AUTHOR=Schach Sophia , Rings Thorsten , Bregulla Madeleine , Witt Juri-Alexander , Bröhl Timo , Surges Rainer , von Wrede Randi , Lehnertz Klaus , Helmstaedter Christoph TITLE=Electrodermal Activity Biofeedback Alters Evolving Functional Brain Networks in People With Epilepsy, but in a Non-specific Manner JOURNAL=Frontiers in Neuroscience VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.828283 DOI=10.3389/fnins.2022.828283 ISSN=1662-453X ABSTRACT=

There is evidence that biofeedback of electrodermal activity (EDA) can reduce seizure frequency in people with epilepsy. Prior studies have linked EDA biofeedback to a diffuse brain activation as a potential functional mechanism. Here, we investigated whether short-term EDA biofeedback alters EEG-derived large-scale functional brain networks in people with epilepsy. In this prospective controlled trial, thirty participants were quasi-randomly assigned to one of three biofeedback conditions (arousal, sham, or relaxation) and performed a single, 30-min biofeedback training while undergoing continuous EEG recordings. Based on the EEG, we derived evolving functional brain networks and examined their topological, robustness, and stability properties over time. Potential effects on attentional-executive functions and mood were monitored via a neuropsychological assessment and subjective self-ratings. Participants assigned to the relaxation group seemed to be most successful in meeting the task requirements for this specific control condition (i.e., decreasing EDA). Participants in the sham group were more successful in increasing EDA than participants in the arousal group. However, only the arousal biofeedback training was associated with a prolonged robustness-enhancing effect on networks. Effects on other network properties were mostly unspecific for the different groups. None of the biofeedback conditions affected attentional-executive functions or subjective behavioral measures. Our results suggest that global characteristics of evolving functional brain networks are modified by EDA biofeedback. Some alterations persisted after the single training session; however, the effects were largely unspecific across the different biofeedback protocols. Further research should address changes of local network characteristics and whether multiple training sessions will result in more specific network modifications.