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The interactions between the microbiota and the human host can affect the

physiological functions of organs (such as the brain, liver, gut, etc.). Accumulating

investigations indicate that the imbalance of microbial community is closely related

to the occurrence and development of diseases. Thus, the identification of potential

links between microbes and diseases can provide insight into the pathogenesis

of diseases. In this study, we propose a deep learning framework (MDAGCAN)

based on graph convolutional attention network to identify potential microbe-

disease associations. In MDAGCAN, we first construct a heterogeneous network

consisting of the known microbe-disease associations and multi-similarity fusion

networks of microbes and diseases. Then, the node embeddings considering the

neighbor information of the heterogeneous network are learned by applying graph

convolutional layers and graph attention layers. Finally, a bilinear decoder using node

embedding representations reconstructs the unknown microbe-disease association.

Experiments show that our method achieves reliable performance with average AUCs

of 0.9778 and 0.9454 ± 0.0038 in the frameworks of Leave-one-out cross validation

(LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, we apply

MDAGCAN to predict latent microbes for two high-risk human diseases, i.e., liver

cirrhosis and epilepsy, and results illustrate that 16 and 17 out of the top 20 predicted

microbes are verified by published literatures, respectively. In conclusion, our method

displays effective and reliable prediction performance and can be expected to predict

unknown microbe-disease associations facilitating disease diagnosis and prevention.
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1. Introduction

Microbes are mainly categorized as bacteria, fungi, archaea and
viruses, which inhabit all parts of the human body, but the greatest
number of microbes are found in the gut (Blum, 2017; Kitamoto
et al., 2020; de Vos et al., 2022). Gut microbiota plays an important
role in regulating host physiological processes (e.g., immunity and
metabolism), and its ecological disorders are closely related to
the brain, liver and other organs (Gonzalez-Ochoa et al., 2017;
Tooley, 2020; Gabanyi et al., 2022). Recently, increasing medical
studies reported that the gut-liver-brain axis plays a fundamental
role in the pathogenesis of various diseases (Won et al., 2022),
which is the bidirectional relationship between the gut and its
microbiota, the liver, and the brain. Besides, gut microbiota exert
their actions at different levels of the gut-liver-brain axis, impacting
disease progression via changing gut-liver-brain axis communication
(Fuenzalida et al., 2021). For example, liver cirrhosis is a common
chronic progressive liver disease with high mortality caused by
one or more factors, such as alcohol, metabolic disorders, drugs
and so on (Gan et al., 2022). Researchers found out that the gut
microbiota is a key factor in the progression of chronic liver disease,
while the gut microbiota (e.g., Enterococcus and Escherichia coli)
in patients with liver cirrhosis has significant changes compared to
healthy individuals (Hussain et al., 2020; Ren et al., 2021). Moreover,
Escherichia coli can produce an active amino acid GABA through the
metabolic pathway (Altaib et al., 2022), which can activate glucose
metabolism in the brain, improve brain function and impact epileptic
seizures via the genetic pathway (Feng et al., 2022). Epilepsy is
another of the third most common chronic neurological disorder
worldwide, which usually suffers from depression, anxiety, obsessive-
compulsive disorder, migraine and other disorders (Löscher et al.,
2020). Many underlying disease mechanisms can lead to epilepsy,
and the cause of the disease remains unknown. Research results
have revealed that intestinal microbial imbalance can impact the
occurrence of epilepsy due to the close relationship between the
central nervous system and the gastrointestinal tract (Al-Beltagi and
Saeed, 2022). For instance, serotonin produced by Enterococcus is
a neurotransmitter in the central and peripheral nervous systems
and has a certain inhibitory effect on the seizure of epilepsy (Deidda
et al., 2021). Hence, studying disease-associated microbes not only
advances the understanding of their pathogenesis, but also provides
many new medical strategies for diseases. However, traditional
biological experiments are difficult to meet the requirements of
biomedical research owing to complex processes and expensive
cost. Therefore, it is essential to develop efficient new prediction
algorithms for microbe-disease association prediction.

Current computational methods for microbe-disease association
prediction can be primarily classified as path-based methods,
network-based methods and feature learning methods. Path-based
methods usually calculate the microbe-disease association probability
based on the number and weighted scores of various types of
paths between two nodes. Chen et al. (2017) proposed the first
computational method for microbe-disease association prediction
based on the katz measure, which identified the microbe-disease
correlation by calculating all paths of different lengths between
microbes and diseases. Long and Luo (2019) calculated the
probability score of microbe-disease pairs based on a weighted
meta-graph search algorithm on a heterogeneous network to
find possible microbe-disease associations. Network-based methods

infer prospective microbe-disease associations through information
propagation in a heterogeneous network. Yin et al. (2020) employed
the structural similarity information of biological entities of diseases
and microbes, combining spatial projection and label propagation
to predict unknown microbe-disease associations. Yang et al.
(2021) designed a novel identification method based on multi-
similarities bilinear matrix factorization to find possible microbe-
disease associations on a heterogeneous network. Yin et al. (2022)
used the multiple kernel learning method to fuse similarities of
microbe and disease, and then used the label propagation method
to make predictions for disease-related potential microbes. Feature
learning methods automatically extract features or representations
from data through the model, and then reconstruct new microbe-
disease associations by the features. Li et al. (2020) raised a neural
network approach based on the backpropagation of a modified
hyperbolic tangent activation function to predict disease-related
microbes. Wang et al. (2021) applied random walk and graph
embedding algorithm LINE to preserve graph structure through first-
order and second-order proximity and to learn the latent feature
representations of microbes and diseases, afterward obtained new
microbe-disease associations by refactoring the representation. Long
et al. (2021) developed an embedding representation method based
on inductive matrix completion and graph attention network to infer
the possible associations between microbes and diseases. Although
the previous methods have achieved prominent results, more effective
methods still need to be developed to screen latent microbe-disease
associations.

In this study, we propose a deep learning framework to
predict microbe-disease association, which combines the graph
convolutional network and the graph attention network. First, we
construct an informative heterogeneous network composed of the
known microbe-disease association network and integrated multi-
similarity networks, which fuse the Gaussian kernel similarity
network and functional similarity network of microbe and disease,
respectively. Then, MDAGCAN learns the feature representation
of each node with the information of its neighbors and itself
in the heterogeneous network by multi-layer graph convolution.
Subsequently, the node representations serve as the input of graph
attention layers. In graph attention layers, the node representations
learned from graph convolutional layers further are enhanced by
aggregating the weighted sum of neighbors’ information. Ultimately,
the unknown microbe-disease associations are reconstructed by a
bilinear decoder. In addition, our method compares with state-of-
the-art methods on the datasets HMDAD and MASI and is applied to
the prediction of associated microbes in liver cirrhosis and epilepsy.
The results confirm that our model is effective and reliable for
inferring potential microbe-disease associations.

2. Materials

2.1. Human microbe-disease associations

In this work, we download two public databases of known
microbe-disease association HMDAD1 (Ma et al., 2017) and MASI2

1 http://www.cuilab.cn/hmdad

2 http://www.aiddlab.com/MASI/
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(Zeng et al., 2021). HMDAD is the most frequently utilized human
microbe-disease association database containing 450 non-redundant
associations between 292 microbes and 39 diseases, and MASI covers
microbial composition changes in different types of diseases with 629
associations involving 123 microbes and 56 diseases. The detailed
statistics of the two microbe-disease association datasets above are
exhibited in Table 1.

The microbe-disease association is represented as a binary
adjacent matrix A ∈ Rnd×nm, where Aij = 1 if there is an interaction
between disease di and microbe mi, otherwise Aij = 0.

3. Methods

As shown in the flowchart of MDAGCAN (Figure 1), we
introduce a graph convolutional attention network model to identify
latent microbe-disease associations, which combines the graph
convolutional network and graph attention network. MDAGCAN
works in three stages to make predictions. Firstly, we construct
a heterogeneous network consisting of a known microbe-disease
association network, an integrated disease similarity network,
and an integrated microbe similarity network. Secondly, latent
representations of microbes and diseases are encoded and learned
by graph convolutional layers and graph attention layers. Finally,
MDAGCAN leverages a bilinear decoder to obtain the final
association scores of microbe-disease pairs.

3.1. Similarity computation

3.1.1. Gaussian interaction profile kernel similarity
for microbe and disease

We calculate the Gaussian interaction profile kernel similarity of
microbes according to the assumption that microbes with similar
functions are more likely trend to connect similar diseases (Long
et al., 2021). First, we present GIP (mi) as the interaction profile of
the specific microbe mi, where it indicates the ith column of adjacent
matrix A. Then, the Gaussian interaction profile kernel similarity
KM

(
mi,mj

)
between microbe mi and mj can be defined as follows:

KM
(
mi,mj

)
=exp

(
−λm

∣∣∣∣GIP (mi)−GIP
(
mj
)∣∣∣∣2) (1)

where λm indicates the normalized kernel bandwidth, the
computation formula is below:

λm=
λ′m

1
nm
∑nm

t=1 ||GIP (mt)||
2 (2)

where λ′m is the original bandwidth and is usually set to 1.
Similarly, we derive the Gaussian interaction profile

kernel similarity between disease pairs, and construct the
disease Gaussian interaction profile kernel similarity matrix
KD ∈ Rnd × nd(0 ≤ KD

(
di, dj

)
≤ 1).

TABLE 1 The overall statistics for the microbe-disease association dataset.

Dataset Microbe Disease Associations

HMDAD 292 39 450

MASI 123 56 629

3.1.2. Microbe functional similarity
Microbe functional similarity is calculated using a similar

approach to Kamneva (2017), capturing the interactions between
proteins encoded in the genomes of two microbes. The protein-
protein functional interaction network is retrieved from the STRING
v11 database3 to characterize the functional similarity of microbes by
the similarity of microbial genomic proteins, and microbes with more
common genes are more similar to each other. We use FM(mi,mj) to
denote the functional similarity between microbe mi and microbe mj,
where FM ∈ Rnm × nm.

3.1.3. Disease functional similarity
In this work, we calculate disease functional similarity based

on functional associations between disease-related genes with the
assumption that similar diseases tend to interact with similar genes
(Wei and Liu, 2020). We utilize the HumanNet v2.0 database (Hwang
et al., 2019) to access gene interactions, where each interaction has
a log-likelihood score (LLS) assessing the probability of a functional
association between genes. For disease di and disease dj, their
functional similarity formula can be defined as follows:

FD
(
di, dj

)
=

∑
1≤x≤m FSGb

D
(
ga

x
)
+
∑

1≤y≤n FSGa

D

(
gb

y

)
m+n

(3)

where FSGb
D
(
ga

x
)
= max1≤ y ≤ n

(
LLS

(
ga

x , gb
y

))
indicates the

maximum functional correlation score between a gene
ga

x and a gene set Gb
=

{
gb

1 , gb
2 , , gb

n

}
, and similarly

FSGa
D

(
gb

y

)
= max1 ≤ x ≤ m

(
LLS

(
ga

x , gb
y

))
expresses the maximum

functional correlation score between a gene gb
y and a gene set

Ga
=
{

ga
1 , ga

2 , ..., ga
m
}

. LLS
(

ga
x , gb

y

)
is the normalization of the

log-likelihood score. Ga and Gb are the gene sets associated with the
disease di and dj, separately.

3.2. Different similarities integration

It is not easy to achieve functional similarities between all diseases
and microbes due to incomplete biology information (i.e., disease-
related genes and microbial genomic proteins). To further improve
similarities for diseases and microbes, we design a new strategy
to integrate Gaussian kernel similarity and functional similarity.
Specifically, if there is no functional similarity FM between microbe
mi and mj, the integrated similarity between mi and mj is defined
as GM, otherwise, it is equal to the linear combination of microbe
Gaussian interaction profile kernel similarity GM and microbe
functional similarity FM. Similarly, the integrated similarity of
diseases can be calculated as follows:

MS
(
mi,mj

)
=

{
GM

(
mi,mj

)
, if FM

(
mi,mj

)
= 0

µGM
(
mi,mj

)
+(1−µ)FM

(
mi,mj

)
, otherwise

(4)

DS
(
di, dj

)
=

{
GD

(
di, dj

)
, if FD

(
di, dj

)
= 0

µGD
(
di, dj

)
+(1−µ)FD

(
di, dj

)
otherwise

(5)

3 https://string-db.org
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FIGURE 1

The flowchart of MDAGCAN for novel microbe-disease association prediction.

where µ is a control parameter for Gaussian similarity and functional
similarity ranging from 0 to 1.

3.3. Graph convolutional network

In recent years, graph convolutional network as effective graph
neural network model is widely applied in various fields with
different tasks, such as node/graph classification, graph clustering
and link prediction. The underlying idea of GCN is to learn node
low-dimensional representations by aggregating node information
from neighbors in a convolutional fashion while preserving graph
structural information (Kipf and Welling, 2017; Zhang S. et al.,
2019; Yue et al., 2020). Specifically, given a heterogeneous graph, the
message propagation rule of GCN is expressed as:

H(l+1)=f
(

H(l),GHN

)
=tanh

(
D−

1
2 GHN D−

1
2 H(l)W(l)

GCN

)
(6)

where H(l) represents the node embedding at the lth layer, W(l)
GCN is

the trainable weight matrix for the lth graph convolutional layer. tanh
is a nonlinear activation function. D is the degree matrix of GHN .
GHN ∈ R(nd+nm) × (nd+nm) is consisted of adjacent matrix A and

two similarity matrices (GHN=

[
βDS

∗

A
AT βMS

∗

]
). DS

∗

and MS
∗

are

normalizations of DS and MS, β is a penalty factor used to control
the contribution value of the similarity matrix in GHN . The initialized

embedding of the graph is denoted as H(0) =

[
0 A

AT 0

]
.

3.4. Graph attention network

The graph attention network is another hot network architecture
with the assumption that the node representation contributed from
node neighbors is diverse (Veličković et al., 2018; Yu et al., 2021).

After performing graph convolutional operation, the node
representations can be learned from the network structure.
Thereafter, we introduce the graph attention layers to improve the
node representations based on GAT, focusing on the contributions of
import node neighbors for node representation learning. Specifically,
there are two steps: achieving the attention distribution and
averaging representations with the corresponding distribution. More
definitions are described as follows:

e(l)ij =relu
(
−→a T

[
W(l)

GATh(l)i ||W
(l)
GATh(l)j

])
(7)

Z(l)i =
∑
j∈Ni

att(l)ij h(l)j (8)

where e(l)ij indicates the importance of node j to node i in the lth

layer, h(l)i is the node representations derived from the lth graph
convolutional layer. || is the concatenation operation, EaT is a weight

vector, W(l)
GAT is a shared weight matrix, relu is a nonlinear activation

function. Z(l)i represents the representation of node i by averaging
representations of its neighbor nodes with normalized attention

distribution. e(l)ij is normalized as att(l)ij =
exp
(

e(l)ij

)
∑

c∈Ni
exp
(

e(l)ic

) , Ni is the

neighborhood of node i in the graph.

3.5. Decoder for microbe-disease
association

We attain the learned feature representations Zm for microbes
and Zd for diseases from the output of GAT. Inspired by the work
of Du et al. (2022), we reconstruct an association score matrix
for microbe-disease associations (Equation 9) and define the local
loss function which can dynamically reduce the weight of easily
distinguished samples and make the distribution of loss function
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balanced (Lin et al., 2020) (Equation 10).

Â=sigmoid
(

ZdW′ZT
m

)
(9)

`fl =
∑

(i,j)∈�+
⋃
�−

ψ
(
Âij,Aij

)
(10)

where W′ is a trainable matrix, sigmoid is a nonlinear activation
function. �+ and �− denote the positive and negative sample sets,
respectively. Moreover, we adopt the focal loss function ψ to solve
the class imbalance. Focal loss (Lin et al., 2020) is based on binary
cross-entropy and is a dynamically scaled cross-entropy loss.

ψ=

{
−α
(
1−Âij

)γlog
(
Âij
)
,if Aij= 1

−α
(
Âij
)γlog

(
1−Âij

)
,otherwise

(11)

where α is a weight parameter that controls the class imbalance
between positive and negative samples, and γ is another weight
parameter that controls the difficulty of sample classification. The
Adam optimizer is used to minimize the loss (Kingma and Ba, 2015).

3.6. Parameter selection

There are several hyperparameters in MDAGCAN, such as the
balance factor µ, the penalty factor β, the embedding dimension k,
the initial learning rate lr, two weight parameters α and γ in focal loss,
two dropout rates (node dropout dpn and regular dropout dpr) and
the iterations epo. These parameters consider different combinations
from the ranges µ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, β ∈ {2, 4, 6, 8, 10}, k ∈
{32, 64, 128, 256}, lr ∈ {0.05, 0.005, 0.0005, 0.00005, 0.000005}, α ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, γ ∈ {1, 2, 3, 4, 5}, dpn ∈

{0.1, 0.3, 0.5, 0.7, 0.9}, dpr ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and epo ∈
{100, 200, 300, 400, 500, 600}. After adjusting, we set the optimal
parameters µ = 0.5, β = 8, k = 64, lr = 0.00005, α = 0.1,
γ = 2, dpn = 0.5, dpr = 0.7, and epo = 500 for MDAGCAN in
the following experiments.

4. Results

4.1. Performance evaluation

Until now, many methods have been proposed to predict
microbe-disease association. However, there are no consistent results
and poor performance attributed to the single dataset usage and
improper model adoption. In this paper, we conduct different
experiments on two datasets to fairly compare our method with
the existing methods. First, under the evaluation framework of
LOOCV and 5-fold CV, we compare our method (MDAGCAN)
with 10 baseline methods on HMDAD dataset, such as the katz
measure-based model KATZHMDA (Chen et al., 2017), the random
walk models BiRWMP (Shen et al., 2018), NTSHMDA (Luo and
Long, 2020) and BRWMDA (Yan et al., 2020), the conventional
machine learning model LRLSHMDA (Wang et al., 2017), the matrix
decomposition model MDLPHMDA (Qu et al., 2019), the network-
based models NBLPIHMDA (Wang et al., 2019) and NCPLP (Yin
et al., 2020), the neural network model BPNNHMDA (Li et al., 2020)
and GATMDA (Long et al., 2021). Under the evaluation framework of
LOOCV and 5-fold CV, MDAGCAN obtains the highest AUC values

of 0.9778 and 0.9454, and has 4.25, 2.73% higher than the graph
attention network method GATMDA, and 5.12, 1.29% better than
the network consistency projection method NCPLP, respectively. All
results are shown in Figure 2.

Besides, we perform the disease horizontal test, in which four-
fifths of disease rows of the association matrix are randomly
selected as the train set and the rest as the test set. Similarly,
the microbe vertical test is also carried out in the columns of the
association matrix. In the end, our method obtains AUC values of
0.8674 ± 0.0175 and 0.9290 ± 0.0143 on two tests, respectively. At
the same time, we also compare MDAGCAN to other methods with
different assessment metrics, such as F1 Score, Accuracy, Sensitivity
and Specificity. More results are shown in Tables 2, 3. Obviously, the
predictive effect of the microbe vertical test is better than the disease
horizontal test due to the large degree difference of the disease node.
When a disease with a large degree is used as the test set, the training
set will contain less information, which will affect the prediction
performance. The horizontal/vertical test suggests that our method
achieves excellent performance, and is more suitable to predict new
diseases and microbes.

In order to validate the robustness of methods, we perform
contrast experiments on dataset MASI. The experimental results
show that our method also reaches the best average AUC
(0.8730 ± 0.0036), accuracy (0.7996 ± 0.0157) and specificity
(0.7691 ± 0.0142) compared with the state-of-the-art methods
(Table 4).

4.2. Predicting associated microbes for
liver cirrhosis and epilepsy

Furthermore, we validate the prediction performance of
MDAGCAN on two datasets HMDAD and MASI for two common
diseases, i.e., liver cirrhosis and epilepsy. In this study, to identify
the potential microbe-disease pairs, we remove all known microbe-
disease associations, and select the top 20 microbes based on
the ranking scores as the highly associated entities with the
queried disease. Results show that 16 and 17 out of the top 20
predicted microbes for liver cirrhosis and epilepsy are verified by
published literatures, respectively. Top-20 predicted candidate liver
cirrhosis-related and epilepsy-related microbes also are listed in
Tables 5, 6.

Liver cirrhosis is a common degenerative disease of the liver,
caused by one or more factors such as genetics, viruses and drugs,
and has a high mortality rate. In our prediction result, Clostridium
difficile is the most associated with liver cirrhosis which is the
top of the ranking list. Clostridium difficile infection is one of the
factors leading to liver cirrhosis and is widely used to perform
fecal microbial transplantation for treating liver cirrhosis (Olmedo
et al., 2019). Meanwhile, Clostridiales ranked twelfth is generally
considered to be beneficial bacteria, while Staphylococcus ranked
fifth is the genus of pathogenic bacteria Staphylococcaceae (Bhat
et al., 2016). Except for the microbes confirmed by literatures, we
find four microbes, including Clostridium coccoides, Burkholderia,
Betaproteobacteria, Bacteroides ovatus, which are not directly
reported the association with liver cirrhosis. There is a report that
Clostridium coccoides appears increased abundance in patients with
nonalcoholic steatohepatitis (NASH), which leads to liver fibrosis and
develops into liver cirrhosis. In other words, they may be the new
biomarkers for liver cirrhosis (Mouzaki et al., 2013).
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FIGURE 2

Prediction performance comparison between MDAGCAN and 10 baseline methods on the HMDAD dataset in LOOCV (A) and 5-fold CV (B).

TABLE 2 Performance comparison between 10 baseline methods and MDAGCAN under horizontal test for diseases in 5-fold CV on HMDAD dataset.

Methods AUC F1 Score Accuracy Sensitivity Specificity

KATZHMDA 0.2625± 0.0777 0.5234± 0.1151 0.1649± 0.0371 0.3630± 0.1117 0.1636± 0.0377

BiRWMP 0.7345± 0.0418 0.8161± 0.0789 0.7637± 0.1030 0.6966± 0.1100 0.6936± 0.1049

LRLSHMDA 0.3794± 0.1462 0.5629± 0.1338 0.4029± 0.3159 0.4032± 0.1266 0.4022± 0.3171

NTSHMDA 0.4396± 0.1082 0.5032± 0.1151 0.4147± 0.2086 0.3434± 0.0966 0.4152± 0.2090

BRWMDA 0.3829± 0.0825 0.5769± 0.3827 0.3318± 0.1231 0.5114± 0.4092 0.3292± 0.1256

MDLPHMDA 0.4498± 0.1240 0.6403± 0.1234 0.3734± 0.3990 0.4833± 0.1399 0.3713± 0.4017

NBLPIHMDA 0.3846± 0.1316 0.5978± 0.1496 0.2481± 0.1841 0.4430± 0.1602 0.2468± 0.1849

BPNNHMDA 0.6166± 0.1743 0.7129± 0.1619 0.4321± 0.1506 0.6732± 0.2292 0.4289± 0.1522

NCPLP 0.8230± 0.0372 0.7883± 0.0088 0.7261± 0.0552 0.8771± 0.0173 0.7252± 0.0548

GATMDA 0.4586± 0.0195 0.4647± 0.0548 0.7591± 0.0509 0.5050± 0.0520 0.7573± 0.0523

MDAGCAN 0.8674± 0.0175 0.7367± 0.0865 0.7826± 0.0545 0.8539± 0.0261 0.7810± 0.0540

The best results are marked in bold and the second-best results are underlined.

TABLE 3 Performance comparison between 10 baseline methods and MDAGCAN under vertical test for microbes in 5-fold CV on HMDAD dataset.

Methods AUC F1 Score Accuracy Sensitivity Specificity

KATZHMDA 0.8756± 0.0484 0.8456± 0.0263 0.8641± 0.0418 0.7828± 0.0423 0.8645± 0.0420

BiRWMP 0.8993± 0.0071 0.8549± 0.0579 0.8177± 0.1040 0.8190± 0.0987 0.8159± 0.1057

LRLSHMDA 0.8465± 0.0258 0.8267± 0.0499 0.8964± 0.0701 0.7064± 0.0561 0.8979± 0.0710

NTSHMDA 0.8465± 0.0258 0.8430± 0.0499 0.8857± 0.0742 0.7318± 0.0758 0.8869± 0.0754

BRWMDA 0.8657± 0.0309 0.7985± 0.0493 0.9061± 0.0049 0.6673± 0.0670 0.9438± 0.0053

MDLPHMDA 0.8019± 0.0288 0.8061± 0.0238 0.8470± 0.0473 0.6759± 0.0332 0.8484± 0.0478

NBLPIHMDA 0.8384± 0.0417 0.7968± 0.0496 0.9280± 0.0034 0.6651± 0.0705 0.9302± 0.0039

BPNNHMDA 0.9057± 0.0112 0.8653± 0.0485 0.8739± 0.0452 0.8307± 0.0830 0.8744± 0.0462

NCPLP 0.9184± 0.0093 0.9058± 0.0174 0.8204± 0.0440 0.8533± 0.0327 0.8194± 0.0445

GATMDA 0.9063± 0.0111 0.6917± 0.0263 0.8644± 0.0235 0.9091± 0.0214 0.8636± 0.0238

MDAGCAN 0.9290± 0.0143 0.9062± 0.0401 0.8559± 0.0410 0.9232± 0.0159 0.8549± 0.0418

The best results are marked in bold and the second-best results are underlined.
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TABLE 4 Performance comparison between 10 baseline methods and MDAGCAN in 5-fold CV on MASI dataset.

Methods AUC F1 Score Accuracy Sensitivity Specificity

KATZHMDA 0.6869± 0.0160 0.7371± 0.0382 0.6048± 0.0556 0.7133± 0.0685 0.6026± 0.0580

BiRWMP 0.7370± 0.0228 0.7285± 0.0366 0.7616± 0.0260 0.7062± 0.0466 0.7627± 0.0272

LRLSHMDA 0.7724± 0.0115 0.8169± 0.0272 0.6453± 0.0366 0.8378± 0.0487 0.6413± 0.0383

NTSHMDA 0.7861± 0.0152 0.8490± 0.0273 0.7262± 0.0538 0.7523± 0.0520 0.7257± 0.0557

BRWMDA 0.8128± 0.0174 0.8681± 0.0422 0.7488± 0.0506 0.7658± 0.0378 0.7485± 0.0523

MDLPHMDA 0.8324± 0.0156 0.8755± 0.0293 0.7638± 0.0404 0.8099± 0.0547 0.7629± 0.0421

NBLPIHMDA 0.8209± 0.0140 0.8818± 0.0187 0.7311± 0.0569 0.7997± 0.0520 0.7297± 0.0590

BPNNHMDA 0.8049± 0.0133 0.8065± 0.0424 0.6774± 0.0552 0.8246± 0.0596 0.6744± 0.0574

NCPLP 0.7824± 0.0131 0.8128± 0.0217 0.6596± 0.0286 0.8528± 0.0461 0.6556± 0.0300

GATMDA 0.8206± 0.0173 0.7534± 0.0243 0.7642± 0.0448 0.8794± 0.0400 0.7619± 0.0463

MDAGCAN 0.8730± 0.0036 0.7840± 0.0135 0.7996± 0.0157 0.8411± 0.0206 0.7691± 0.0142

The best results are marked in bold and the second-best results are underlined.

TABLE 5 Prediction results of top-20 liver cirrhosis-related microbes.

Rank Microbe Evidence Rank Microbe Evidence

1 Clostridium difficile PMID: 26440041 11 Clostridium leptum PMID: 24564202

2 Helicobacter pylori PMID: 9365129 12 Clostridiales PMID: 31726747

3 Staphylococcus aureus PMID: 30253652 13 Bifidobacterium PMID: 29806520

4 Clostridium coccoides Unconfirmed 14 Escherichia coli PMID: 36207946

5 Staphylococcus PMID: 25518533 15 Bacteroides vulgatus PMID: 23333527

6 Actinobacteria PMID: 32265857 16 Enterococcus PMID: 36035413

7 Clostridia PMID: 30661942 17 Bacteroides ovatus Unconfirmed

8 Stenotrophomonas
maltophilia

PMID: 35755768 18 Bacteroides uniformis PMID: 33348106

9 Burkholderia Unconfirmed 19 Prevotella PMID: 32414035

10 Betaproteobacteria Unconfirmed 20 Klebsiella PMID: 36147601

TABLE 6 Prediction results of top-20 epilepsy-related microbes.

Rank Microbe Evidence Rank Microbe Evidence

1 Prevotellaceae PMID: 35250450 11 Faecalibacterium PMID: 35069460

2 Firmicutes PMID: 35250450 12 Coprococcus PMID: 6699268

3 Clostridiales PMID: 30007242 13 Erysipelotrichaceae PMID: 33415132

4 Enterobacteriaceae PMID: 35069460 14 Clostridium PMID: 6699268

5 Ruminococcaceae PMID: 30007242 15 Rikenellaceae PMID: 30007242

6 Clostridia Unconfirmed 16 Bacteroidetes PMID: 30007242

7 Bacteroidaceae Unconfirmed 17 Ruminococcus PMID: 6699268

8 Porphyromonadaceae Unconfirmed 18 Streptococcus PMID: 35250450

9 Roseburia PMID: 31646147 19 Actinobacteria PMID: 35250450

10 Lachnospiraceae PMID: 30007242 20 Klebsiella PMID: 34234109

Epilepsy is another common chronic neurological disorder
around the world. Recent researches demonstrate that epilepsy
patients tend to have dysbiosis or imbalance of gut microbial
composition (Dong et al., 2022). Prevotellaceae, Actinobacteria and
Streptococcus appear higher abundance compared to the healthy
control group, and Firmicutes appears in the inverse pattern,
where they are all ranked in our predicted top 20 score list.

In addition, Clostridia, ranked sixth in the score list, is less
reported about epilepsy, but Clostridium spp appears increased
relative abundance in autism spectrum disorder (ASD) (Borghi and
Vignoli, 2019), where ASD and epilepsy maybe have the same
heredity and physiopathologic mechanism (Mei et al., 2017). The
two rarely reported microbes for epilepsy are Bacteroidaceae and
Porphyromonadaceae. But there is evidence that Bacteroidaceae is
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depleted after traumatic brain injury (Rogers et al., 2022) and the
decrease of Porphyromonadaceae is closely linked to schizophrenia
(Juckel et al., 2021). In the future, their important role in epilepsy
will be further verified by wet experiments. In conclusion, results
demonstrate that our method can effectively predict potential
microbes for given diseases, which facilitates disease diagnosis and
prevention.

5. Discussion

Over the last decade, increasing researchers pay more attention
to the gut-liver-brain axis. The gut-liver-brain axis refers to the
bidirectional relationship between the gut and its microbiota, the
liver, and the brain, resulting from integrating signals generated
by dietary, genetic, and environmental factors (Rocco et al., 2021).
Growing evidences have emerged to consider the microbiota-
gut-liver-brain axis as a comprehensive approach for better
understanding diseases pathophysiology (Fuenzalida et al., 2021).

Figuring out the interactions between microbes and diseases
provides a new way to diagnose and treat diseases. However,
experimental identification of microbe-disease associations is time-
consuming, laborious and expensive. The development of high-
throughput sequencing technology has made it possible to explore
the association between microbes and diseases on a large scale.
In this paper, we present a deep learning framework based
on the graph convolutional attention network. We integrate
microbe similarity network, disease similarity network and known
microbe-disease associations into a heterogeneous network. Then,
we encode and learn the node feature information from its
neighbors and itself via multiple graph convolutional layers
and graph attention layers. Finally, MDAGCAN reconstructs
the unobserved microbe-disease associations through a bilinear
decoder. Comprehensive experiments demonstrate that our method
MDAGCAN is promising and reliable to identify disease-related
potential target microbes.

In addition, we further apply the microbe-disease association
prediction model to predict liver cirrhosis and epilepsy-associated
microbes and to find out the top 20 microbial candidates associated
with them. Meanwhile, the indirect validation indicates that the
remaining microbes are also associated with liver cirrhosis and
epilepsy, respectively. They may be novel prospective biomarkers
that require further experimental validation. Accumulating studies
have revealed that epilepsy is associated with increased mortality
in liver cirrhosis, but the underlying mechanism is still not
known. Our analysis results display that there are four common
microbes in the top 20 ranking score lists from liver cirrhosis and
epilepsy, i.e., Actinobacteria, Clostridia, Clostridiales and Klebsiella.
It is reported that the relative abundances of Actinobacteria and
Klebsiella both increase in patients with liver cirrhosis and epilepsy
compared with healthy controls (Chen et al., 2020; Lin et al.,
2021; Dong et al., 2022; Zhou et al., 2022). Clostridiales with
decreased abundance is strongly associated with the severity of liver
cirrhosis and the seizure of epilepsy (Zhang et al., 2018; Fukui,
2019). Also, Clostridia appears inverse abundance pattern in liver
cirrhosis and epilepsy patients (Zhang L. et al., 2019). Moreover,
Actinobacteria produces SCFAs through metabolic pathways. SCFAs
are vital components in the microbiota-gut-brain axis affecting
the immune and endocrine systems through involvement in gut-
brain signal pathways (Gong et al., 2021; Phillips-Farfan et al., 2021).

Klebsiella and Clostridiales produce an extracellular toxic complex
via metabolic pathways whose main component is lipopolysaccharide
(LPS). LPS release mainly affects the inflammatory response in the
whole organism and the gut-liver-brain communication (Ahluwalia
et al., 2016; Boeri et al., 2019). In conclusion, the gut microbe is
possible as a bridge to understand the pathogenesis of liver cirrhosis
and epilepsy.

Although several experiments show that our method performs
well in predicting new associations, there are still some limitations.
On the one hand, the known microbe-disease associations are
insufficient to attain better prediction performance due to data
imbalance and sparsity. On the other hand, MDAGCAN lacks
a wealth of prior biological knowledge like microbial phylogeny,
microbial gene sequencing and disease semantic information to
improve predictive performance. In the future, we will make further
research and efforts to address these shortcomings.
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