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By integrating hierarchical feature modeling of auditory information using deep neural
networks (DNNs), recent functional magnetic resonance imaging (fMRI) encoding
studies have revealed the hierarchical neural auditory representation in the superior
temporal gyrus (STG). Most of these studies adopted supervised DNNs (e.g., for
audio classification) to derive the hierarchical feature representation of external auditory
stimuli. One possible limitation is that the extracted features could be biased toward
discriminative features while ignoring general attributes shared by auditory information in
multiple categories. Consequently, the hierarchy of neural acoustic processing revealed
by the encoding model might be biased toward classification. In this study, we explored
the hierarchical neural auditory representation via an fMRI encoding framework in which
an unsupervised deep convolutional auto-encoder (DCAE) model was adopted to derive
the hierarchical feature representations of the stimuli (naturalistic auditory excerpts in
different categories) in fMRI acquisition. The experimental results showed that the neural
representation of hierarchical auditory features is not limited to previously reported STG,
but also involves the bilateral insula, ventral visual cortex, and thalamus. The current
study may provide complementary evidence to understand the hierarchical auditory
processing in the human brain.

Keywords: hierarchical auditory representation, deep convolutional auto-encoder, naturalistic experience, neural
encoding, fMRI

INTRODUCTION

There are growing evidences supporting the hierarchy of auditory representations during auditory
processing in the human brain (Chevillet et al., 2011; Sharpee et al., 2011; Durschmid et al., 2016; De
Heer et al., 2017; Kell et al., 2018). For example, the neural processing of narrative speech involves
hierarchical representations starting from the primary auditory areas and laterally to the temporal
lobe (De Heer et al., 2017). In addition, the localization and identification of relevant auditory
objects are accomplished via parallel “where” and “what” pathways (Ahveninen et al., 2006; Lomber
and Malhotra, 2008; Bizley and Cohen, 2013). The hierarchy of neural auditory representation
is important to understand what sensory information is processed as one traverses the sensory
pathways from the primary sensory areas to higher-order areas.
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In light of their hierarchical feature representation ability,
recently advanced deep neural networks (DNNs) have gained
increasing interest in exploring the hierarchy of neural auditory
representation. These studies offer promising prospects to
understand the fundamental mechanisms of brain functions
responding to external stimuli. Specifically, brain encoding
models (Naselaris et al., 2011; Han et al., 2014; Mesgarani
et al., 2014; Du et al., 2019) have been used to establish the
relationship between acoustic features represented in different
layers of DNNs and brain activities. Brain regions of interest
that selectively respond to extracted features in different
layers were then inferred according to encoding performance.
Using such a neural encoding framework, researchers have
revealed a representational gradient in the superior temporal
gyrus (STG) during auditory information processing (Evans
and Davis, 2015; Kell et al., 2018; O’Sullivan et al., 2019;
Kiremitçi et al., 2021). For example, Kell et al. (2018)
found that latent features in intermediate network layers best
predicted neural responses in the primary auditory cortex,
while features in deeper layers can better explain brain
activities in anterior, lateral and posterior directions of the non-
primary areas.

In the majority of existing studies, the hierarchical features
of external acoustic stimuli were derived using supervised
DNNs that are designed for specific tasks, such as audio
genre classification (Güçlü et al., 2016) or speech recognition
(Kell et al., 2018). One possible limitation is that the
supervised hierarchical representations could be biased toward
discriminative features while ignoring the common ones shared
by auditory excerpts in different categories. Consequently, the
hierarchical organization of neural auditory processing revealed
by the encoding model may be confined to classification or
recognition domain. However, the neural processing of auditory
information during naturalistic experience is not restricted to
classification or recognition (Hasson and Honey, 2012; Fasano
et al., 2020). Unlike supervised DNNs that use predefined
labels as targets for model optimization, unsupervised DNNs
such as deep convolutional auto-encoder (DCAE) adopts
data reconstruction errors as objective functions and hence
learn intrinsic and hierarchical features of input data directly
(Masci et al., 2011). Thus, unsupervised DNNs may serve as
possible tools to comprehensively map the hierarchy of neural
auditory processing.

In this manuscript, we proposed an fMRI encoding framework
to explore the hierarchy of neural auditory processing in the
human brain. In brief, an unsupervised DCAE model (Masci
et al., 2011), instead of supervised DNNs used in existing studies
(Güçlü et al., 2016; Kell et al., 2018), was trained to derive
unbiased hierarchical feature representations of naturalistic
auditory excerpts in three semantic categories (pop music, classic
music, and speech). An encoding model based on LASSO
algorithm (Tibshirani, 2011) was learned to predict fMRI brain
activities using acoustic features represented in each layer of
the DCAE model. Brain regions that selectively response to the
hierarchical features were inferred according to the encoding
performance subsequently.

MATERIALS AND METHODS

Overview
As illustrated in Figure, we acquired fMRI data when the
participants were freely listening to naturalistic auditory excerpts
(Figure 1A). Then the hierarchical feature representations
of each audio excerpt were derived via an unsupervised
DCAE model (Masci et al., 2011; Figure 1B). Afterward, the
hierarchical acoustic features were correlated to fMRI brain
activities using an encoding model based on LASSO algorithm
(Tibshirani, 2011; Figure 1C and Section “Encoding Model
and Group-Wise Analysis”). In brief, the hierarchical feature
representation was used to predict fMRI brain activities with
a sparsity regularization, and the prediction accuracies was
used to measure how well the acoustic features and brain
activities were correlated. After that, a group-wise analysis
was performed to identify brain regions whose activities were
predicted with accuracies significantly above chance to infer
hierarchical auditory representation in the brain.

Functional Magnetic Resonance Imaging
Acquisition and Preprocessing
Auditory excerpts in three semantic categories (classical music,
pop music, and speech) were used as naturalistic stimuli in fMRI
data acquisition. Each category was composed of seven excerpts
and each excerpt was around 90 s. All excerpts were taken from
legal copies of compressed MP3 audio files. These audio excerpts
were aggregated in a random order to avoid the influence of the
internal structure of audio data on human brain’s perception.
FMRI data were acquired using a GE 3T Signa MRI system (GE
Healthcare, Milwaukee, WI, United States) with an 8-channel
head coil at the Bio-Imaging Research Center of the University
of Georgia (UGA) under UGA Institutional Review Board (IRB)
approval. Six healthy university students voluntarily participated
in the study. The audio stimuli were delivered to the participants

FIGURE 1 | The schematic illustration of the study. (A) fMRI acquisition using
naturalistic auditory excerpts as stimuli. (B) Hierarchical feature representation
of the naturalistic auditory stimuli via an unsupervised DCAE model.
(C) Hierarchical acoustic features were correlated to fMRI brain activities using
an encoding model based on LASSO to infer hierarchical auditory
representation in the brain.
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using an MRI-compatible audio headphone (Nordic NeuroLab,
Bergen, Norway).

The detailed fMRI acquisition parameters were as follows:
TR = 1.5 s, TE = 25 ms, 64× 64 matrix, 30 axis slices, 4 mm slice
thickness, 220 mm Field of View (FOV). FMRI data were pre-
processed using FSL FEAT (FMRI Expert Analysis Tool) (Smith
et al., 2004). The preprocessing included brain skull removal,
slice timing and motion correction, spatial smoothing with 5 mm
full-width at half-maximum (FWHM) Gaussian kernel, high
pass temporal filtering, and linear registration to the standard
Montreal Neurological Institute (MNI) brain template. After
preprocessing, the time course of each voxel was normalized to
have zero mean and unit standard deviation.

Hierarchical Feature Representation
Based on Deep Convolutional
Auto-Encoder
Deep Convolutional Auto-Encoder Model
The DCAE model used in this study is composed of an encoding
block and a decoding block, as shown in Figure 2. The encoder
transforms the input data into a detailed feature representation
(feature maps), and the decoder performs data reconstruction
(Masci et al., 2011). The objective of the DCAE model is to
minimize the reconstruction errors between the input auditory
signals and reconstructed ones.

Each block in the encoder consists of a convolutional layer
and a max-pooling layer. A convolutional layer acts as feature
extractor and the max-pooling layer reduces computational cost
in the upper convolutional layer and gains translation/scale-
invariance (Peterson et al., 2018; Song et al., 2018). Each block
in the decoder consists of a deconvolution layer and an un-
pooling layer. It is notable that the max-pooling operation is
not invertible. To address this problem, we adopted a switch-
based un-pooling approach (Zeiler and Fergus, 2014). The
“switches” record the exact location of the max value in each
pooling region during max-pooling, and then these “switches”

are placed to its original position with corresponding max values
(Huang et al., 2017). A linear activation function was applied
in the first convolutional layer in the encoder and the last
deconvolution layer in the decoder. The Rectified Linear Unit
(ReLU) (Dahl et al., 2013) was used as activation function
elsewhere. The objective function of the DCAE model consists of
two terms. The first term represents the reconstruction error. The
second term is an L2 regularization applied on weights to prevent
overfitting and make the learned features more interpretable
(Bilgic et al., 2014).

The number of layers in the DCAE model here was empirically
set to balance the effectiveness of hierarchical feature learning and
the interpretability of the subsequent inference of the hierarchical
neural auditory processing. Intuitively, a larger number of layers
would result in a finer featural representation of the input
auditory excerpts. However, this would bring difficulties in
interpreting the cortical hierarchy of acoustic feature processing
in the human brain. In contrast, a smaller number of layers may
not sufficient to learn the hierarchical feature representations
of the input acoustic excerpts and consequently interrupt the
encoding inference.

Deep Convolutional Auto-Encoder Parameter
Settings and Model Training
During model training, the length of an input training sample
was the same as the TR (1.5 s) in fMRI acquisition. The
naturalistic auditory stimuli used in fMRI acquisition contribute
1,260 samples, which are not sufficient to train the DCAE
model. To address this problem, we constructed additional 36,000
samples from the MagnaTagATune Dataset (Law et al., 2009)
and the LibriSpeech Corpus (Panayotov et al., 2015) to pre-
train the model (Data 1). The pre-trained model was then fine-
tuned using the samples from the fMRI stimuli (Data 2). We
implemented the DCAE model using Keras (Chollet, 2015) with
CUDA and cuDNN. Based on our prior experiences (Huang et al.,
2017), hyper-parameters in the DCAE including the number

FIGURE 2 | The DCAE model used for the hierarchical feature modeling.
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and the length of the filters were detailed in Table 1. The
regularization parameter κ is experimentally set as 0.001. We
used the Adam optimizer with default parameters β1 = 0.5,
β2 = 0.999, epsilon = 1e−8 and a mini-batch size of 32 to train
the model. We manually tuned the learning rate α = 0.0002 and
weight decay = 0.001 to iteratively minimize the mean square
error (MSE) loss function. The DCAE model converged after
about 5,000 epochs.

Hierarchical Acoustic Feature Representation
Similar to a previous study (Kell et al., 2018), the acoustic
features encoded in each of the four max-pooling layers in the
encoder were regarded as a single level of the hierarchical feature
representation of an input auditory sample. For each input
sample (1.5 s∗16k/s = 24k∗1), its hierarchical feature maps on the
four max-pooling layers are in the dimension of ti

∗ci, where ti is
the length of sample in the output of i-th max-pooling layer (24k,
12k, 6k, and 3k for i = 1, . . ., 4, respectively). ci is the number
of filters (channels) in the i-th convolutional layer. Following the
feature dimensionality reduction strategy used in Güçlü et al.
(2016), the high dimensional feature map on each max-pooling
layer was temporally averaged, resulted in a ci-dimensional
feature vector. For a given auditory excerpt consisting of 60
samples that was used as stimulus in fMRI acquisition, its
hierarchical feature representation is in the dimension of 60∗ci.
Subsequently, each column of these hierarchical acoustic features
was convolved with the canonical double-gamma hemodynamic
response function (HRF).

Encoding Model and Group-Wise
Analysis
Linear encoding models are preferred in fMRI encoding studies
due to their good interpretability (Naselaris et al., 2011).
Compared to other linear regression models such as ridge
regression and support vector regression (SVR) with a linear
kernel, LASSO enforces a sparse encoding model that is able to
identify a more compact set of variables of interest. Thus, an
encoding model based on LASSO algorithm (Tibshirani, 2011)
was trained to predict fMRI responses using the hierarchical
feature representation described above. In the encoding model,
we treated each 60-s auditory excerpt in fMRI acquisition and
the corresponding individual excerpt-specific fMRI data as a
single sample, resulting in a collection of 126 (3 auditory
categories × 7 excerpts in each category × 6 participants)
samples. The encoding model can be formulated as a matrix
factorization with a sparsity penalty:

minαi∈ Rm 1
2
||xi − Dαi||

2
2 + λ||αi||1 (1)

TABLE 1 | The number and length of filters in the DCAE model.

Filter number/filter length Layer 1 Layer 2 Layer 3 Layer 4

Encoder 32/64 64/32 128/16 256/8

Decoder 256/8 128/16 64/32 32/64

FIGURE 3 | The architecture of the supervised DNNs for audio classification.
GAP, global average pooling.

where xi is the fMRI signal of each voxel in an individual
participant, D is the corresponding hierarchical feature
representation in each layer, ai is the encoding coefficients, and
λ is a sparsity controlling parameter. The encoding model was
trained for each voxel independently. The encoding performance
for each voxel was calculated as the Pearson correlation
coefficient (PCC) between the predicted fMRI activities and
the recorded ones. Repeating encoding model training and
performance evaluating for each voxel resulted in an encoding
performance map for each sample. The parameter λ balances the
regression residual and sparsity level. The encoding model with
a smaller λ better predicts xi using a larger subset of D at the risk
of over-fitting, while a larger λ decreases the prediction accuracy
using a more compact subset of features. In our study, λ was
varied from 0.05 to 0.15 with interval of 0.05 and was optimized
via a leave-one-out cross-validation strategy to maximize the
average encoding performance in the testing set.

A group-wise analysis was then performed to infer the
corresponding brain regions that selectively encoded each
level of the hierarchical feature representations in the DCAE
model. In brief, for a given level of the hierarchical feature
representations, the encoding performance map for each sample
was independently normalized and aggregated to perform one-
sample t-test to infer the corresponding brain regions that have
encoding accuracy significantly above chance (p < 0.01, Z≥ 2.3).

A Comparison Study
A comparison study was performed to compare the neural
encoding of unsupervised hierarchical feature representations
with that of a supervised classification model described as follows.
A global average pooling (GAP) layer (Yu et al., 2017) followed
by a fully connected soft-max classification layer were connected
to the fourth max-pooling layer of the unsupervised DCAE
model (Figure 3). Adopting cross-entropy loss function, Adam
optimizer, early stopping strategy and batch size of 32, it was pre-
trained using Data 1 and followed by fine-tuning using Data 2.
Supervised hierarchical feature representations of input auditory
excerpts were derived from the converged classification model.
The neural encoding of supervised hierarchical features was
probed using the same encoding framework described in Section
“Encoding Model and Group-Wise Analysis” and was compared
with that of the unsupervised DCAE model.
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FIGURE 4 | Visualization of learned filters in the DCAE model. (A) Examples of the learned filters in each layer. (B) The power-spectrum patterns of learned filters.
The x-axis represents the index of filters, the y-axis represents the frequency ranging from 0 to 8000 Hz.

FIGURE 5 | Encoding performance of the trained DCAE model. (A) The distribution of Pearson correlation coefficients (PCC) between the input audio signals and
reconstructed ones in the MagnaTagATune dataset and LibriSpeech Corpus. (B) The distribution of PCC in the auditory samples from the fMRI stimuli.

RESULTS

Evaluation of Hierarchical Feature
Learning
Figure 4A shows some examples of the learned filters in the
DCAE model. The power-spectrum patterns of the learned filters
are depicted in Figure 4B, where the filters in each layer are
sorted according to the frequency (low to high) at which its
magnitude reaches the maximum (Lee et al., 2018). In the first
layer, the frequency of the filters increases approximately linearly
in low frequency filter banks whereas filters that are selective
for higher frequency are more spread out. As the layer goes
deeper, the trend of frequency becomes non-linearly steeper
in high frequency filter banks. These spectrum patterns are
consistent with those in frame-level end-to-end learning for
music classification (Dieleman and Schrauwen, 2014; Lee et al.,
2018), suggesting the effectiveness of hierarchical feature learning
in the DCAE model.

The distribution of Pearson correlation coefficients (PCCs)
between the input audio signals and reconstructed ones is
shown in Figure 5. The PCC is relatively high in both Data
1 (0.9859 ± 0.0024, Figure 5A) and Data 2 (0.9274 ± 0.0297,
Figure 5B). The discriminative ability of the hierarchical features

learned by the DCAE model was then examined using a
classification task based on support vector machine (SVM)
with an RBF kernel. The classification performance in 5-fold
cross-validations is summarized in Table 2 for each layer.
The classification accuracy slowly increases as the layer goes
deeper. Both the high data reconstruction performance and high
classification accuracy indicate that the trained DCAE model
could well capture the intrinsic features of the input samples.
Similar classification results are observed in the supervised
model (Table 3).

Encoding Performance
The optimal sparsity controlling parameter λ = 0.1 maximized
the overall encoding performance depicted in Figure 6 for the
unsupervised DCAE (Figure 6A) and supervised classification
model (Figure 6B). Each subgraph shows the PCC between the
original fMRI signals and the ones predicted by the hierarchical
feature representations in each layer. In general, the distribution
of brain regions in each layer is similar in the unsupervised
DCAE and supervised classification model. The primary auditory
cortex is selective to acoustic features learned in the first
layer, the non-primary auditory cortex in the superior temporal
gyrus (STG) is more sensitive to intermediate-layer acoustic
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TABLE 2 | The classification accuracies in different layers of the DCAE model (mean ± std).

Layer 1 Layer 2 Layer 3 Layer 4

Data 1 0.7787 ± 0.0326 0.9079 ± 0.0060 0.9168 ± 0.0096 0.9198 ± 0.0077

Data 2 0.7528 ± 0.0221 0.9044 ± 0.0104 0.9084 ± 0.0169 0.9181 ± 0.0220

TABLE 3 | The classification accuracies in different layers of the supervised model.

Layer 1 Layer 2 Layer 3 Layer 4

Data 1 0.9093 ± 0.0160 0.9489 ± 0.0110 0.9558 ± 0.0086 0.9679 ± 0.0025

Data 2 0.8545 ± 0.1661 0.9309 ± 0.0139 0.9531 ± 0.0056 0.9552 ± 0.0033

FIGURE 6 | The encoding performance for each layer in the unsupervised DCAE model (A) and supervised classification model (B).

features, while the prefrontal cortex, visual cortex, and precuneus
are involved in the processing of higher-level features learned
in the last layer.

We further adopted a paired-sample t-test to compare the
encoding performance between the unsupervised DCAE and
supervised classification models. It is observed that the encoding
performance in some brain regions in the unsupervised DCAE
model is significantly higher (p ≤ 0.01, Z ≥ 2.3) than those
in the supervised classification model, including the primary

auditory cortex (A1) in the first layer, part of middle temporal
gyrus (MTG) and visual cortex in the second layer, anterior
STG, posterior STG, part of prefrontal cortex (PFC), cuneus
and precuneus in the third and last layer (Figure 7). No
obvious brain regions showed significantly higher encoding
performance in supervised classification model compared to the
unsupervised one. These results suggested that the hierarchical
features learned in the unsupervised DCAE model can achieve
better encoding performance.
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FIGURE 7 | The comparison of encoding performance between the unsupervised DCAE model and supervised classification model in each layer. A1, primary
auditory cortex; aSTG, anterior superior temporal gyrus; pSTG, posterior superior temporal gyrus; MTG, middle temporal gyrus; VC, visual cortex; PFC, prefrontal
cortex.

FIGURE 8 | Brain regions that are selectively activated by the hierarchical acoustic features represented in each encoder layer of the unsupervised DCAE model.
Panels (A–D) represent the first four layers in the unsupervised DCAE model.

FIGURE 9 | Brain regions that are selectively activated by the hierarchical acoustic features represented in each layer of the supervised classification model. Panels
(A–D) represent the first four layers in the supervised classification model.

Hierarchical Neural Auditory
Representation
Group-wise analysis was used to evaluate whether the encoding
performance was significantly above chance (Z ≥ 2.3) for each
voxel independently. Brain regions of interest that were selective
to each level of the hierarchical acoustic feature representation
were inferred accordingly to probe the hierarchy of neural
auditory processing. Figure 8 shows the Z-maps of encoding
performance for each encoder layer in the unsupervised DCAE

model. In the first layer (Figure 8A), brain activities in the
primary and association auditory cortices were with significantly
(Z ≥ 2.3) high encoding accuracy, indicating that the features
learned in the first layer may represent basic acoustic features.
Part of the middle temporal gyrus (MTG) was activated in
the second and third layer (Figures 8B,C). In the fourth layer,
bilateral insula and ventral visual cortex were with significantly
high encoding accuracy (Figure 8D). In addition, we observed
that the thalamus was activated by the features represented in
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the second and third layers. The statistical details of these brain
regions are listed in Supplementary Table 1.

In comparison, the hierarchy of neural auditory processing
revealed by the encoding model using supervised feature learning
model is partly in line with the one in the unsupervised model, as
shown in Figure 9. For example, the primary auditory cortex and
visual cortex were selectively activated by the features represented
in the first and fourth layer of the supervised model, respectively.
However, those selective brain regions were much sparser and
scattered distributed compared to the ones in the unsupervised
model. In addition, the bilateral insula and thalamus were not
activated in the supervised classification model.

DISCUSSION

In this study, we investigated the hierarchy of neural acoustic
processing in the human brain via an fMRI encoding model.
Compared to existing studies that used supervised feature
learning models that are designed for classification or recognition
to achieve a hierarchical feature representation of input acoustic
information (Kell et al., 2018; O’Sullivan et al., 2019), the novelty
of the current study is adopting an unsupervised DCAE feature
learning model to derive intrinsic and unbiased hierarchical
feature representation of naturalistic auditory stimuli in fMRI
acquisition. Our experimental results showed that the neural
representation of hierarchical auditory features is not limited
to previously reported STG (Kell et al., 2018; O’Sullivan et al.,
2019), but also involves the bilateral insula, ventral visual
cortex and thalamus.

In the current study, our experimental results showed that
the visual cortex and insula are related to the encoding of high-
level acoustic features represented in the deepest layers of the
DCAE model. It may indicate that these high-level features carry
higher-order attributes such as emotion (Gu et al., 2013) and
visual imagery (Vetter et al., 2014) elicited by auditory excerpts.
For example, an fMRI study that uses auditory stimulation to
examine the activity in the early visual cortex suggested that
the auditory input enables the visual system to predict incoming
information and could confer a survival advantage (Vetter et al.,
2014). It also has been reported that the higher-level abstract
or categorical information of acoustic stimulation is fed down
to early visual cortex (Cate et al., 2009; Vetter et al., 2014). In
addition, we observed that the thalamus may encode middle-
level features. It has been reported that the thalamus plays an
important role in auditory processing (Schonwiesner et al., 2006),
especially for sound source localization (Proctor and Konishi,
1997), and tones modulated by attention (Frith and Friston,
1996). Our findings, in conjunction with previous results on the
visual and auditory cortical representations (King and Nelken,
2009; Khalighrazavi and Kriegeskorte, 2014; Cichy et al., 2016),
suggest that the existence of multiple representational gradients
that processes increasingly complex conceptual information as
we have experienced the sensory hierarchy of the human brain.

In the comparison study, the supervised model achieved
better classification performance compared to the unsupervised
DCAE model (Tables 2, 3). However, the unsupervised DCAE

model outperformed the supervised model in terms of encoding
performance (Figures 8, 9). More importantly, the cortical
hierarchy pattern inferred by the supervised model was much
sparser and scattered distributed compared to the ones in the
unsupervised model (Figures 6, 7). These observations indicate
that the intrinsic and unbiased hierarchical features learned in the
DCAE model may provide additional evidence to understand the
cortical hierarchy in neural auditory processing compared to the
features learned in the supervised model that were biased toward
discriminative ones while ignoring general attributes shared by
auditory information in multiple categories.

In summary, the findings in this study may provide
complementary evidences to understand the hierarchical
auditory processing in the human brain. The current study
can be improved in several ways in the future. It is expected
to validate the findings using larger-scale fMRI datasets that
recruit more participants. In the current study, we adopted an
unsupervised DCAE model to derive the hierarchical feature
representations of the acoustic stimuli in fMRI acquisition.
The architecture and some of the hyperparameters (e.g., the
number of layers, the number and length of the filters) of
the DCAE model were empirically set. Although this DCAE
model was able to effectively learn the hierarchical feature
representation of the input acoustic excerpts as indicated
by the SVM-based classification tasks in our experiments, it
could be optimized by automated machine learning technique
such as neural architecture search neural architecture search
(NAS) (Elsken et al., 2019). In addition, the recently advanced
self-supervised learning models (Sermanet et al., 2018; Li et al.,
2020) may serve as more efficient and ecological approaches to
unsupervised acoustic feature learning, and thus could enrich
our understanding of the cortical hierarchy of neural auditory
processing in future studies.
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