AUTHOR=Zhang Xiaoxiao , Zhang Huiwei , Lin Zhengyu , Barbosa Daniel A. N. , Lai Yijie , Halpern Casey H. , Voon Valerie , Li Dianyou , Zhang Chencheng , Sun Bomin TITLE=Effects of Bilateral Subthalamic Nucleus Stimulation on Depressive Symptoms and Cerebral Glucose Metabolism in Parkinson’s Disease: A 18F-Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography Study JOURNAL=Frontiers in Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.843667 DOI=10.3389/fnins.2022.843667 ISSN=1662-453X ABSTRACT=

Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor symptoms in Parkinson’s disease (PD), as well as potentially improving otherwise intractable comorbid depressive symptoms. To address the latter issue, we evaluated the severity of depressive symptoms along with the severity of motor symptoms in 18 PD patients (mean age, 58.4 ± 5.4 years; 9 males, 9 females; mean PD duration, 9.4 ± 4.4 years) with treatment-resistant depression (TRD) before and after approximately 1 year of STN-DBS treatment. Moreover, to gain more insight into the brain mechanism mediating the therapeutic action of STN-DBS, we utilized 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to assess cerebral regional glucose metabolism in the patients at baseline and 1-year follow-up. Additionally, the baseline PET data from patients were compared with PET data from an age- and sex-matched control group of 16 healthy volunteers. Among them, 12 PD patients underwent post-operative follow-up PET scans. Results showed that the severity of both motor and depressive symptoms in patients with PD-TRD was reduced significantly at 1-year follow-up. Also, patients used significantly less antiparkinsonian medications and antidepressants at 1-year follow-up, as well as experiencing improved daily functioning and a better quality of life. Moreover, relative to the PET data from healthy controls, PD-TRD patients displayed widespread abnormalities in cerebral regional glucose metabolism before STN-DBS treatment, which were partially recovered at 1-year follow-up. Additionally, significant correlations were observed between the patients’ improvements in depressive symptoms following STN-DBS and post-operative changes in glucose metabolism in brain regions implicated in emotion regulation. These results support the view that STN-DBS provides a promising treatment option for managing both motor and depressive symptoms in patients who suffer from PD with TRD. However, the results should be interpreted with caution due to the observational nature of the study, small sample size, and relatively short follow-up.