layers, which plays an
important role in simulating biological neurons (Nair and
Hinton, 2010; Karthik et al., 2020).

After multiple convolutional layers and pooling layers, the
data will enter a fully connected layer. First, the data is processed
by weighted summation, then processed by the activation
function, and finally, the output of the fully connected network
is obtained, as follows:

xl = f (ωlxl−1 + bl) (5)

Among them, ωlxl−1 + bl is the net activation of layer l in a fully
connected layer. ωl is the weight coefficient, and bl is bias.

Since the training is for subjects, the output of each category
label will be converted into conditional probability by the softmax
function as follows (Amin et al., 2019):

p(lk|f (X
j; θ)) =

expfk(X
j; θ)

∑K
k=1 exp(fk(X

j; θ))
(6)

Where lk is the given label, Xj is input, θ is parameter including
weight and bias, and K is the category.

2.4.2. CNN Structure
The network structure and parameters of CNN are determined
by the experimental method, as shown in Table 1. We proposed
a novel dual-CNNmodel for MI classification, which can process
the time series of nine hemispheric electrodes on the cortex
layer, and the structure is shown in Figure 1. The specific process
description is as follows:

(1) We used 4s MI data as the input of the neural network.
At a sampling frequency of 160Hz, its data dimension is
640, and the dimension remains unchanged after cortex layer
processing. First, connect the time series of the left and right
hemispheric symmetrical electrodes horizontally, and then
connect the data of the nine pairs of electrodes vertically,
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TABLE 2 | The classification accuracy of individual subject.

Subject Accuracy (%) T1 accuracy (%) T2 accuracy (%) T3 accuracy (%) T4 accuracy (%)

S1 97.77 99.67 97.14 96.08 98.18

S2 97.30 99.59 96.00 96.45 97.17

S3 96.35 99.73 96.90 95.89 92.86

S4 98.88 99.62 99.68 98.47 97.73

S5 97.14 99.56 98.15 91.49 99.34

S6 97.61 98.93 97.56 95.91 98.04

S7 96.23 99.14 93.18 96.45 96.15

S8 96.33 99.92 99.37 90.91 95.12

S9 97.34 99.81 97.44 95.83 96.27

S10 98.81 99.74 97.56 99.56 98.36

so that the data format that enters the neural network is
1, 280 × 9. The first layer of the network separates the nine
electrodes of the left and right brains through the reshape
operation to form two data with a size of 640×9, representing
the time series of the nine electrodes of the left and right
brains, respectively.

(2) We used two CNN structures with exactly the same
parameters to form a dual-CNNmodel. Each CNN structure
contains 4-layer CNN for learning features, 4-layer max
pooling for dimensionality reduction, and 1 FC layer that
converts multi-dimensional data into one dimension.

(3) The one-dimensional data output by the left and right CNN
model are subtracted, then the signal differences of the
symmetrical electrode are entered into the FC layer, and the
softmax function is used to predict the attribution of the
test data.

In addition, based on 4-layer CNN and 4-layer max pooling,
we try to add more CNN layers and max pooling layers. It is
found that 4-layer dual-CNN performs best in the experiment,
and the accuracy is not significantly improved after the number of
convolutional layers exceeds 4-layer.We used spatial dropout and
batch normalization (BN) techniques to prevent overfitting. In
Section 3.5, our proposed model is compared with other models,
and a better classification evaluation effect is obtained.

3. RESULTS

3.1. Classification Accuracy of Individual
Subject
In order to obtain effective results, events T1-T4 in each subject
are randomly intermingled and separated into 90% as the training
set, and the remaining 10% as the test set. We conducted trial-
based accuracy experiments for each subject (S1-S10) on the
Physionet database. Table 2 lists the accuracy of each subject and
its fourMI tasks (T1, T2, T3, T4). InTable 2, the highest accuracy
is 98.88% (S4), and its four MI accuracies are 99.62, 99.68, 98.47,
and 97.73%, respectively. The lowest accuracy is 96.23% (S7),
and its four MI accuracies are 99.14, 93.18, 96.45, and 96.15%,
respectively. The average accuracies of the four MI tasks for ten
subjects are 99.57% (T1), 97.30% (T2), 95.70% (T3), and 96.92%

(T4), respectively. T1 has the highest accuracy, it is indicative that
the classification effect of the left fist is the best. The accuracy of
T3 is the lowest, it indicates that the classification effect of both
fists is the worst. The highest accuracy on T1 is 99.92% (S8), while
the lowest is 98.93% (S6). The highest accuracy on T2 is 99.68%
(S4) and the lowest is 93.18% (S7). The highest accuracy on T3
is 99.56% (S10), while the lowest is 90.91% (S8). The highest
accuracy on T4 is 99.34% (S5), while the lowest is 92.86% (S3).
According to the above results, it can be found that our proposed
method achieves higher accuracy on S1-S10 and its fourMI tasks.

During the CNN training iteration process, the accuracy
curves of the ten subjects are shown in Figure 3A. The accuracy
of an individual subject increases rapidly during the first 200
iterations and slows down during the 200–600 iterations. After
600 iterations, the accuracy can reach a stable state. The accuracy
curve of the whole iterative process is relatively smooth with less
burr. It shows that as the number of iterations increases, our
proposed dual-CNN can achieve high classification accuracy and
high stability.

The receiver operating characteristic (ROC) curves of 10
subjects are shown in Figure 3B, which is used to evaluate
the classification model. The area under the ROC curve is
represented by AUC, and the value range is between 0.5 and 1.
The closer the AUC is to 1.0, the better the classification effect
is. Among the 10 subjects, the best classification model is S4,
with an AUC value of 0.999, and the worst classification model
has an AUC value of 0.995 (S7). It can be seen the proposed
method has achieved better generalization performance and
higher classification effect in different subjects.

3.2. Classification Accuracy of Group-Level
Subjects
We also conducted a group-level experiment of 10 subjects
to obtain the classification performance. In this part, first, we
divided the data of each subject into two groups: the training
set and the test set. T1-T4 of each subject are randomly divided
into 10 equal parts, 9 parts are mixed uniformly to become the
training set, and the remaining part is randomly shuffled into
the test set. The training set of each subject is mixed to form
the final training set, and the test set of each subject is mixed
to form the final test set. Then we used five index evaluations to
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FIGURE 3 | Performance comparison of 10 subjects. (A) Accuracy comparison. (B) Receiver operating characteristic (ROC) curve comparison.

FIGURE 4 | Classification performance of 10 subjects. (A) Evaluation metrics. (B) Confusion matrix for the accuracy of 4 motor imagery (MI) tasks.

measure the effectiveness of classification, as shown in Figure 4A,
accuracy, kappa, precision, recall, and F1-score are 96.36, 95.23,
96.62, 96.27, and 96.44%, respectively.

The confusion matrix in Figure 4B shows the accuracy of
the 4 MI tasks at the group-level. The values on the diagonal
of the confusion matrix are the correct classification, and the
other values are the wrong classification. The accuracies of 4 MI
tasks are 98.54 (T1), 95.02 (T2), 93.66 (T3), and 96.19% (T4),
respectively. It can be seen the proposed method can also achieve
good performance in group-level classification.

3.3. Comparison of Classification Models
In order to solve the problem of overfitting, spatial dropout
and BN were used in our proposed model. Dropout refers to
the random “temporary dropping” of a part of neuron nodes
with a certain probability in training. Different neurons are
then combined with each other for optimization during each
training process. This process weakens the joint adaptability of
all neurons and reduces the risk of overfitting. BN enhances
the generalization ability of the model by imposing additional
constraints on the distribution of data.
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TABLE 3 | Performance comparison of different convolutional neural network (CNN) models.

Model Accuracy (%) kappa (%) Precision (%) Recall (%) F1-score (%)

Proposed model 96.36 95.23 96.62 96.27 96.44

Model without dropout 94.06 90.74 94.32 93.82 94.07

Model without BN 90.77 89.02 90.51 91.20 90.85

Model without 86.39 82.24 86.77 86.13 86.45

dropout & BN

FIGURE 5 | Performance comparison of different models. (A) Accuracy comparison. (B) ROC curve comparison.

In this article, we compared the performance of our proposed
models with three different models based on the data set of 10
subjects at group-level. Table 3 compared the performance of the
four models with five evaluation indicators. The accuracy, kappa,
precision, recall, and F1-Score of our proposed model are 96.36,
95.23, 96.62, 96.27, and 96.44%, respectively, which are higher
than othermodels, so its performance is better than othermodels.

Figure 5A is a comparison of the global average accuracy
of the four models. It can be seen that all models can reach a
stable state after iteration. Currently, the proposed model has the
highest accuracy of 96.36%, followed by 94.06% for the model
without dropout, 90.77% for the model without BN, and 86.39%
for the model without dropout and BN. Figure 5B is the ROC
curve and AUC curve of the four models. The model proposed
in this paper has the largest AUC value, 0.996, which is the
closest to 1, and the classification effect is the best. The accuracy
curve and ROC curve of the CNN model we proposed to solve
the overfitting problem are the smoothest and with the smallest
burr. In addition, the values of various evaluation metrics are the
highest, and the AUC value is also the highest when reaching the
stable state after iterations. When the iteration reaches a stable
state, the five evaluation indicators of accuracy, kappa, precision,
recall, and F1-score are all the highest, and the AUC value is
the largest. The performance of our proposed model is the most
stable, and it does improve the classification effect.

3.4. Comparison of Loss on Test Data
Figure 6A shows the loss function curve of ten individual
subjects on the test set, whose loss values decrease with the
increase of iteration times. When the number of iterations is
about 600, the loss values remain basically stable. Thus, the
optimal testing effect can be obtained, and it can be seen that
our model is convergent during testing. Figure 6B shows a
comparison of the loss function curve of different classification
models on the test set of group-level subjects. The loss values of
the four curves decrease with the increase of iteration times and
can reach equilibrium after 500 iterations. The blue curve is the
test loss function curve of the proposed model. Compared with
the other three models, it has the smoothest curve, the smallest
burr, and the smallest loss when it reaches the stable state. In
general, the proposed model has a good convergence effect on
the test set of the individual subject and group-level subjects.

3.5. Comparison With Other Works
Electroencephalogram signal has low amplitude and contains a
lot of noise, and there are differences between different subjects.
This article compared and analyzed our study with Handiru and
Prasad (2016), Azimirad et al. (2017), Dose et al. (2018), Athif
and Ren (2019), and Hou et al. (2019) in Table 4 under the
same database and the same MI task. The results show that our
method achieved the best results on both group-level subjects and
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FIGURE 6 | The loss function curve on test data. (A) Loss function comparisons of 10 individual subjects. (B) Loss function comparisons of different

classification models.

TABLE 4 | Performance comparison with other studies.

Work Training Accuracy (%) Methods

Azimirad et al. (2017) Global 81.00 SVM

Dose et al. (2018) Global 80.38 CNN

Subject 86.49

Athif and Ren (2019) Global 64.00 CSP

Hou et al. (2019) Global 94.54 ESI + CNN

Subject 94.50

Handiru and Prasad (2016) Global 61.01 SVM

This work Global 96.38 CNN

Subject 98.88

individual subjects, which indicates that the difference between
the left and right hemispheric on the cortex contains more
information related to MI tasks and that our CNN structure
is very helpful in improving the generalization performance of
the model.

In particular, the subjects used in theHou et al. (2019) partially
overlap with the subjects used in our article, which are S5-S10.
When the single subject is tested, the highest accuracies in Y.Hou
et al. are 94.6%(S5), 94.1%(S6), 95.0%(S7), 93.2%(S8), 95.5%(S9),
and 93.1%(S10). Then the accuracies of the method proposed in
this article are 97.14%(S5), 97.61%(S6), 96.23%(S7), 96.33%(S8),
97.34%(S9), and 98.81%(S10), which are higher than Hou et al. In
terms of real-time performance comparison, none of the articles
achieved real-time control.

4. DISCUSSION

4.1. Data Analysis
From Table 2 it can be found that the average accuracy of a single
subject in this article is up to 98.88%, which is an improvement

of 12 and 4% respectively compared with Dose et al. (2018) and
Hou et al. (2019). This proves the effectiveness of this method.
Specifically, Dose et al. only processes raw EEG signal, while
this article processes the region of interest on the cortex layer,
which shows that the preprocessing operation in this article
is effective. Hou et al. used single layer CNN to classify data,
which illustrates the feasibility and reliability of our proposed
dual-CNN. Figure 4 shows that the highest global accuracy rate
of this article is 96.38%, which is also higher than Dose et al.
and the Hou et al. In addition, our group-level accuracy is also
higher than other articles in Table 4, which proves that the
dual-CNN proposed in this paper has a significant effect on
MI-BCI classification.

4.2. Limitations of the Proposed Method
The time spent on data processing and classification using
neural networks is related to the amount of data, the complexity
of the network structure, and the performance of computer
equipment. When using CNN to process MI data, each learning
iteration during the CNN training will take some time. At
present, this paper cannot detect and classify MI tasks in real-
time. Therefore, Figure 3 still uses learning iterations during
CNN training, instead of using time as the abscissa axis.
But it is meaningful that the number of iterations is also
another manifestation of time, which means that as time
increases, our classification accuracy will continue to increase
and eventually reach a stable state. With the improvement
of computer performance, it will take less and less time for
us to reach a stable state. Therefore, in the classification of
non-real-time MI-BCI, it is also a good way to display the
performance of the method with the number of iterations. There
is still scope for simplifying the network structure, which will
be investigated in the future. Also, it would be interesting in
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the future to employ the current method for real-time online
BCI experiments.

5. CONCLUSION

The key objective of the study presented in this article is to
investigate themethod of high classification accuracy onMI-EEG
signals. This article proposed a newMI classification method that
combines the difference between the left and right hemispheric
electrodes on the cortex and dual-CNN. Using the Physionet
database as the data source, restored the raw EEG signal from
the low-density EEG scalp measurement, mapped nine pairs
of electrodes from the scalp layer to the cortex layer as the
region of interest, and extracted the time series of nine pairs
of electrodes signals as the input of the proposed dual-CNN
classificationmodel. The results demonstrated that theseMI tasks
can be classified with high accuracy by the difference between
the signals left and right hemispheric electrodes, and CNN plays
an important role in improving generalization performance. The
BCI system of MI based on left and right hemispheric electrodes
and CNN can be applied in the daily life of all subjects. The results

suggested that the classification accuracy of the proposed method
is substantially higher than all other methods used in this study.
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