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Multi-modal magnetic resonance imaging (MRI) is widely used for diagnosing brain

disease in clinical practice. However, the high-dimensionality of MRI images is challenging

when training a convolution neural network. In addition, utilizing multiple MRI modalities

jointly is even more challenging. We developed a method using decomposition-based

correlation learning (DCL). To overcome the above challenges, we used a strategy to

capture the complex relationship between structural MRI and functional MRI data. Under

the guidance of matrix decomposition, DCL takes into account the spike magnitude of

leading eigenvalues, the number of samples, and the dimensionality of the matrix. A

canonical correlation analysis (CCA) was used to analyze the correlation and construct

matrices. We evaluated DCL in the classification of multiple neuropsychiatric disorders

listed in the Consortium for Neuropsychiatric Phenomics (CNP) dataset. In experiments,

our method had a higher accuracy than several existing methods. Moreover, we found

interesting feature connections from brain matrices based on DCL that can differentiate

disease and normal cases and different subtypes of the disease. Furthermore, we

extended experiments on a large sample size dataset and a small sample size dataset,

compared with several other well-established methods that were designed for the multi

neuropsychiatric disorder classification; our proposed method achieved state-of-the-art

performance on all three datasets.

Keywords: multi-modal, decomposition-based, matrix decomposition, canonical correlation analysis,

neuropsychiatric disorders

1. INTRODUCTION

Many neuropsychiatric disorders (NDs) not only result in a huge socioeconomic burden but are
also accompanied by several comorbidities (Kessler et al., 2012). Although NDs arise from physical
defects or injuries, they are usually considered a chronic course of mental disease, resulting in
the collapse of an understanding of the real world, cognitive problems, and persistent damage
(Heinrichs and Zakzanis, 1998). Diagnosis of NDs is important for tracking the development of
the disease and for choosing and evaluating the effects of an intervention such as drug treatment.
Furthermore, subtyping an ND can help in personalizing treatment. As a result, increasing
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attention has been paid to the identification of the subtypes of
the ND, such as schizophrenia (SZ), bipolar disorder (BD), and
attention deficit hyperactivity disorder (ADHD). However, it is
difficult to distinguish these subtypes due to a lack of standard
clinical criteria (McIntosh et al., 2005; Strasser et al., 2005; Finn
et al., 2015; Liu Z. et al., 2018; Hu et al., 2019; Lake et al., 2019;
Jiang et al., 2020).

Multi-modal magnetic resonance imaging (MRI) is a useful
tool for clinical diagnosis of ND. It can provide information
on different aspects of the brain. Functional MRI (fMRI)
can be used to analyze the functional connections (FCs)
between different brain regions. These FCs reveal individual
differences in neural activity patterns, which can predict
continuous phenotypic measurements (Dubois and Adolphs,
2016; Rosenberg et al., 2018; Hu et al., 2021). On the other
hand, structural MRI (sMRI) reflects the location, volume,
and lesions of brain tissue (McIntosh et al., 2005; Liu et al.,
2019), in addition to providing information about structural
connections among brain regions (Wang et al., 2009). A number
of MRI studies have been conducted on ND classification,
including Alzheimer’s disease (Fan et al., 2020), ADHD
(Connaughton et al., 2022), SZ (de Filippis et al., 2019), BD
(Madeira et al., 2020), depression (Han et al., 2019), and
autism (Rakić et al., 2020). However, most of these studies
focus only on one type of MRI image or one type of ND.
They overlook complementary information, resulting in lower
classification accuracy.

Compared to natural image studies, the limited number
of medical MRI samples is a challenge for the state-of-the-
art convolutional neural networks and graph convolutional
networks (Yu et al., 2019; Willemink et al., 2020). In particular,
the high-dimensionality of MRI and nonlinear relations between
the matrices of MRIs pose challenges for these machine learning
methods. In addition, the imaging principles of sMRI and fMRI
are different, and there is no direct correlation between them.
Exploring the relationship between them is itself challenging.

Previous multi-modal MRI studies have demonstrated the
potential of a multi-modal fusion approach in studying the
relationship between fMRI and sMRI images (Qiao et al., 2019;
Gao et al., 2020; Jiang et al., 2021; Mill et al., 2021). For
example, Qiao et al. (2019) proposed a hybrid feature selection
method based on statistical approaches and machine learning.
This method explored the brain abnormalities in SZ using
both fMRI and sMRI images. A multi-kernel support vector
machine (SVM) was used for SZ classification, which was based
on the similarity of the decomposed components from multi-
modal MRI (Gao et al., 2020). Jiang et al. (2021) combined
the multi-dimensional features of sMRI and fMRI to predict
the state of SZ and guide medication. Different modalities
contain complementary information, which can improve the
performance of the model (Jiang et al., 2021; Mill et al., 2021).
However, the poor interpretability of somemodels has become an
issue when identifying significant biomarkers (Olesen et al., 2003;
Seghier et al., 2004). Various strategies are widely used in multi-
modal data analysis, includingmulti-modal canonical correlation
analysis (CCA) (Correa et al., 2010), deep collaborative learning
(Hu et al., 2019), parallel independent component analysis (Liu

et al., 2008), and methods similar to independent component
analysis (Sui et al., 2009; Calhoun et al., 2010; Groves et al., 2011).

Some previous studies have identified a correlation between
fMRI and sMRI images in ND groups (Sui et al., 2011; Qiao et al.,
2019; Su et al., 2020). Therefore, we propose a predictionmethod,
called decomposition-based correlation learning (DCL), for the
multi-modal MRI-based classification of NDs. We first used
the shrinkage principal orthogonal complement thresholding
method (S-POET) (Fan andWang, 2015) to estimate spiked fMRI
and sMRI matrices. Subsequently, in the DCL method, we use
decomposition-based CCA to decompose each pair of matrices
into two common matrices and two orthogonal distinctive
matrices. Finally, we computed the correlation between the
common matrices and the distinctive matrices. We validated
the DCL method on the Consortium for Neuropsychiatric
Phenomics (CNP) dataset. Our results demonstrate that the
proposed DCL model outperforms several other methods. We
also discovered interesting feature connections when identifying
significant features in fMRI data.

The rest of this paper is organized as follows. Section 2
describes the DCL pipeline and provides a quantitative
evaluation of our method. The dataset and experiments in
applying DCL to NDs are presented in Sections 3, 4. A discussion
and analysis of the results are in Section 5. Section 6 concludes
this paper.

2. METHODOLOGY

The DCL pipeline is shown in Figure 1. DCL has three
steps: data processing (feature extraction), S-POET (spiked
covariance matrix estimation), and CCA (canonical correlation
and matrix construction).

2.1. Overview of Principal Component
Analysis (PCA)
Principal component analysis is a powerful tool for feature
extraction and data visualization. PCA can extract principal
components from multivariate data by maximizing the variance
of the features while minimizing the reconstruction error.

Let X ∈ R
m×n be a matrix, where m and n are the size of the

matrix. Hence,

X = [x1, x2, x3, . . . , xm]. (1)

Let X̂ be the average signal, which is defined as follows:

X̂ =
1

m

m∑

n=1

xn. (2)

The normalized vectors are computed by subtracting the average
signal from each training vector. They are defined as follows:

φi = xi − X̂. (3)

These vectors go through PCA. Let C be a covariance matrix:

C =
1

m

m∑

n=1

φnφ
⊤
i . (4)
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FIGURE 1 | Overview of the architecture of the proposed integration model.

2.2. Overview of S-POET
The shrinkage principal orthogonal complement thresholding
method (Fan and Wang, 2015) is a covariance estimator with an
approximate factor model. It is based on sparse PCA. Feature
matrices from fMRI and sMRI data are input into S-POET,
which calculates an asymptotic first-order distribution for the
eigenvalues and eigenvectors of the sample correlation matrices.

Specifically, let k be the number of datasets and n be the
number of samples in the k-th dataset. A high-dimensional
dataset can be written as matrix X̃ ∈ R

pk×n. In our experiment,
we have two matrices, one from fMRI and one from sMRI, so we
set k = 2. pk is a row, which corresponds to a mean-zero variable.
S-POET constructs X̃k, which is the estimate of matrix Xk. Before
defining X̃k, we let the full singular value decomposition of Yk be
as follows:

Yk = Vk1λykV
⊤
k2, (5)

where Vk1 and Vk2 are two orthogonal matrices. λyk is a
rectangular diagonal matrix whose singular values on the main
diagonal are arranged in descending order. X̃k is a matrix:

X̃k = V
[:,1 : rk]
k1

diag(̂σ S
1 (Yk), . . . , σ̂

S
rk
(Yk))(V

[:,1 : rk]
k2

)⊤, (6)

σ̂ S
l (Yk) =

√
max{σ 2

l
(Yk)− τkpk, 0}, (7)

τk =

pk∑

l=rk+1

σ 2
l (Yk)/(npk − nrk − pkrk), (8)

where r̃k = rank(X̃k) and r̃k = rk.
We summarize the S-POET method in Algorithm 1.

Algorithm 1 | S-POET

Input: X ∈ R
pk×n

Output: X̃k

1: K ← rank cov(X) //Covariance estimator
2: p, n← shape(X)
3: V , S,Ut ← SVD(X, fullmatrices = False)
4: S← diag(S)
5: Lambda← S ∗ ∗2/n //lambda expression
6: c̃← Sum(Lambda.diagonal()[K :])/(p− K − p ∗ K/n)
7: Lambdas ← Maximum(Lambda[:K, :K]− c̃ ∗ p/n, 0)
8: X̃k ← V[:, :K]@ Sqrt(Lambdas ∗ n)@Ut[:K, :]
9: return X̃k, Lambdas, V[:, :K], K

2.3. Overview of CCA
Canonical correlation analysis is a multivariate statistical analysis
method. It determines the overall correlation between two groups
of indicators. We use CCA to examine the cross-covariances of
multi-modal MRI data.

Let X̃1 ∈ R
n×r and X̃2 ∈ R

n×s be two matrices, where n is the
number of samples, and r and s are the feature sizes of the two
matrices, respectively. CCA is used to find two coefficient vectors
v1 ∈ R

r×1 and v2 ∈ R
s×1 by optimizing the Pearson correlation

between X̃1v1 and X̃2v2, which is defined as follows:

(v∗1 , v
∗
2) = argmax

v1 ,v2

v′1812v2, (9)

where v′1811v1 = 1, v′2822v2 = 1, v1 ∈ R
r×1, v2 ∈ R

s×1, and
8ij = X̃′iX̃j. X̃1v1 and X̃2v2 are two identified canonical vectors,
both of which are linear combinations of raw features in the
original data, X̃1 and X̃2, respectively. X̃1v1 and X̃2v2 facilitate
the interpretation of multi-omics associations by reducing the
dimensionality (X̃1v1, X̃2v2 ∈ R

n×1). We use Equation (9) as a
constraint, and v′1812v2 can be used as the cross-data correlation,
i.e.,

v′1812v2 =
v′1812v2√

v′1811v1v
′
2822v2

.

Canonical correlation analysis is used to guarantee the highest
total correlation of the pair-wise independent canonical vectors,
which is defined as follows:

(V∗1 ,V
∗
2 ) = argmax

V1 ,V2

trace(V ′1812V2), (10)

where V ′1811V1 = V ′2822V2 = In, V1 ∈ R
r×k, V2 ∈ R

s×k, and
k = min[rank(X̃1), rank(X̃2)]. Since811 and822 may be singular
when calculating the loading vectors, matrix regularization is
usually enforced on them to ensure that they are positive definite:

8̂11 = 811 + r1Ir ,

8̂22 = 822 + r2Ir .
(11)
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2.4. Decomposition-Based Correlation
Learning
Let X1 and X2 be paired matrices of fMRI and sMRI, which
are the input of S-POET methods. We use the DCL method to
decompose this pair of matrices into two common matrices and
two orthogonal distinctive matrices. Then, we collect these two
types of matrices into a common matrix (Ck) and a distinctive
matrix (Dk), respectively. Based on the output (X̃k) of S-POET, we
use X̃k to develop two estimators for Ck and Dk. First, we define
the common variable cbase as follows:

cbase ∝ n−1 argmax
w∈(l20 ,cov)

{corr2(X1,w)+ corr2(X2,w)}, (12)

where the constraints X1 = C1 + D1, X2 = C2 + D2,
corr(D1,D2) = 0, and cbase ∈ [0, 1].

Then, the estimator of Ck can be defined as follows:

Ĉk = n−1X̃k(V̂
[1 : r12 ,:]
k

)⊤Â
(r12)
C

2∑

j=1

V̂
[1 : r12,:]
k

cbase, (13)

where Â
(r)
C = diag(̂a1, . . . âr), C1 and C2 have the maximum

correlation between each other, while the vectors within each are
uncorrelated and whitened. Their correlation vectors â1, â2,. . . ,
âr are called the canonical correlation coefficients.

The estimator of Dk is defined as follows:

D̂k = X̃k − n−1X̃k(V̂
[1 : r̃12,:]
k

)⊤Â
(̃r12)
C

2∑

j=1

V̂
[1 : r̃12,:]
k

cbase. (14)

In our experiment, we use the relationship between D̂1 and D̂2

to represent the orthogonal relationship between two distinctive
matrices, and D̂1D̂2 = 0p1×p2. Finally, X̂k, the estimator of Xk, is
defined as follows:

X̂k = Ĉk + D̂k. (15)

We summarize DCL in Algorithm 2.

3. METHODS

3.1. CNP Dataset
We evaluated the proposed DCL method in classifying NDs
in the CNP dataset (Poldrack et al., 2016). The CNP dataset
was collected by a consortium at the University of California,
Los Angeles (UCLA), with financial support provided by the
National Institutes of Health. This dataset has been used to
elucidate the association between the human genome and
complex psychological syndromes and promote the development
of new therapies for NDs. All of this research was based on image
phenotypic features in the mental disease.

The consortium for neuropsychiatric dataset was obtained
from the OpenfMRI project (Gorgolewski et al., 2016). It
includes sMRI data, task-based fMRI data, and resting-state
fMRI data. These MRI images were acquired on one of two 3T
Siemens Trio scanners at UCLA. The database contains extensive

Algorithm 2 | DCL

Input: X1 ∈ R
p×n, X2 ∈ R

s×n //Input of sMRI and fMRI,
respectively.
Output: X̂1,X̂2

1: X̃1, Lambda1,U1 ← S-POET(X1) //processed by S-POET
method

2: X̃2, Lambda2,U2 ← S-POET(X2) //processed by S-POET
method

3: Lambda11 ← Construct diag(Lambda1)
4: Lambda22 ← Construct diag(Lambda2)
5: Theta← (Lambda11@U1.T@X̃1)@(X̃2.T@U2@Lambda22)/n
6: Vtheta,Dtheta ← SVD(Theta, fullmatrices = True) //Singular

Value Decomposition
7: Gamma1 ← U1@Lambda11@Vtheta

8: Gamma2 ← U2@Lambda22@Vtheta

9: Amat ← diag(Dtheta) //Diagonal matrix
10: Cbase ← Common variables corr(X̃1, X̃2)
11: C̃1 ← Common matrix (X̃1,Cbase,Amat)
12: C̃2 ← Common matrix (X̃2,Cbase,Amat)
13: D̃1 ← Distinctive matrix (X̃1, C̃1)
14: D̃2 ← Distinctive matrix (X̃2, C̃2)
15: X̃1 ← Combination of common and distinctive matrices
16: X̃2 ← Combination of common and distinctive matrices
17: return X̂1, X̂2

details of neuropsychologic assessments, neurocognitive tasks,
and demographic information (including biological sex, age, and
education). In addition, there are also details of the medication
taken by those in ND groups.

The present study includes 272 images of subjects in one of
four categories: 130 healthy controls (HCs), 50 SZ subjects, 49
BD subjects, and 43 ADHD subjects. These 272 images were from
people in the Los Angeles area aged between 21 and 50 years
old who were recruited through community advertisements. The
details of the CNP dataset are listed in Table 1.

3.2. Brain Connectivity Data
Brain connectivity information may be reflected in fMRI images.
In the CNP dataset, each sample has seven fMRI modalities,
which were collected during different task states: BOLD contrast,
resting state (with physiological monitoring), breath-holding
tasks (with physiological monitoring), balloon analog risk tasks,
stop-signal tasks, task switching, and spatial working memory
capacity tasks. In this study, we attempted to classify NDs using
resting-state fMRI images.

Resting-state fMRI is an imaging technique that obtains a
brain activity function map when the subject is in a resting state
undisturbed by other activities, which is better for distinguishing
ND groups. The CNP dataset has resting-state fMRI images with
scans lasting 304 s. The participants were relaxed with their eyes
open. They were not stimulated or asked to respond during
scanning (Poldrack et al., 2016). The fMRI data were collected
under the following parameters: the slice thickness was 4mm, 34
slices were taken, TR was 2 s, TE was 30ms, the flip angle was 90◦,
the matrix size was 64 × 64, the field of view was 192mm, and
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TABLE 1 | Details of the Consortium for Neuropsychiatric Phenomics (CNP) dataset.

ID Subtype Number Details

0 Healthy controls (HC) 130 –

1 Schizophrenia (SZ) 50 Disorganized, paranoid, or residual types

2 Bipolar disorder (BD) 49 Most recent hypomanic or manic episode, mild or moderate

3 Attention deficit hyperactivity disorder (ADHD) 43 Predominantly inattentive, combined, or predominantly hyperactive-impulsive types

the orientation was an oblique slice. In addition, high-resolution
anatomical MP-RAGE data were collected under the following
parameters: TR was 1.9 s, TE was 2.26ms, the field of view was
250mm, the matrix size was 256 × 256, the slices were in the
sagittal plane, the slice thickness was 1mm, and 176 slices were
taken. We excluded 24 samples for which the whole-brain image
volumes were unavailable or the head had moved excessively.
Finally, we had 248 samples.

Before subsequent experiments, we preprocessed the fMRI
data according to Gorgolewski et al. (2017), including slice
timing, head motion corrections, spatial smoothing, band-pass
filtering (0.01–0.1 Hz), nuisance signal regression, and Montreal
Neurological Institute (MNI) space normalization and so on.
Then, we used FSL to skull stripped and co-registered fMRI
to the corresponding T1 weighted volume using boundary
based registration with 9 degrees of freedom implemented in
FreeSurfer. Finally, we obtained the functional connectivity
matrix of the brain through the following steps: first, we used
the BioImage Suite (Joshi et al., 2011) to calculate connectivity
matrices for the fMRI images. We then used the Anatomical
Automatic Labeling 90 (AAL90) brain atlas, which divided the
brain images into 90 regions. The Pearson correlation coefficient
was used to calculate the node values. The Fisher transformation
was used to normalize the z scores. Finally, we obtained a
90 × 90 symmetric connectivity matrix for each sample. These
connectivity matrices were not thresholded or binarized.

3.3. Brain Structure Data
Structural MRI are also used as inputs to the DCL
method. It was obtained with the same parameter values
used for the fMRI images. We used the open-source
software FreeSurfer to process and analyze these sMRI
images. FreeSurfer is used to analyze and visualize cross-
sectional structural images. It can be used for stripping
the skull, correcting the B1 bias field, registering an image,
reconstructing the cortical surface, and estimating the
cortical thickness.

We used FreeSurfer to generate high-precision gray and
white matter segmentation surfaces and gray matter and
cerebrospinal fluid segmentation surfaces. From these two
surfaces, we calculated the cortical thickness and other surface
features, such as the cortical surface area, curvature, and gray
matter volume. Overall, there were 248 subjects, we obtained
2,196 features from the sMRI image of a subject. Finally, we
constructed a 248 × 2, 196 matrix from the sMRI image of
248 subjects.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Design and Metrics
In our experiments, we focused on two aspects of brain
connectivity: (1) classifying NDs into different subtypes using
fMRI and sMRI data and (2) extracting important features
from the fMRI and sMRI images. The classification task was to
validate the performance of the DCLmethod for the different ND
groups, whereas the feature extraction task was used to assess the
capability of the method in detecting correlated features.

We obtained the correlation matrices by inputting the 248
fMRI (90 × 90) and sMRI (248 × 2196)matrices into S-POET.
Then, we decomposed each pair of canonical matrices and
computed their correlations. Finally, we used the leave-one-out
(LOO) method to select the important features in the test sample
matrix. For a dataset with n samples, verification based on LOO is
carried out over n iterations. In each iteration, the classifier uses
n− 1 samples as training samples and uses the remaining sample
as testing samples.

In our experiments, accuracy (ACC), precision (PRE), recall
(REC), and F-score (F1) are used to measure the classification
performance. They are defined as follows:

ACC =
TP+ TN

TP+ TN+ FP+ FN
,

PRE =
TP

TP+ FP
,

REC =
TP

TP+ FN
,

F1 = 2
PRE× REC

PRE+ REC
,

(16)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is
the number of false negatives. The values of these metrics were
obtained from a LOO-based cross-validation.

Our experiments were implemented in Python on an NVIDIA
Titan X Pascal CUDA GPU processor.

4.2. LOO Classification Method
We compared the performance of the DCL method with other
methods: SVM, random forest (RF), XGBoost, PCA+SVM,
PCA+RF, PCA+XGBoost, CCA+SVM, CCA+RF, and
CCA+XGBoost. The linear kernel in the SVM classifier was
used, as it provides better experimental performance than other
kernels. As a trade-off between performance and computational
cost, we set the number of trees in RF to 100. To prevent
overfitting by XGBoost, we set the maximum tree depth for base
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TABLE 2 | Mean values in the evaluation of the classification performance on the

CNP dataset.

Classifier ACC (%) PRE (%) REC (%) F1 (%)

SVM 38.00 (4.00) 40.00 (10.00) 39.00 (5.00) 37.00 (6.00)

RF 41.00 (10.00) 32.00 (11.00) 42.00 (7.00) 35.00 (9.00)

XGBoost 45.00 (6.00) 32.00 (9.00) 46.00 (4.00) 36.00 (5.00)

PCA+SVM 46.00 (2.00) 43.00 (7.00) 50.00 (7.00) 40.00 (3.00)

PCA+RF 47.00 (9.00) 49.00 (7.00) 46.00 (6.00) 44.00 (3.00)

PCA+XGBoost 49.00 (11.00) 45.00 (8.00) 49.00 (8.00) 45.00 (7.00)

CCA+SVM 45.00 (9.00) 42.00 (18.00) 49.00 (15.00) 38.00 (12.00)

CCA+RF 47.00 (13.00) 48.00 (11.00) 48.00 (10.00) 43.00 (10.00)

CCA+XGBoost 49.00 (8.00) 46.00 (14.00) 49.00 (12.00) 44.00 (14.00)

DCL+SVM 64.00 (9.00) 69.00 (7.00) 66.00 (6.00) 65.00 (8.00)

DCL+RF 68.00 (10.00) 73.00 (3.00) 72.00 (4.00) 72.00 (4.00)

DCL+XGBoost 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)

learners and the turning parameter for the L2 regularization
term to 10 and 5, respectively. In the experiments, SVM, RF,
and XGBoost use concatenated fMRI and sMRI matrices as
their input, while the fMRI and sMRI matrices input to the
other methods were first processed by the PCA, CCA, or
DCL methods.

The classification results for the DCL method and the
other classifiers are shown in Table 2. Each experiment
was verified with 10-fold cross-validation. The conventional
machine learning classifiers (SVM, RF, and XGBoost) had the
lowest accuracy. These classifiers cannot capture distinguishable
information from the union matrix. Compared with SVM,
RF, and XGBoost, the PCA and CCA classifiers achieved
better classification results. The best accuracy for both was
49.00%, which demonstrates that correlation information can be
incorporated to improve the classification. The classifiers based
on DCL had much better performance than those based on
PCA or CCA. The best accuracy was 72.00%. Our proposed
DCL method is a natural extension of the traditional CCA
method. Based on the CCA decomposition, DCL determines
the common and discernibility matrices and establishes an
orthogonal relationship between the two discernibility matrices.

In addition, our comparative experiment was based on a
sample size of 248. As shown in Table 2, we used three typical
machine learning methods (SVM, RF, and XGBoost) as the
baseline. The performance of these three machine learning
methods was very different from that based on the PCA, CCA,
or DCL methods. There are two reasons:

1. Machine learning methods can be effective for classifying
simple images, but because medical images are very complex,
these three machine learning methods were overwhelmed.

2. The limited sample size does not meet the training
requirements of the three machine learning methods. The
multi-class classification task increased the imbalance for
the samples, making it difficult for these methods to
obtain key feature information from the high latitude and
limited samples.

Therefore, unlike the other methods, the DCL method first
preprocesses the complex relationship between the sMRI and
fMRI data, which reduces the complexity of the input data.
Table 2 shows that, despite the limited sample size, DCL can
better deal with the relations in high latitude data and improve
the performance of machine learning.

Of the DCL-based classifiers, XGBoost had the best results in
the multi-class classification task. The best accuracy was 72.00%.
The receiver operating characteristic (ROC) curves for XGBoost
in multi-class classification is plotted in Figure 2. The areas
under the micro-averaged and macro-averaged ROC curves in
Figures 2B,C aremuch larger than those in Figure 2A. Moreover,
the areas under the curves for the four subtypes in Figures 2B,C
are much larger than those in Figure 2A. These results indicate
that the correlation information obtained by PCA or CCA can
improve the performance of a classifier. The classification results
for DCL are much better than those for PCA or CCA. The
areas under all the ROC curves in Figure 2D are larger than
those in Figures 2B,C. This indicates that our DCL method can
better describe brain connection networks and thus improve the
performance of the classifiers.

4.3. Feature Selection Based on the LOO
Method
Besides assessing the performance of the DCL method, we
also identified the important features with the DCL+XGBoost
method. The aim was to find which edges contribute to brain
connectivity. The extracted features are mapped back into the
brain space, which facilitates the interpretation of the known
relationship between brain structure and function. However,
due to the dimensionality of the connectivity network, the
visualization is challenging. In the LOO method, we used a
weight-based method to evaluate the importance of features
in the test sample matrix. The weight in XGBoost is used to
calculate the number of times a feature is used as a split point
across all trees. Finally, we counted the number of samples whose
feature weights were >0. We visualized the representations of all
important features for both the sMRI and fMRI data.

4.4. Visualization of FCs
It is interesting to investigate how different brain networks
cooperate and connect with each other. We found that
there were significant differences between the FCs of
each group, which indicates that these FCs not only
reflect the information common to the different groups
but also the differences among them. We used the
BrainnetViewer software (https://www.nitrc.org/projects/
bnv/) to visualize which FCs have the strongest relationships in
the brain network.

The first row in Figure 3 is for the HC group, whereas
the second row is for the ND group. Figure 3A shows 3D
plots of the brain network to visualize the selected edges. A
sphere denotes the center of a node. Different colors denote
different brain regions. If two brain regions are functionally
related, they are connected by a colored line. The colors of
the lines indicate the edge strength and whether there is a
positive correlation between the behaviors and the FCs. The
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FIGURE 2 | Receiver operating characteristics (ROC) curves of XGBoosts with different pretreatment methods. (A) XGBoost method is used in classification task.

(B) The PCA-based XGBoost is used in classification task. (C,D) CCA and DCL-based XGBoosts are used in classification task.

brain network visualization has a small number of edges, which
demonstrate the degree of the distribution across the whole
brain network.

The 2D circle plots in Figure 3B are also used to visualize
relationships between pairs of brain regions. The wider the
edge between two regions, the closer their relationship is. These
circle plots indicate how many FCs a region has with other
brain regions.

Figure 3C has mappings of the 90 × 90 connectivity
matrices, which are used to visualize aggregate statistics
within and between predefined regions or networks.
In a connectivity matrix, nodes represent brain regions
and links measure conditional dependence between the
brain regions. Brain connectivity analysis is equivalently
transformed into the estimation of a spatial partial
correlation matrix.

4.5. Analysis of HCs and NDs
In both HC group (the first row in Figure 3) and ND group
(the second row in Figure 3), most of the FCs are common to
both groups. These overlapping FCs are mainly within or across
the temporal lobes or across the frontal, occipital, and parietal
lobes, which confirm the results of previous studies. For instance,
Haier et al. (2005) and Rubia et al. (2007) showed that temporal
lobe dysfunction is strongly correlated with ADHD. Several brain
regions in the frontal, parietal, temporal, and occipital lobes have
been identified as significant predictors of ND (Gaudio et al.,
2019; Zhang et al., 2020).

Furthermore, Figures 3A,B show that there are significant
differences between the FCs of the two groups. Compared with
the HCs, the ND group has abnormal brain regions, mainly in
the supramarginal gyrus, cingulate gyrus, middle frontal gyrus,
etc. Other studies have also found that there are fewer FCs in
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FIGURE 3 | Visualizations of the connectivity of HC and neuropsychiatric disorders (NDs) in different manners on the CNP dataset. The first row and second row show

the HC group and ND group, respectively. (A) Shows the connectivity in glass brain plots. (B) Shows the connectivity in circle plots. (C) Shows the connectivity in

symmetric matrices.

the middle frontal gyrus and anterior cingulate regions in SZ
brains compared to HCs (Camchong et al., 2011; Liu et al., 2011).
However, the FCs in the ND group are more complicated than
those in the HC group, which may be due to their mental illness.
These differences may affect the behaviors and mental states of
the ND group. There are many highlighted cells in the HCmatrix
in Figure 3C, whereas the highlighted cells in the ND matrix are
more dispersed. This also indicates that NDs may affect the FCs
between brain regions.

4.6. Analysis of Different NDs
To study the specificity of subtypes in NDs, we visualized the FCs
of the three ND subtypes in Figure 4. Figure 4A is for all the ND
subtypes. Figure 4B is for the SZ subtype. Figures 4C,D are for
the BD and ADHD subtypes, respectively.

The brain networks clearly suggest that the FCs of these
diseases are very similar, but their differences are also very
obvious. In particular, the FCs in the ADHD plots are obviously
different from those in the SZ and BD plots. This is why
classifying ADHD is usually a separate task in most approaches

to classifying NDs. Moreover, the connections between brain
regions shown in the circle plots in the second column are
obviously different for the three diseases.

4.7. Features Distribution of PCA and DCL
Figure 5 compares the principal components found by the
PCA method with those found by the proposed DCL method.
Figures 5A,B visualize the fMRI and sMRI feature matrices
found by PCA. Figure 5C is the visualization of the combined
featurematrix for the fMRI and sMRI images for PCA. Figure 5D
is the feature matrix produced by DCL.

As shown in Figure 5, the figure shows that the three
distributions of features produced by PCA are disordered
(Figures 5A–C). Although the distributions of the PCA-
processed fMRI and sMRI matrices (Figure 5C) are
relatively concentrated, the four icons of subtypes are still
indistinguishable. It would be difficult for classifiers to distinguish
the features of the four subtypes. In contrast, the distribution of
fMRI and sMRI matrices after DCL processing shows the effect
of aggregation, which is shown in Figure 5D. The features of
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FIGURE 4 | Visualizations of the connectivity of three ND subtypes in glass brain plot graph, circle plot graph, and symmetric matrix graph on CNP dataset. (A)

Shows all the ND subtypes. (B) Shows the SZ subtype. (C,D) Show the BD and ADHD subtypes, respectively.
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FIGURE 5 | Representation of feature distribution on CNP dataset. (A,B) Visualize the fMRI and sMRI feature matrices processed by PCA, respectively. (C) Visualizes

the combined feature matrix for the fMRI and sMRI images processed by PCA. (D) Visualizes the feature matrix produced by DCL. In the legend, 0 represents HC, 1

represents SZ, 2 represents BD, and 3 represents ADHD.

the four subtypes can be clearly distinguished. Therefore, the
performance of a classifier would be greatly improved by using
a feature matrix produced by the DCL method. At the same
time, in order to eliminate the difference in the distribution of
subtypes, we normalized the matrices in the DCL method, so
that the subtypes are distributed in a smaller range.

5. ABLATION EXPERIMENTS AND
DISCUSSION

We proposed the DCL framework to classify psychiatric
disorders using fMRI and sMRI. In this section, we discussed
several factors that influence the experimental results. To
validate the performance of DCL on different size of datasets,
we extended experiments on a larger sample size dataset (a
subset of ADNI) and a small sample size dataset (a subset of
OpenfMRI), respectively.

5.1. Influence of S-POET
The shrinkage principal orthogonal complement thresholding
method is a covariance estimator with the approximate factor
model, which is based on sparse PCA. In our method,
we used the S-POET method to obtain asymptotic first-
order distribution for the eigenvalues and eigenvectors of
the fMRI and sMRI correlation matrices, respectively. To
verify the effect of the S-POET method in our proposed
DCL method, we extended two different DCL methods on
XGBoost: one is based on PCA[DCL(PCA)] and another is based
on S-POET[DCL(S-POET)].

As shown in Table 3, we extended the experiments on CNP
dataset. For both datasets, compared with the DCL(PCA)-
based XGBoost, the DCL(S-POET)-based XGBoost obtained
the super performance. The accuracy was almost improved by
13% on CNP. Although S-POET is obtained by sparse PCA
extension, S-POET is more suitable for sparse high-latitude data.
PCA has widely been proved that it is a powerful tool for
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dimensionality reduction and data visualization. Its theoretical
properties such as the consistency and asymptotic distributions of
empirical eigenvalues and eigenvectors are challenging especially
in the high dimensional regime. While, in the method S-POET,
the spike magnitude of leading eigenvalues, sample size, and
dimensionality of the leading eigenvalues are considered. In
addition, a new covariance estimator is introduced in S-POET
to correct the bias of PCA estimation of leading eigenvalues
and eigenvectors. Therefore, S-POET is more advantageous in
the process of fMRI and sMRI matrices analysis with high
dimensionality and sparse features (Fan and Wang, 2015).
Therefore, in the end, we build the DCL method with S-POET.

5.2. Effectiveness of Different Inputs on
XGBoosts
To verify the influence of different MRI modalities on model,
we separately used fMRI, sMRI, and fMRI+sMRI matrices as
inputs to three types of XGBoosts, namely PCAXGBoost, CCA-
XGBoost, and DCL-XGBoost.

The results are shown in Table 4. The classification results
of three XGBoost-based methods, using a single fMRI or sMRI
matrix as input, are similar. However, the results of using PCA,
CCA, and DCL processed fMRI and sMRI matrices as input
to the XGBoost classifier have greatly improved. Especially for
the DCL-XGBoost method, the accuracy is improved by almost
14% on the CNP dataset. As the two modalities complement
each other, their combination results in higher classification
accuracy. Furthermore, the performance of PCA and CCA-
processed matrices is not as good as when using DCL-processed
matrices as the XGBoost input.

TABLE 3 | Influence of shrinkage principal orthogonal complement thresholding

method (S-POET) on XGBoost with CNP dataset.

Method ACC (%) PRE (%) REC (%) F1 (%)

DCL(PCA) 59.00 (5.00) 60.00 (9.00) 61.00 (11.00) 59.00 (7.00)

DCL(S-POET) 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)

5.3. Influence of Medication Taken
Some patients in the ND group had taken medication for their
mental illness. To analyze the impact of these medications on
the patients, we visualized the selected FCs for a group who
had taken medication and for a group who had not. There are
significant differences between these two groups, as shown in
Figure 6. Figure 6A shows NDs without medication. Figure 6B
shows NDs with medication. The representations of the FCs over
the whole brain are similar, but for the group who had not used
medication, there are more edges over the boundary of the brain.
This may be due to the fact that some FCs are interrupted by
the patient taking certain medication, resulting in remission or
deepening of mental illness.

5.4. Extend Experiments
To verify the performance of DCL on different datasets, we
extended experiments on a larger sample size dataset (a subset of
ADNI) and a small sample size dataset (a subset of OpenfMRI),
respectively. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Carrillo et al., 2012) is a large dataset including
Alzheimer’s disease (AD) and mild cognitive impairment (MCI).
We selected a subset of the ADNI dataset to evaluate our

FIGURE 6 | Visualizations of the connectivity of NDs who took medicine or not

in the glass brain plot graph on the CNP dataset. (A) Shows NDs without

medication. (B) Shows NDs with medication.

TABLE 4 | Evaluation of different inputs to the different combinations of XGBoost on the CNP dataset.

Method Input ACC (%) PRE (%) REC (%) F1 (%)

PCA+XGBoost fMRI 38.00 (7.00) 35.00 (4.00) 36.16 (3.00) 33.00 (2.00)

sMRI 37.00 (8.00) 35.00 (3.00) 36.00 (10.00) 32.00 (9.00)

fMRI+sMRI 49.00 (11.00) 45.00 (8.00) 49.00 (8.00) 45.00 (7.00)

CCA+XGBoost fMRI 36.00 (10.00) 34.00 (4.00) 36.00 (7.00) 35.00 (8.00)

sMRI 38.20 (1.00) 37.06 (7.00) 35.00 (9.00) 36.00 (4.00)

fMRI+sMRI 49.00 (8.00) 46.00 (14.00) 49.00 (12.00) 44.00 (14.00)

DCL-XGBoost fMRI 56.00 (2.00) 58.00 (8.00) 60.00 (3.00) 53.00 (9.00)

sMRI 58.00 (6.00) 62.00 (8.00) 52.00 (11.00) 55.00 (6.00)

fMRI+sMRI 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)
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proposed DCL method. This subset includes 420 samples with
sMRI (T1w MRI) and fMRI (rs-fMRI). It consists of 105 subjects
with AD, 105 late mild cognitive impairment (LMCI) subjects,
105 early mild cognitive impairment (EMCI) subjects, and 105
HC subjects. The OpenfMRI Poldrack et al. (2013) was designed
to serve as a repository for the open sharing and dissemination
of task-based fMRI data. As it has grown, it has broadened to
encompass other data types as well, including EEG, MEG, rs-
fMRI (fMRI), and diffusionMRI (sMRI), which were acquired on
both healthy and clinical populations. We selected a small subset
of OpenfMRI dataset with the resting state. This subset includes
93 samples with sMRI and fMRI. It consists of 20 HC subjects, 16
BD subjects, 28 SC subjects, and 29 ADHD subjects.

In our study, the subsets of ADNI and OpenfMRI are used
as the external datasets to evaluate the performance of DCL.
The data processing steps followed the manner in Section 3. The
experimental design and metrics follow the design in Section 4.
The classification results of this subset are show in Table 5.
We also used three typical machine learning methods (SVM,
RF, and XGBoost) as the baseline. As shown in Tables 5, 6,
the accuracy trend of the experimental results is similar to
that in Table 2. The DCL-based classifiers achieve much better
classification results, which further proves that the DCL method
can reduce the complexity of the data by preprocessing the two
types of MRI, thereby improving the classification performance
of the classifiers. By comparing Tables 2, 5, 6, it can be found
that the classification results of the three classifiers on the
subset of ADNI achieve the best performance and that on
the subset of OpenfMRI achieve the worst performance. In
addition to the reasons for the samples themselves, in these
three datasets, the subset of ADNI has the largest sample
size, which can lead to better training and prediction of the
machine learning methods. While the subset of OpenfMRI has
the smallest sample size, which limits the training and prediction
of the machine learning methods. Furthermore, in the case of a
limited sample size on the subset of OpenfMRI, the performance
of DCL-based methods got obvious advantages compared to
other methods.

We compared DCL+XGBoost with several other well-
established methods that were designed for the multi
neuropsychiatric disorders classification: mMLDA (Janousova
et al., 2015), MFMK-SVM (Liu J. et al., 2018), KFCM (Baskar
et al., 2019), MK-SVM (Zhuang et al., 2019), and mRMR-
SVM (Zhang et al., 2021). These methods used one or
both types of MRI data as input of the model for multi
neuropsychiatric disorder classification. These methods were
trained using different datasets and utilize very different
predictive architectures. We either re-implemented them exactly
as described by the authors or used the code released by the
author. To ensure that the comparative evaluation is fair, we used
the same training data and test data for all considered methods
on tree datasets. The results are shown in Table 7, it can be found
that our proposed method achieves state-of-the-art performance
on all three datasets. These methods needed much more feature
selection work and parameter settings, for example, mRMR-SVM
needs mutual selected information as a measure to solve the
trade-off between feature redundancy and relevance (Morgado

TABLE 5 | Mean values in the evaluation of the classification performance on the

subset of Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Classifier ACC (%) PRE (%) REC (%) F1 (%)

SVM 54.00 (8.00) 53.00 (5.00) 59.00 (4.00) 57.00 (7.00)

RF 54.00 (4.00) 52.00 (10.00) 58.00 (4.00) 55.00 (8.00)

XGBoost 55.00 (10.00) 52.00 (15.00) 58.00 (7.00) 56.00 (9.00)

PCA+SVM 60.00 (10.00) 62.00 (4.00) 61.00 (7.00) 60.00 (6.00)

PCA+RF 65.00 (7.00) 61.00 (8.00) 63.00 (10.00) 63.00 (3.00)

PCA+XGBoost 72.00 (3.00) 68.00 (10.00) 73.00 (13.00) 72.00 (9.00)

CCA+SVM 62.00 (10.00) 63.00 (11.00) 65.00 (8.00) 63.00 (7.00)

CCA+RF 62.00 (4.00) 64.00 (3.00) 66.00 (6.00) 62.00 (6.00)

CCA+XGBoost 75.00 (4.00) 73.00 (6.00) 76.00 (7.00) 75.00 (9.00)

DCL+SVM 77.00 (12.00) 78.00 (3.00) 77.00 (9.00) 79.00 (10.00)

DCL+RF 78.00 (6.00) 79.00 (4.00) 78.00 (10.00) 80.00 (13.00)

DCL+XGBoost 80.00 (9.00) 79.00 (9.00) 80.00 (5.00) 82.00 (7.00)

TABLE 6 | Mean values in the evaluation of the classification performance on the

subset of OpenfMRI.

Classifier ACC (%) PRE (%) REC (%) F1 (%)

SVM 33.00 (7.00) 33.00 (3.00) 35.00 (9.00) 34.00 (8.00)

RF 34.00 (6.00) 34.00 (11.00) 33.00 (2.00) 35.00 (7.00)

XGBoost 35.00 (6.00) 35.00 (7.00) 34.00 (9.00) 36.00 (2.00)

PCA+SVM 39.00 (7.00) 38.00 (10.00) 39.00 (10.00) 40.00 (4.00)

PCA+RF 41.00 (2.00) 40.00 (10.00) 41.00 (6.00) 41.00 (13.00)

PCA+XGBoost 43.00 (9.00) 44.00 (8.00) 45.00 (8.00) 42.00 (7.00)

CCA+SVM 43.00 (2.00) 44.00 (5.00) 46.00 (9.00) 45.00 (2.00)

CCA+RF 45.00 (7.00) 46.00 (7.00) 47.00 (3.00) 46.00 (10.00)

CCA+XGBoost 51.00 (14.00) 53.00 (7.00) 56.00 (7.00) 50.00 (5.00)

DCL+SVM 55.00 (6.00) 57.00 (8.00) 56.00 (8.00) 57.00 (6.00)

DCL+RF 62.00 (10.00) 64.00 (3.00) 64.00 (7.00) 63.00 (9.00)

DCL+XGBoost 67.00 (8.00) 69.00 (10.00) 68.00 (9.00) 68.00 (10.00)

et al., 2015). It increases the difficulty of model optimization.
In addition, the performance of these methods improved as the
sample size increased. This means that sample size and model
performance are positively correlated.

5.5. Limitations
There are several limitations to this study. (1) We used only
MRI data as the input. However, the classification of complex
disorders could be made more accurate by including phenotypic
information. (2) The amount and uneven quality of the MRI data
have a significant influence on the performance of a model and
reduce the accuracy of classification.

6. CONCLUSION

This work demonstrated that the DCL method can effectively
combine different information from fMRI and sMRI images.
DCL identifies both the common and distinct information
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TABLE 7 | Comparison results with other methods on tree datasets.

Dataset Classifier MRIs ACC (%) PRE (%) REC (%) F1 (%)

CNP

mMLDA (Janousova et al., 2015) sMRI 65.00 (7.00) 65.00 (6.00) 67.00 (9.00) 64.00 (6.00)

MFMK-SVM (Liu J. et al., 2018) sMRI, DTI 67.00 (9.00) 64.00 (12.00) 65.00 (7.00) 68.00 (9.00)

KFCM (Baskar et al., 2019) sMRI 70.00 (7.00) 71.00 (7.00) 70.00 (6.00) 69.00 (10.00)

MK-SVM (Zhuang et al., 2019) sMRI, fMRI 70.00 (11.00) 75.00 (4.00) 72.00 (4.00) 74.00 (7.00)

mRMR-SVM (Zhang et al., 2021) sMRI, fMRI 71.00 (9.00) 78.00 (7.00) 71.00 (6.00) 72.00 (10.00)

DCL+XGBoost sMRI, fMRI 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)

ADNI

mMLDA (Janousova et al., 2015) sMRI 70.00 (8.00) 72.00 (8.00) 70.00 (10.00) 69.00 (9.00)

MFMK-SVM (Liu J. et al., 2018) sMRI, DTI 73.00 (9.00) 72.00 (10.00) 74.00 (6.00) 75.00 (7.00)

KFCM (Baskar et al., 2019) sMRI 75.00 (9.00) 74.00 (1.00) 76.00 (4.00) 74.00 (8.00)

MK-SVM (Zhuang et al., 2019) sMRI, fMRI 75.00 (11.00) 74.00 (9.00) 75.00 (8.00) 75.00 (2.00)

mRMR-SVM (Zhang et al., 2021) sMRI, fMRI 79.00 (12.00) 82.00 (10.00) 79.00 (6.00) 81.00 (7.00)

DCL+XGBoost sMRI, fMRI 80.00 (9.00) 79.00 (9.00) 80.00 (5.00) 82.00 (7.00)

OpenfMRI

mMLDA (Janousova et al., 2015) sMRI 54.00 (7.00) 53.00 (10.00) 55.00 (7.00) 53.00 (9.00)

MFMK-SVM (Liu J. et al., 2018) sMRI, DTI 57.00 (5.00) 58.00 (7.00) 56.00 (10.00) 57.00 (6.00)

KFCM (Baskar et al., 2019) sMRI 63.00 (11.00) 64.00 (8.00) 64.00 (4.00) 64.00 (9.00)

MK-SVM (Zhuang et al., 2019) sMRI, fMRI 66.00 (8.00) 65.00 (12.00) 67.00 (8.00) 64.00 (10.00)

mRMR-SVM (Zhang et al., 2021) sMRI, fMRI 67.00 (5.00) 70.00 (7.00) 71.00 (6.00) 72.00 (10.00)

DCL+XGBoost sMRI, fMRI 67.00 (8.00) 69.00 (10.00) 68.00 (9.00) 68.00 (10.00)

between the two input MRI matrices. The decomposition-
based CCA is used to analyze the correlation and construct
the required matrices. Thus, DCL has better performance
in both classification and identifying FCs. The DCL method
can be used to detect complex and nonlinear relationships
between the two types of MRI images. Our experiments
showed that the DCL method can improve classification
performance so that it is a suitable method for classifying
mental illnesses.
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