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Here we developed an open-source Python-based library called Python rodent Analysis

and Tracking (PyRAT). Our library analyzes tracking data to classify distinct behaviors,

estimate traveled distance, speed and area occupancy. To classify and cluster

behaviors, we used two unsupervised algorithms: hierarchical agglomerative clustering

and t-distributed stochastic neighbor embedding (t-SNE). Finally, we built algorithms

that associate the detected behaviors with synchronized neural data and facilitate

the visualization of this association in the pixel space. PyRAT is fully available on

GitHub: https://github.com/pyratlib/pyrat.

Keywords: deep learning, unsupervised learning, behavioral analysis, animal tracking, electrophysiology,

neuroscience method

1. INTRODUCTION

Deep learning (DL) and computer vision research fields are improving the performance of image,
video and audio data processing (Krizhevsky et al., 2012). The use of these approaches to estimate
human and animal pose is increasing rapidly. This new direction stems from several factors,
including improved feature extraction, high scalability to data, availability of low-cost hardware
designed for DL, and pre-trained models ready for deployment (Toshev and Szegedy, 2014;
Redmon et al., 2016; Ilg et al., 2017; Levine et al., 2018; Nath et al., 2019).

Evaluation of animal behavior by human assessment is commonly subjected to inter-rater
variability and requires several hours of manual video data evaluation (Spink et al., 2001).
Commercial automation software for animal behavior assessment is expensive and rarely provides
complex behavioral information. This software uses classical approaches of image processing to
track animals’ position using contrast or shape data, but they are less reliable to extract detailed
information from images (Geuther et al., 2019). In contrast, DL models identify patterns in image
data allowing to track the complex movement of specific body parts. Also, DL models allow 3D
reconstruction of subjects using single or multiple camera setups instead of complex body markers
or light sources to track positions (Nath et al., 2019; Nourizonoz et al., 2020; Dunn et al., 2021).

In the last decade, the scientific community has been incorporating DL algorithms to analyze
complex behavior (Gris et al., 2017; Mathis et al., 2018; Jin et al., 2020). Usually, tracking body parts
is the first step to classify and/or predict animal behavior. There are several open-source software
based on DL to extract body coordinates from videos. However, they only provide the coordinate
position for body parts and researchers must implement routines to infer these metrics.

Here, we present a toolbox called Python in Rodent Analysis and Tracking (PyRAT), which is a
Python library capable of performing the most common analysis of animal behavior from tracking
data. Our user-friendly library can integrate neural data with kinematic metrics, such as velocity,
acceleration, presence in areas, and object exploration. We also implemented an unsupervised
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algorithm to identify and cluster distinct animal behaviors.
PyRAT is available in a public repository and can be found
at: https://github.com/pyratlib/pyrat.

We believe PyRAT is a useful tool because it can be easily
employed to infer some of the most common video analysis
metrics through a collection of Python scripts. We developed
the library to address real use cases of video analysis, frequently
performed in the behavioral field. The outputs of our functions
are designed to produce graphics and tables, allowing the
selection of subjects and/or time window in each experiment
or trial to compare groups. Other open-source libraries presents
similar features, however, the behavioral community can benefit
from PyRAT simpler and direct approach. We documented the
library features with Jupyter notebooks in our repository to guide
users to apply our code to their data.

2. MATERIALS AND METHODS

2.1. Data
To develop the PyRAT, we used datasets from the Edmond and
Lily Safra International Institute of Neuroscience. Adult male
Wistar rats (n = 12) were placed in an open field arena (59x59 cm
with 45 cm tall walls) for 20 min per day for 3 consecutive days.
Twenty-four hours later, animals were exposed to two identical
objects presented in the open field arena for 5 min. We analyzed
48 videos recorded from a top-down view perspective with a
Microsoft LifeCam camera at a resolution of 640 x 480 pixels at
30 frames per second (FPS). Alongside these experiments, neural
data from the dorsal hippocampus were collected. All procedures
were in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals and approved by a
local Animal Care and Use Committee.

Furthermore, we used datasets provided by Sturman et al.
(2020) and Fujisawa et al. (2008, 2015) to develop and test PyRAT
functions in different scenarios. Sturman et al. (2020) used
DeepLabCut to extract poses from mice in an elevated plus maze
and an open field arena and provided the videos and the tracking
data. Fujisawa et al. (2008) recorded single unit activity in rats
performing a working memory task. The dataset is composed
of extracellular recordings from the medial prefrontal cortex (64
channels) and dorsal CA1 (a subdivision of the hippocampus, 32
channels) in three rats.

2.2. Video Analysis
For body part tracking, we used DeepLabCut (DLC, version
2.2rc3) (Mathis et al., 2018; Nath et al., 2019). Specifically,
we labeled 200 frames (Figure 1A) taken from 5 videos for
each scenario (then 95% was used for training). We used a
ResNet-50 neural network (Insafutdinov et al., 2016) with default
parameters for 3,20,000 training iterations. We validated with
1 number of shuffles and found the test error was: 4.32 pixels,
train: 2.69 pixels (image size was 640 by 480). We then used
a p-cutoff of 0.9 to condition the X, Y coordinates for future
analysis. This network was then used to analyze videos from
similar experimental settings.

2.3. Library Design and Implementation
Our library is designed to receive as input the DLC tracking
data. However, the functions work on pixel space and then
can receive any tracking data after applying a few adjustments
such as removing the file header, if present and renaming the
columns. We developed an example using tracking data from
Plexon - available on GitHUb. PyRAT was implemented using
Python 3 and the following libraries: NumPy, pandas, scikit-
learn, and matplotlib, and hosted in Anaconda and Python
Package Index (PyPi).

2.4. Unsupervised Behavior Classification
A common task in animal behavior analysis is the identification
of distinct behaviors, such as rearing, grooming, nesting,
immobility, and left and right turns. To automatically classify
behaviors, we used a combination of two unsupervised
approaches on each video frame. We used the hierarchical
agglomerative clustering algorithm to label the clusters
(Lukasová, 1979) and a non-linear technique for dimensionality
reduction called t-distributed stochastic neighbor embedding
(t-SNE) to visualize the result (Van der Maaten and Hinton,
2008). The input of both algorithms is the distances between
labeled body parts. This approach was chosen because the
relative distance between body parts is invariant to the animal
position in the pixel space. Combining these techniques, we
created a map where the distances between the body parts of
each frame are transformed into 2D space using t-SNE and the
color of each point is determined by the label from hierarchical
agglomerative clustering (Figure 3A).

To enhance cluster visualization, we optimize the t-SNE
hyperparameters according to the heuristics reported in Kobak
and Berens (2019). Their approach is based on three steps,
(1) the use of Principal Component Analysis (PCA) in t-
SNE initialization to preserve the data structure in lower
dimensions; (2) set the learning rate as η = n/12,
where n is the number of data points (frames); and (3) set
the perplexity hyperparameter, which controls the similarity
between points and governs their attraction, as n/100. In
addition, we implemented three metrics to quantify the quality
of the t-SNE output (Kobak and Berens, 2019), (1) the KNN
(k-nearest neighbors), which quantifies the preservation
of the local structure; (2) the KNC (k-nearest class),
which quantifies the preservation of the mesoscale structure;
and (3) the CPD (Spearman correlation between
pairwise distances), which quantifies the preservation of
the global structure.

Since the hyperparameters are not optimized by the learning
algorithm, they must be defined a priori and selected by trial
and error or searching approaches. However, it must be noted
that these heuristics have been proven to be useful in empirical
tests (Kobak and Berens, 2019).

3. RESULTS

3.1. Library Features
Python in Rodent Analysis and Tracking is a Python toolbox
for the analysis of animal tracking data that is easily accessible
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by new programmers, entirely developed in Python due to its
popularity in the scientific community. The only prerequisite
for using our toolbox is having minimal to moderate skills in
Python and pandas library. We implemented the functions in a
procedural approach instead of using the object-oriented features
from Python as we believe that the procedural approach is more
user friendly to non-programmers. Moreover, each function
encapsulates an analysis, returning all inferred information and
graphics. As we employed well-known Python libraries such as
pandas, PyRAT can be used with other Python data science
libraries such as scipy, sklearn, seaborn, matplotlib, and others.

Python in Rodent Analysis and Tracking functions receive
as input a pandas DataFrame with cartesian coordinates of
labeled body parts to plot the graphics (data example available on
GitHub). The input format is based on the DLC output, which
consists of two columns in pixel space (x and y) for each tracked
body part. However, any coordinate data organized in DataFrame
format can be loaded in PyRAT if it follows the structure of x and
y columns for each body part.

To visualize the animal trajectory, we developed two
functions. The function Trajectory() plots the body part
coordinates across time using amatplotlib colormap (Figure 1B).
Here, we use a scatter plot of x and y points and add a third
dimension to represent time to facilitate trajectory dynamics.
The other function, Heatmap()), generates a heatmap of the
animal occupancy in the arena (Figure 1C). The occupancy plot
is a 2D histogram that shows the body part occurrence in each
spatial bin. We also evaluated the functions in a public dataset
of mice performing the open field and the elevated plus maze
tasks (Sturman et al., 2020).

To perform quantitative analyses, we developed the function
MotionMetrics(), which estimates speed, acceleration,
and traveled distance for each animal (Figure 1D and
Supplementary Material). To estimate these metrics, we
transform the data from the pixel space to the centimeters
space, using a known physical reference, applying the function
pixel2centimeters(). Also, the user can define a
time interval as an input parameter to calculate the metrics
(Figure 1E) and plot trajectory (Figure 2A). To test the accuracy
of PyRAT functions, we used a public dataset previously analyzed
with EthoVision software (Sturman et al., 2020), and we found
equivalent results (data available on PyRAT’s GitHub).

Experimental designs that access pathological states or drug
effects can use PyRAT to extract head orientation and locomotor
activity to compare treatment or conditions (Gulley et al., 2003;
Aonuma et al., 2020). The function HeadOrientation()
returns head position and orientation in each frame using two
points to calculate the element-wise arc tangent between them.
The head orientationmust be estimated using the neck and snout;
however, the same function can estimate body orientation as
shown in Figure 2B, using the tail base and snout.

To represent the pattern of object interaction among animal
groups, the Heatmap() function can also be used to plot
concatenated data, facilitating visual comparison between days,
groups, or trials (Figure 2C).

In addition, we developed the FieldDetermination()
and Interaction() functions to evaluate the interaction of

the animal with defined areas in the pixel space. For this feature,
the user must first use the function FieldDetermination()
to create circular or a rectangular area. Once the bounding
areas are determined, the user must call the function
Interaction(), which estimates animal interaction
with the areas and returns a DataFrame that reports the
beginning and end of each interaction in chronological
order. To visualize these outputs, we developed the function
PlotInteraction() (Figure 2D).

To summarize data from several subjects and facilitate
visualization of behavioral metrics, we included the function
Reports(), which combines MotionMetrics() and
PlotInteraction() and creates a unified report. The
input of this function is a list of the tracking data from
each animal and the output is a single DataFrame (examples
in Supplementary Material).

The function ClassifyBehavior() was developed to
identify and classify different behaviors. We test this function
in two different animal models in the open field task. In rats,
12 clusters were found automatically. The function returns a 2-
dimensional color map, a histogram, and a dendrogram to better
visualize the results (Figure 3). In addition, the histogram helps
to detect mislabeled behaviors considering the number of frames
in a cluster. For example, Clusters 7 and 8 presented a small
number of frames, and after visual inspection, we confirmed
that they were miss-classified samples (Figure 3B). Then, an
experienced researcher must inspect the clusters to determine the
type of behavior. The dendrogram shows the proximity between
clusters and helps to identify the ramifications that represent
a class of behavior (Figure 3C). In mice, 5 behavioral clusters
were identified (locomotion, left/right turns, sniffing, rearing,
and exploration), suggesting that PyRAT is easily generalizable
to different experimental setups (data available on PyRAT’s
GitHub).

We developed a function to facilitate coupling the tracking
data with the analysis of neural signals, in this way, we
implemented the SignalSubset() function to extract time
windows of defined events based on the interactions (function
Interaction() output), the behavioral clusters or even from
a list of timestamps (Figure 4A).

The function SpatialNeuralActivity can be used to
create a map associating a neural activity to the pixel space. The
input of this function is a Dataframe with the x and y of each
frame together with a third column with the neural activity to
be visualized. The output is a 2D NumPy array with the mean
activity in each discrete space of the map. We used neural data
published in Fujisawa et al. (2008) to develop an example of spike
triggered activity for some units in a T-maze (Figure 4B). We are
still developing this function to add more features, e.g., to plot
the mean band of an LFP channel in the map instead of the spike
data. The results and the code are available on PyRAT’s GitHub.

3.2. User Guide
Python in Rodent Analysis and Tracking is a user-friendly
Python toolbox to automate the analysis of animal tracking and
neural data. Toolbox functions are documented, and here, we
describe how to use the key features. PyRAT can be installed
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FIGURE 1 | (A) Representative image showing the marks of body parts used to train the network and the rat skeleton generated based on these marks. (B)

Representative trajectory plots of a rat during the exploration sessions of an open field arena carried out on 3 consecutive days. Color variation indicates the moment

in time at the rat’s location. (C) Heatmaps of average trajectories during each exploration session. (D) Average distance traveled during each exploration session. (E)

Average distance traveled during each exploration session is shown in blocks of 5 min per day. Data are expressed as mean ± SD.
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FIGURE 2 | (A) Image showing the trajectory of one rat for 120 s based on the snout coordinates. (B) Image showing rat body orientation during the entire object

exploration session. (C) Average heatmap during the entire object exploration session. (D) Top: Object interaction across the entire object exploration session; Bottom

left: Bar plot showing interaction time with objects A and A’; Bottom right: Bar plot showing the number of interactions with object A and A’. Data are expressed as

mean ± SD.

using pip install pyratlib. Then, it is necessary to
import the following libraries:

import pyratlib as rat
import pandas as pd

Subsequently, the user must read tracking data as a
DataFrame, e.g., using the read_csv() function from pandas.
This Dataframe will be used as input on the majority of PyRAT
functions. Here, we show how to plot the trajectories and the
heatmap:

data = pd.read_csv(’your_data_path.csv’)

rat.Trajectory(data, bodyPart = ’tail’, bodyPartBox = ’tail’)
rat.Heatmap(data, bodyPart = ’tail’, bins = 10, vmax = 50)

To plot the trajectory, the user must define a body part in
the function Trajectory using the bodyPart parameter
which is the column name of the chosen body part. The function
Heatmap() uses the bodyPart and the parameters bins and
vmax, which determine the resolution and color scale of the plot.
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FIGURE 3 | (A) Bidimensional projection representing each cluster found by the unsupervised algorithm of behavior classification. (B) Histogram showing the number

of frames in each cluster. (C) Top left: Dendrogram presenting the proximity of the clusters. Clusters with similar behaviors were grouped after visual inspection. We

identified five behavioral clusters: immobility, sniffing, locomotion, rearing, and nesting/sleeping. The other images are representative frames showing some of the

behavioral clusters identified.

Another PyRAT feature is the quantification of the interaction
between a body part and an area. This interaction can be
calculated with the function Interaction() and defining
a bounding area by passing the size and coordinates of the
vertices. The function FieldDetermination() allows the
visualization of areas in the pixel space, according to the tracking
data. Also, we developed the function PlotInteraction()
to plot the beginning, end, and duration of interactions with each
bounding area across time:

obj_dict = {’Obj_1’: [1,0,0,0,430, 35,90,75],
’Obj_2’: [1,0,0,0,430,380,90,75]}

objects = rat.FieldDetermination(posit = obj_dict)
interactions = rat.Interaction(data,’snout’,objects)
rat.PlotInteraction(interactions)

In the example above, two areas representing objects in
distinct positions were passed as input, and the output is a
DataFrame with the timestamps of each object interaction.
The function PlotInteraction() plots object interactions
across time (Figure 2D).

The function ClassifyBehavior() is a behavioral
classifier and receives as parameters the tracking DataFrame, the
video directory, the selected body parts, and the distance:

rat.ClassifyBehavior(df,

video = ’path’,

bp_list = [’snout’, ’ear_R’, ’ear_L’, ’tail’],

distance = 28)

The distance metric passed in this function is Ward’s distance
and defines the threshold above which the clusters will not be
merged.

To facilitate the analysis of neural signals recorded during
behavioral tasks, we developed the function Interaction()
to extract timestamps of events of interest and the function
SignalSubset() to extract epochs of the neural
signal. An example of neural data input is available in
Supplementary Material. We used files from Plexon and
Blackrock Neurotech, but data from other acquisition systems
can be used.

subsets = rat.SignalSubset(signal, freq = 1000,
fields = interactions)

SignalSubset() returns the extracted data organized
in a dictionary with the number of the epoch as the
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FIGURE 4 | (A) Overview of SignalSubset function. Left column: The SignalSubset function receives as input neural data (e.g., raw LFP) and the clustermap produced

by ClassifyBehavior. Right column: SignalSubset function returns a list of extracted neural data corresponding to time windows of a determined behavior (e.g., Cluster

11). We also show a representative spectrogram of extracted data. (B) Overview of SpatialNeuralActivity function. Left column: The SpatialNeuralActivity function

receives as input the neural data (e.g., single unit spike rasterplot) to be shown in pixel space, and the tracking as spatial data. Right column: The SpatialNeuralActivity

function returns the quantification of neural activity (spike firing) in each part of the pixel space.
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key. In addition, it can extract the time of a selected
behavioral cluster. For this, it is necessary to use the
cluster output from ClassifyBehavior() as input to
the IntervalBehaviors() function, which will return a
dictionary with the time windows when each behavior was
manifested (documented in GitHub). This function facilitates
data processing and allows saving the dictionary, speeding up
data loading.

The function Reports(), which summarizes data from
several animals, receives as input the lists with DataFrames and
the file names, as well as the body part of interest to extract the
metrics and, if necessary, an area to calculate interactions:

list_df = [df01,df02,df03,df04,df05,df06,
df07,df08,df09,df10,df11,df12]

names = [’RAT01’,’RAT02’,’RAT03’,’RAT04’,’RAT05’,’RAT06’,
’RAT07’,’RAT08’,’RAT09’,’RAT10’,’RAT11’,’RAT12’]

report = rat.Reports(df_list = list_df,list_name = names,
bodypart = ’snout’,fields = objects)

4. DISCUSSION

We presented the PyRAT, a library for animal tracking
data analysis developed to be accessible to less experienced
programmers. We implemented functions to infer common
animal behavioral metrics used in the literature, such as object
interaction (duration and number of interactions), traveled
distance, speed, and time spent in different areas (Lima et al.,
2009; Gonzalez et al., 2019; Rossato et al., 2019; Moura et al.,
2020). Also, we implemented functions to infer animal behavior
from tracked body parts in each frame using unsupervised
approaches. If video recordings are synchronized with neural
data, PyRAT can be used to extract epochs based on specific
behaviors or metrics. Finally, our results indicate that PyRAT
analyzes tracking data from different animal models if videos
were acquired from a top-down perspective.

There is similar software that can analyze tracking data
as PyRAT, such as Traja, DLCAnalyzer, SimBA, and B-SOiD.
Traja is a Python library that can analyze tracking data from
coordinate data from any setup but does not infer behavioral
metrics. DLCAnalyzer is a collection of R scripts that processes
DLC files and quantifies motion metrics and behavior using
supervised algorithms (Sturman et al., 2020). Simple Behavioral
Analysis (SimBA) is software with an easy-to-use interface
that analyzes video or tracking data and applies a pre-trained
supervised classifier to cluster behaviors (Nilsson et al., 2020).
However, the SimBA interface only works in Windows, limiting
its usability on other platforms. B-SOiD is an open-source
package that identifies behavior by combining supervised and
unsupervised algorithms (Hsu and Yttri, 2021) and works in
mice, rats, and humans. B-SOiD analyzes videos acquired from
different perspectives, showing the best results from bottom-up
recordings. For further discussion and comparison between these
tools refer to Panadeiro et al. (2021); von Ziegler et al. (2021). In

contrast with other tools, PyRAT can be used in any operational
system, does not need pre-trained classifiers, works without a
graphic interface, and provides interactive documentation using
Jupyter notebooks.

Python in Rodent Analysis and Tracking is easier to use
than other alternatives as it is a collection of functions, and
the user just needs to input the tracking data to get the results
and graphics following the step-by-step tutorial included in the
documentation. In addition, PyRAT has a low learning curve,
as its implementation is based on procedural programming.
We designed the library to display metrics and graphics for all
recorded sessions with a few lines of code. It does not have
software requirements besides Python and widely used libraries,
such as sklearn, pandas, and matplotlib. In summary, we present
an open-source Python library to process tracking data, extract
behavior and associate this information with neural data in a
user-friendly approach.
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