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The task of fundus image registration aims to find matching keypoints between an

image pair. Traditional methods detect the keypoint by hand-designed features, which

fail to cope with complex application scenarios. Due to the strong feature learning

ability of deep neural network, current image registration methods based on deep

learning directly learn to align the geometric transformation between the reference

image and test image in an end-to-endmanner. Another mainstream of this task aims

to learn the displacement vector field between the image pair. In this way, the image

registration has achieved significant advances. However, due to the complicated

vascular morphology of retinal image, such as texture and shape, current widely used

image registration methods based on deep learning fail to achieve reliable and stable

keypoint detection and registration results. To this end, in this paper, we aim to bridge

this gap. Concretely, since the vessel crossing and branching points can reliably and

stably characterize the key components of fundus image, we propose to learn to

detect and match all the crossing and branching points of the input images based on

a single deep neural network. Moreover, in order to accurately locate the keypoints

and learn discriminative feature embedding, a brain-inspired spatially-varying adaptive

pyramid context aggregation network is proposed to incorporate the contextual cues

under the supervision of structured triplet ranking loss. Experimental results show

that the proposedmethod achieves more accurate registration results with significant

speed advantage.

KEYWORDS

retinal image analysis, fundus image registration, deep learning, context aggregation,

structured triplet ranking loss

1. Introduction

Fundus image analysis has been widely researched, due to its significant advantage of non-
invasive observation. The purpose of image registration (Hill et al., 2001; Sotiras et al., 2013)
is to deform the test image to the coordinate system of the reference image, so that the same
point can be imaged at the same coordinate of the two images (Oliveira and Tavares, 2014).
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Registration of medical images is a crucial step in the image
processing. Image registration can trace the progression of the
same patient through time, providing a basis for clinical diagnosis,
lowering physician effort, and aiding in the investigation of
disease prognosis and outcome. In order to accurately learn
the deformation coefficient to transform the test image, the
matching keypoints between the test image and reference image
should be obtained. To this end, previous methods rely on
human-designed features to distinguish among visually similar
keypoints, by encoding the texture, shape or intensity gradient
with particularly designed computing pattern. Recently, deep neural
network (DNN) (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014; He et al., 2016) based image registration has made rapid
progress due to its strong feature learning ability. Some current
DNN based methods propose to directly learn the geometric
transformation, such as homography transformation, between the
test image and reference image. Other works also aim to learn
the dense pixel-level displacement vector filed between the image
pair (Cao et al., 2017; Krebs et al., 2017). However, due to the complex
and variable retinal vascular structure, previous methods fail to
achieve reliable and stable registration performance, which severely
limits downstream applications. Considering that the vessel crossing
and branching points are able to reliably and stably characterize the
fundus image (Deng et al., 2010; Chen et al., 2011), we propose
to choose all the crossing and branching points as the keypoints.
To this end, a single deep neural network is utilized to learn to
simultaneously locate and match all the keypoints.

Since the lower-level spatial details and higher-level semantic
cues of fundus image are both critical for learning accurate keypoint
detection and corresponding discriminative feature embedding for
keypoint matching, we employ the widely used encoder-decoder
architecture (Ronneberger et al., 2015) as the basic network.
Moreover, due to the large intra-class variability and small inter-
class difference of fundus image, the non-matching keypoints are
prone to be misclassified. It is natural for human being to gain the
knowledge of contextual consistency, which is helpful for alleviating
this issue. As a result, contextual cues should be incorporated into the
vanilla encoder-decoder architecture to handle these critical issues.
To this end, on the basis of the encoder-decoder architecture, we
propose a brain-inspired spatially-varying adaptive pyramid context
aggregation network. Concretely, with the proposed spatially-varying
adaptive pyramid context aggregation module, every pixel location
of the feature map is reweighted with the learned weight factor
guided by the aggregated global contextual cues. Feature vectors
of any two pixel locations are explicitly interacted by the form of
matrix multiplication between the reshaped two-dimensional feature
maps, leading to the spatially-varying feature weight factors. The
generated weight factors are then utilized as the dilated depth-
wise convolution kernels with different dilation factors to aggregate
the contextual cues in receptive fields with multiple scales. In
this way, the contextual cues are integrated into the feature maps
with predictable and spatially-varying depth-wise convolutions. In
addition, we employ a structured triplet ranking loss, whose aim is to
supervise the network to enlarge the distance of feature embedding
between non-matching keypoints and narrow the distance of feature
embedding between the matching keypoints, leading to compactness
between matching keypoints and dispersion between non-matching
keypoints.

In order to verify the effectiveness of the proposed method,
proper dataset and evaluation metric should be elaborately designed.
However, current FIRE dataset (Hernandez-Matas et al., 2017) only
labels a small part of the keypoints. Meanwhile, some keypoints of
FIRE dataset are not located at branching or crossing points. So this
dataset can’t be used for training our proposedmodel. To this end, we
collect 200 retinal images of 50 patients taken with fundus camera by
RetCam3 and Canon. Concretely, 100 neonatal fundus images of 27
patients with low imaging quality are taken from RetCam3. Another
100 high-quality retinal images of 23 patients taken from Canon
are also included. Meanwhile, different imaging angles and diverse
overlapping areas between the image pair are also considered during
the construction of dataset. In order to quantitatively evaluate the
proposed method, following previous methods (Hernandez-Matas
et al., 2017), we choose the Area Under Curve (AUC) value as
the registration score. Experimental results demonstrate that our
proposed method achieves significant performance improvement
over the vanilla encoder-decoder network. Our method achieves
the best registration performance among the deep learning based
methods. Meanwhile, our proposed method also surpasses most
of the traditional registration methods with significantly faster
execution speed by an order of magnitude.

Our contributions are summarized into three parts:

• We propose to achieve reliable and stable keypoint detection
and registration results for fundus image. Considering that the
vessel crossing and branching points can reliably and stably
characterize the key components of fundus image, we propose to
learn to detect and match all the crossing and branching points
of the input image pair with a single deep neural network.

• In order to cope with the large intra-class variability and small
inter-class difference of retinal image, we propose a brain-
inspired spatially-varying adaptive pyramid context aggregation
based on the widely used encoder-decoder architecture. In
this way, long-range contextual cues are incorporated into the
feature maps with predictable and input-variant convolutions.
Moreover, a structured triplet ranking loss is employed to
enforce the network to produce similar feature embedding for
matching keypoints in the input image pair, and dissimilar
feature embedding for non-matching keypoints.

• Since there is no proper fundus image registration dataset
for method evaluation, we construct a large-scale dataset
which covers diverse application scenarios. Quantitative and
qualitative results show that our proposed method is able to
reliably and stably locate and match keypoints.

We organize our paper as follows. Section 2 reviews related work.
Section 3 shows the detail of our method. Section 4 demonstrates
experimental results. Finally, Section 5 presents our conclusion.

2. Related work

2.1. Deep learning based image registration

Since the learning based image registration is mainly considered
in this paper, we provide a brief review of related works on deep
learning based image registration in this part. In recent years, several
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FIGURE 1

Overview of the proposed network for simultaneous keypoints detection and keypoints matching.

methods (Cao et al., 2017; Krebs et al., 2017) have proposed to
employ the DNN to directly learn the warp field between the test
image and reference image. Ground truth warp fields are required
in the above methods (Rohé et al., 2017; Sokooti et al., 2017; Yang
et al., 2017) to supervise the learning of DNN. In order to obtain
the ground truth warp field, several methods propose to simulate the
deformation operation and generate deformed images. Some other
methods employ the classical registration method, which rely on
hand-designed feature. However, the above methods are difficult to
obtain ground truth warp field as the ground reality, which severely
limit the application in real scenario. Recently, several unsupervised
learning based image registration methods (Li and Fan, 2017; Vos
et al., 2017; Zou et al., 2020) are also proposed. However, these
methods fail to cope with complex image registration application,
such as large transformations (Vos et al., 2017).

Compared to images collected in our daily life, the retinal image
registration is a much more challenging problem. First, there are
large differences in illumination, color, contrast and imaging angles
of the input image pair in diverse scenarios. The overlapping areas
between the test image and the reference image may be also diverse.
Furthermore, significant changes in retinal structure may be caused
by the progression of retinopathy. As a result, current deep learning
based image registration methods fail to achieve reliable and stable
registration results, which are not applicable for the challenging
fundus image task.

2.2. Deep metric learning

Deep metric learning aims to learn the distance metric to
compare and measure similarity between pairs of examples, which
is important for various tasks, such as image retrieval (Sohn, 2016;
Movshovitz-Attias et al., 2017), clustering (Hershey et al., 2016). One

of the main task of deep metric learning is to design proper loss
function. Contrastive loss (Chopra et al., 2005; Hadsell et al., 2006)
aims to encode the pair-wise relations between the anchor example
and one similar(positive) or dissimilar(negative) example, which is
first proposed to learn the feature embedding for image search task.
Triplet loss (Wang et al., 2014; Schroff et al., 2015; Cui et al., 2016) is
used to learn feature embedding for face recognition task. A triplet is
composed of the anchor example, a positive example and a negative
example. The triplet loss is to learn a distance metric by which the
anchor point is closer to the similar point than the dissimilar one
by a margin. Recently, richer structural relations among multiple
examples are considered by ranking-motivated methods (Schroff
et al., 2015; Oh Song et al., 2016; Sohn, 2016; Law et al., 2017;
Movshovitz-Attias et al., 2017). Some other methods propose to
design clustering-motivated structured losses (Hershey et al., 2016;
Oh Song et al., 2017). However, since clustering-motivated losses
are more difficult to optimize, the ranking-motivated loss function
is mainly considered in this paper.

3. Method details

This section presents details of our method for reliable and stable
fundus image registration. We show the overview of the proposed
model in Figure 1. We start by introducing the encoder-decoder
network, which is the baseline of our model. Then we introduce the
proposed network architecture and employed loss function.

3.1. Encoder-decoder network architecture

For the fundus image registration method based on deep
neural network (DNN), in order to achieve accurate pixel-level
image registration results, robust global semantic information
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and rich local spatial details are required. Current DNN stacks
successive convolutional and pooling layers to obtain roust feature
representations. However, due to the multiple pooling operations,
the feature spatial resolution is largely reduced. As a result, local
spatial details are severely lost for the features in deeper-level layers.
On the contrary, due to fewer pooling layers, spatial resolution of
features in lower-level layers are larger. In this way, the features in
lower-level layers encode rich local spatial details. However, the lack
of semantic and discriminative cues make the lower-level features
fail to effectively model long-range information. Since both the local
spatial details and global semantic cues are essential for accurate
image registration performance, a balanced fusion of the lower-level
features and the deeper-level features is required.

As shown in Figure 1, current widely used encoder-decoder
architecture employs the encoder sub-network to extract the
multi-scale features by multiple stacked convolutional and pooling
operations. The later decoder sub-network then combines the
extracted multi-level features by multiple feature fusion operations.
Concretely, with the input image pair, the successive convolutional
and pooling layers of encoder sub-network extract multi-scale
features, similar to ResNet (He et al., 2016) or VGGNet (Simonyan
and Zisserman, 2014). The decoder sub-network consists of multiple
feature fusion operations, which are employed to fuse the multi-
scale features generated by the encoder sub-network progressively.
For every fusion operation, F̂i, the feature in current layer i, is first
upsampled to match the resolution of the feature map Fi−1 from
the lower neighbor layer i − 1. The feature concatenation along
the channel dimension is applied, which is followed by another
convolution for further feature abstraction. This operation can be
formulated as:

ˆFi−1 = Conv(Concat(Up((F̂i)), Fi−1)). (1)

The above fusion operation is iterated until the lowest layer,
where the generated feature F1 has the same spatial resolution as the
input image, which is used to produce the final prediction.

3.2. Spatially-varying context aggregation
module

Due to the large intra-class variability and small inter-class
difference of fundus image, the non-matching keypoints are prone to
be misclassified. As a result, contextual cues should be incorporated
into the vanilla encoder-decoder architecture to handle this critical
issue (Liu et al., 2020). To this end, with the deepest feature map
generated by the encoder, a novel context aggregation module is
applied to incorporate the contextual cues in a spatially-varying
manner. The details are illustrated below.

In order to model the long-range contextual cues, previous
methods are mainly designed to generate global-consistent feature
re-weighting coefficient. For example, SE-Net (Jie et al., 2019)
is proposed to produce channel-wise feature re-weighting factor
of global distribution by a squeeze-and-excitation mechanism.
Differently, we propose to aggregate the global contextual cues by
generating spatially-varying feature re-weighting factors. In this way,
the long-range relations are more effectively mined in a spatially-
varying manner.

Figure 2 shows the overall architecture of the proposed Spatially-
varying Context Aggregation (SCA) module. First, we explicitly
model the long-range relations between any two pixel locations by
matrix multiplication, generating spatially-varying context kernel
prediction. Then, the predicted context kernels are applied on the
original feature map, leading to aggregated context enhanced feature.
Following are the detailed processing pipeline.

With the feature map X ∈ RH×W×C generated by the last feature
block of the encoder, we first transform it into two forms with two
independent convolutional operations: the key and query. The H, W
and C refer to the hight, width and channel number, respectively.
The key feature map K ∈ RH×W×C and the query feature map
Q ∈ RH×W×s2 are then used to aggregate the contextual cues. Here, s
is the kernel size of the learned context kernel.

In order to effectively model the global contextual cues between
pixels, the relation within any pixel locations should be explicitly
interacted. To this end, the key feature map K ∈ RH×W×C and the
query feature map Q ∈ RH×W×s2 are first reshaped into 2D form,
K ∈ QH×W×C and Q

′
∈ R(H×W)×s2 , respectively. In this way, our

aim is to make each column of K effectively encodes the channel-wise
characteristics of original feature mapX along the channel dimension
C. The length of each of the C−dimensional feature vector isH×W.
Meanwhile, each column of Q

′
models one of the s2-dimensional

feature vectors with the length of H ×W.
Afterwards, in order to explicitly model the interactions between

each column of K ∈ QH×W×C and Q
′
∈ R(H×W)×s2 for all the

(H ×W) pixel locations, we employ following operations:

S
′

(i, j) =
H×W
∑

q=1

Q
′

(q, i)× K
′

(q, j), (2)

Where i = 1, 2, ....., s2, j = 1, 2, ....,C. Since the number of query
vectors is s2, s2 feature vectors encoded the interactions between all
the pixel locations can be thus obtained. The length of each of the
feature vector is C. We can also rewrite the above operation of dot
product form as a form of matrix multiplication:

S
′

= Q
′T

× K
′

, (3)

Where Q
′T

refers to the transpose of matrix Q
′
, S

′
∈ Rs

2×C is the
union of all the obtained cues about spatial location relation.

Then, the generated two-dimensional S
′
∈ Rs

2×C is reshaped
into 3D form S ∈ Rs×s×C . We then employ a batch normalization
operation to modulate S, generating the predicted spatially-varying
context kernel. The generated kernel effectively encodes the relation
cues between pixels of all spatial locations, which can be used to
produce spatially-varying weight factor F ∈ RH×W×C for all H ×W

spatial locations.
In order to fully exploit the information encoded in the spatially-

varying context kernel, the depth-wise convolution is applied on
the original feature map X with the context kernel S as the
depth-wise convolution kernel. In this way, each channel of S is
able to modulate one specific channel of X in an independent
manner. The spatially-varying context guided modulation can thus
be implemented. Concretely, as shown in Figure 3, we first split the
context kernel S ∈ Rs×s×C into C two-dimensional kernels along the
channel dimension. Each of the 2D C kernels has a spatial dimension
of s × s. These C kernels are then applied on each channel of the
original feature map X ∈ RH×W×C in an independent manner,
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FIGURE 2

Details of the proposed spatially-varying context aggregation module, which first predicts the spatially-varying context kernel and then aggregates the

context with the predicted re-weight kernels.

generating intermediate feature. A 1 × 1 × 1 convolution is then
used to transform the generated intermediate feature map for further
feature abstraction. The obtained feature is then processed with one
Sigmoid activation function, which produces the spatially-varying
weight factor F ∈ RH×W×C. Finally, an element-wise multiplication
between M and X is performed to achieve the output feature map,
which is then passed through the decoder part for multi-scale feature
fusion.

3.3. Spatially-varying adaptive pyramid
context aggregation module

3.3.1. Dilated convolution
Standard convolution is characterized by its property of local

receptive field. However, large receptive field is essential for
enhancing deep neural network’s discriminative feature learning
ability. Hence, pooling layer is used after several convolutional layers
to enlarge the receptive field. However, the adoption of pooling
layer leads to the loss of spatial details and lower-resolution feature
map, which is unfavorable for accurate pixel-level keypoint location
and matching. Dilated convolution is able to effectively alleviate this
challenging issue by sparsifying the standard convolution separated
by zero with specific interval (dilation rate), which allows us to
enlarge the receptive field without loss of spatial resolution of the
feature map.

3.3.2. Depth-wise dilated convolution
Depth-wise separable convolution transforms the standard

convolution into a depth-wise convolution followed by a point-
wise convolution. In this way, the computation complexity is thus
drastically reduced. Concretely, the depth-wise convolution is applied
on each channel of the feature map independently. The point-wise
convolution is then used to fuse the output from the depth-wise
convolution.

On the basis of the context aggregation module above, a dilation
pyramid based context aggregation module is incorporated for
further context aggregation of multi-scale field-of-view, as shown
in Figure 3. Concretely, with the predicted spatially-varying context
kernel S, we employ three parallel dilated convolutions with different
dilation rates to model contextual cues in a context-adaptive manner.
The three different dilation rates are set as 1, 3, 5 in our paper. In this
way, a dilation pyramid context aggregation block is obtained.

With these operations, three context kernels (S1, S2, and S3) with
different context aggregation fields are obtained. The three context
kernels are then applied over the original feature map X, leading to
three different weight factors R1, R2, and R3. The three generated
weight factors are then fused by element-wise sum:

R = R1 + R2 + R3. (4)

With the final fused weight kernel R, similar to the above SCA
module, an element-wise multiplication is operated between R and
X to ensure each channel of R can independently modulate the
corresponding channel of X.

3.4. Loss function

In order to supervise the above network to effectively locate and
match the keypoints, specifically designed loss functions are utilized.

3.4.1. Keypoint location loss
We convert the keypoint location task into a pixel-level binary

classification problem. In order to accurately locate the keypoints,
the widely used cross-entropy loss is first utilized to supervise the
learning of the transformed feature map of the last feature block of
the above adaptive pyramid context aggregation network:

CE(yi, pi) = −[yilog(pi)+ (1− yi)log(1− pi)], (5)
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FIGURE 3

Details of the proposed spatially-varying adaptive pyramid context aggregation module. The adaptive pyramid mechanism aggregates the contextual

cues with multi-scale field-of-views via convolution pyramid with multiple atrous rates.

Where yi means the label of pixel i (1 and 0 means the keypoint
and background, respectively), pi refers to the predicted probability
of pixel i to be the keypoint.

We also use the Dice loss for more accurate keypoint location:

Dice(X,Y) = 1−
2|P ∩ Y|

|P| + |Y|
, (6)

Where P means the pixel set of the predicted keypoints, Y means
the pixel set of ground truth keypoints. |P∩Y| refers to the sum of the
element-wise production between P and Y . |P| + |Y|, |P| refers to the
sum of all the elements of P, |Y| refers to the sum of all the elements
of Y .

3.4.2. Keypoint matching loss
In order to supervise the network to enhance the discriminative

power of learned feature embedding of keypoints, proper keypoint
matching loss should be designed. The ideal keypoint matching loss
should reduce the gap between matching keypoints and enlarge the
gap between non-matching keypoints.

To this end, with the feature map in the last feature
block of decoder before generating keypoint detection prediction,
we transform this feature map into three-dimensional feature
embedding. Thus, every fundus image keypoint has its corresponding
one-dimensional feature embedding. Following Huang et al. (2016)
and Opitz et al. (2017), we set the feature embedding dimension
as 512. In this way, our task is to enlarge the distance of
feature embedding between non-matching keypoints and narrow
the distance of feature embedding between the matching keypoints,
leading to compactness between matching keypoints and dispersion
between non-matching keypoints. Metric learning mechanism is
employed to tackle the above problem in this paper. Concretely, we
use the ranking loss to compute the relative distance between the one
dimensional feature embedding of every two keypoints in the input
image pair.

3.4.2.1. Pair-wise ranking loss

This widely used loss is also called contrastive loss. Positive
and negative pairs of the one-dimensional feature embedding of
keypoints in input image pair are both required for computing

the pair-wise ranking loss. One positive pair consists of an anchor
keypoint ka and the matching keypoint kp. One negative pair consists
of an anchor keypoint and a non-matching keypoint kn. The one-
dimensional feature embedding of the anchor keypoint ka, the
matching keypoint kp and the non-matching keypoint kn are fa,
fp, and fn, respectively. For positive pairs, the aim of the pair-
wise ranking loss is to guide the network to learn proper feature
embedding with a small distance. On the contrary, for negative
pairs, the pair-wise ranking loss aims to supervise the network
to learn feature embedding with a large distance. We choose the
Euclidian distance as the distance computing function to measure the
similarity between the feature embedding. The above operations can
be formulated as:

L(fa, fp, fn) =

{

d(fa, fp), if PostivePair,

max(0,m− d(fa, fn)), if NegativePair.
(7)

As shown in the Equation 7, for one positive pair, if the distance
between fa and fp are larger than 0, the loss value will also be positive.
Hence, the network is guided to reduce the distance to be 0. In this
way, this pair-wise ranking loss guides the network to produce similar
feature embedding for matching keypoints. On the other hand, for
negative pair, when the distance between the feature embedding of
the anchor keypoint and negative (non-matching) keypoint is larger
than a specific margin threshold, the loss will be 0. When the distance
is reduced below the margin value, the loss value will be positive.
When the distance between fa and fp, the loss value is the largest value
m. In this way, the pair-wise ranking loss supervises the network to
produce dissimilar feature embedding for non-matching keypoints.
When the distance for a negative pair is distant enough (larger than
the default threshold), the network will focus on the learning of
feature embedding for more difficult pairs.

3.4.2.2. Triplet ranking loss

Instead of using only one pair of keypoints for every computation
of pair-wise ranking loss, the triplet ranking loss considers the
relations of a triplet, which consists of an anchor keypoint ka, a
positive keypoint kp and a negative keypoint kn. The aim of the
triplet ranking loss is to guide the network to produce separable
feature embedding: the distance between the feature embedding of
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FIGURE 4

Illustration of the (A) Pair-wise Ranking loss, (B) Triplet Ranking loss, and (C) Structured Triplet Ranking loss. Di�erent shapes represent di�erent classes.

The blue circle is an anchor. For Pair-wise Ranking loss, the anchor and one positive example or one negative example are considered for every loss

computation. For Triplet Ranking loss, the anchor is compared with only one negative example and one positive example. For the Structured Triplet

Ranking loss, the anchor is compared with all negative examples.

the anchor keypoint and negative keypoint d(fa, fn) is larger than
the distance between the feature embedding of anchor keypoint and
the positive keypoint d(fa, rp) by a specific margin m). The above
operations can be rewritten as:

L(fa, fp, fn) = max(0,m+ d(fa, fp)− d(fa, fn)). (8)

We note that the difference between the pair-wise ranking
loss and triplet ranking loss is that pair-wise ranking loss only
considers pair of keypoints for one loss computation, however, a
triplet of anchor keypoint, positive keypoint and negative keypoint
is considered for the triplet ranking loss.

3.4.2.3. Structured triplet ranking loss

Triplet loss (Weinberger and Saul, 2009; Schroff et al., 2015) is
proposed to pull the learned feature embedding of anchor keypoint
closer to the positive keypoint than to the negative keypoint by a
fixed margin. However, the triplet loss only considers one triplet
for every loss computation, neglecting the relations among multiple
keypoints. To this end, inspired from Oh Song et al. (2016); Wang X.
et al. (2019), we propose to employ the structured triplet ranking loss
to supervise the feature embedding learning of our network, which
explores the structured relationship among multiple keypoints.

Concretely, the structured triplet ranking loss encourages the
interaction between more negative keypoints. On the basis of triplet
loss, the employed structured triplet ranking loss aims to supervise
the learned feature embedding between the anchor keypoint and
one positive keypoint is as similar as possible. Moreover, the feature
embedding between the anchor keypoint and all negative keypoints
as dissimilar as possible. Formally, the structured triplet ranking loss
aims to pull the anchor keypoint closer to one positive keypoint than
all negative keypoints than a marginm.

L =
1

2|P|

∑

(i,j)∈P

[d(fi, fj)+ log(
∑

(i,p)∈N

exp(m− d(fi, fp))

+
∑

(j,l)∈N

exp(m− d(fj, fl))]+,
(9)

Where P and N are the set of positive pairs and negative pairs
respectively, fi, fp, fj, and fl refer to the feature embedding of pixel

TABLE 1 Details of our constructed AN-200 dataset.

Camera Number
of image
pairs

Number
of

patients

Adult Canon 100 27

Neonatus RetCam3 100 23

We collect and label 200 fundus image pairs of adult and neonatus, which are taken from Canon

and RetCam3.

i, pixel p, pixel j, and pixel l, respectively. [·]+ is the hinge function.
Illustration of the Pair-wise Ranking loss, Triplet Ranking loss, and
Structured Triplet Ranking loss are shown in Figure 4.

3.5. Implementation details

The hyperparameters of batch-size, weight decay are set to 1, 1e−
3 respectively. The monmentum is set as 0.9. We use pytorch (Paszke
et al., 2017) as the basic implement architecture. The widely used
stochastic gradient descent strategy is used for training the proposed
model.

4. Experiments

In this section, we present extensive experiments to validate the
proposed model for fundus image registration. First, we show our
evaluation dataset and metric. Then we present a detailed analysis of
our model on the constructed large-scale dataset.

4.1. Datasets and metrics

4.1.1. Dataset
Current widely used funds image registration dataset, FIRE,

consists of 134 image pairs from 39 patients, which are acquired
with Nidek AFC-210 fundus camera. The keypoints of images in
FIRE dataset are randomly labeled in a sparse manner. There is not
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FIGURE 5

Example of the fundus images from diverse applications, including adult and neonatus patients acquired under good or bad imaging conditions.

Moreover, di�erent imaging angles and overlapping areas between the image pairs are also considered.

a guarantee that all the vessel branching and crossing points are
labeled as keypoints. In this case, these sparse ground-truth keypoint
labelings fail to train our proposed model. As a result, a large-scale
fundus image registration dataset, which labels all the keypoints in a
reliable and stable manner, is required for further research.

To this end, we collect 200 pairs of fundus images under various
imaging conditions (illumination, angle etc.) taken from different
fundus cameras, such as Canon and RetCam3, as shown in Table 1.
The constructed dataset is termed as AN-200 dataset. Concretely, 100
high-quality retinal images of 27 adult patients are acquired from
Canon. Moreover, the neonatal fundus images are often with low
image quality, due to the uncooperative image acquiring process.
We collect 100 neonatal fundus images taken from 23 patients
with RetCam3 to support various neonatal applications. In addition,
different imaging angles and lighting conditions are considered
during the construction of the dataset. Example of the fundus images
are shown in Figure 5. For every image pair, all the branching
and crossing points are labeled as keypoints. All the matched
keypoints are then labeled as ground truth matching keypoints. In
this way, a reliable and stable fundus image registration dataset
is constructed.

4.1.2. Evaluation metric
First, we choose the widely used FIRE dataset to quantitatively

evaluate the proposed method and compare with state of the art
methods. Since FIRE dataset only labels part of the crossing and
branching points, our model cannot be trained on this dataset.
Following Rivas-Villar et al. (2022), we train the models on the
training set of our constructed dataset. The trained models are

then evaluated on FIRE dataset with the registration score proposed
by Hernandez-Matas et al. (2017), which calculate the success ratio
between the fixed and moving image pairs after the transformation of
the moving image with the learned transformation parameters.

Concretely, pixels of moving image are first transformed into
the coordinate space of fixed image. We then calculate the averaged
distance between the transformed pixels and the ground-truth points
of fixed image as the registration error of this image pair. If the
registration error is below a threshold, the registration of this image
pair is successful. With larger threshold, more image pairs are
deemed successful registrations. By varying the threshold from 0 to
larger value, the percentage of successful registration pairs enlarges
gradually. In this way, we can plot the registration curve, where
the X axis corresponds to the setting threshold, the Y axis refers to
the percentage of successfully registered images. With the plotting
curve, the Area Under Curve (AUC) can be calculated as the final
registration score. The original FIRE dataset (Hernandez-Matas et al.,
2017) is divided into three sub-datasets based on the overlapping
and anatomical similarity between an image pair. The sub-dataset
S consists of 71 image pairs with more than 75% overlapping and
no anatomical differences. The sub-dataset P contains 49 image
pairs with less than 75% overlapping. Finally, the sub-dataset A is
composed of 14 image pairs with anatomical differences. Similar
to Rivas-Villar et al. (2022), we calculate the AUC score on the S, P,
and A sub-datasets and the whole FIRE dataset.

In addition, we also calculate the AUC value as the registration
score on our constructed AN-200 dataset with the same computing
manner. Concretely, 60%, 20% and 20% of the original dataset
are randomly divided into the training, validation and test set,
respectively. The final registraction score is reported on the test set.
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TABLE 2 The evaluation results of methods with di�erent network settings

on AN-200 and FIRE datasets.

Method AN-200(%) FIRE(%)

U-Net 70.5 68.1

SCA-Net 72.2 69.5

SAPCA-Net 72.9 71.1

The bold values mean the best performance.

4.2. Ablation study on the network
architecture

Based on the constructed dataset, in order to obtain better
understanding of the proposed network, we evaluate following
methods with different network settings. The experimental results are
summarized in Table 2:

• Baseline: We first choose the vanilla encoder-decoder
architecture (U-Net) as the backbone network to simultaneously
learn the detection of keypoint and the generation of feature
embedding, under the supervision of the above cross-entropy
loss, Dice loss and the proposed structured triplet ranking loss.
As shown in Table 2, the Baseline achieves an AUC of 70.5 and
68.1% on AN-200 and FIRE datasets, respectively.

• Spatially-varying context aggregation network (SCA-Net): Then
we enhance the simple U-Net with the proposed spatially-
varying context aggregation module. Concretely, over the last
stage of the encoder sub-network of U-Net, the generated
feature map of encoder sub-network is enhanced with the SCA
module. The global contextual cues are thus incorporated. The
loss functions are kept the same with the Baseline. The AUC
on AC-200 of SCA-Net is 72.2%, and the AUC on FIRE is
enlarged to 69.5%. The performance improvement is 1.7 and
1.4%, respectively.

• Spatially-varying adaptive pyramid context aggregation network
(SAPCA-Net): Finally, we test our overall network, SAPCA-
Net, by changing the SCA-module with the SAPCA module to
incorporate context-adaptive cues. Compared to original U-Net,
the SAPCA-Net largely improves the AUC of AD-200 by 2.4%,
the AUC of FIRE by 3.0%. Concretely, the AUC of AD-200 is
significantly enlarged from 70.5 to 72.9%, and the AUC of FIRE
is improved from 68.1 to 71.1%. These results effectively show
the effectiveness of the proposed SAPCA module.

As shown in Figure 6, we plot the curve of the successful
registration ratio as the change of different error thresholds. In
addition to the above quantitative comparisons, we also show the
visualized results of ourmethod. Figure 7 demonstrates the visualized
keypoint detection and keypoint matching results from two typical
scenarios. The last row also shows the final fused results with the
matching keypoints. The first column of Figure 7 shows the ground
truth keypoint detection and fused result. As shown in Figure 7, the
baseline method is able to effectively locate and match keypoints.
However, there exist a number of wrong keypoint matching results.
The SCA-Net is able to remove some false positive predictions,
leading to better keypoint matching result. Finally, the SAPCA-Net
further removes more false positive keypoint matching predictions.
Meanwhile, the number of true keypoint matching is also increased.

FIGURE 6

The registration success with di�erent error thresholds for the model

with di�erent network settings on FIRE dataset.

As a result, the final fused result with the matching keypoints
generated by the SAPCA-Net is visually better than other methods.
These qualitative comparisons further demonstrate the effectiveness
of the proposed network architecture.

4.3. Ablation study on the loss function

On the basis of the above best performing SAPCA-Net, we also
conduct further ablation study for further understanding of the loss
function. We evaluate the SAPCA-Net with following different loss
functions, the results are summarized in Table 3:

• SAPCA-net-pairwise: We first replace the keypoint matching
loss function of SAPCA-Net with the simple pairwise ranking
loss. Pairwise ranking loss guides the SAPCA-Net to learn the
pairwise relationship between the feature embedding of the
anchor keypoint and one positive/negative keypoint. As shown
in Table 3, the SAPCA-Net-Pairwise achieves the AUC of 71.4
and 69.7% on AN-200 and FIRE, respectively.

• SAPCA-net-triplet: Then we replace the keypoint matching loss
function with the triplet ranking loss. The triplet loss helps the
network to pull the anchor point closer to the similar keypoint
than the dissimilar one by a margin. The AUC of SAPCA-Net-
Triplet on AN-200 is 72.2%, and the AUC on FIRE is improved
to 70.3%.

• SAPCA-net-structured-triplet: We further replace the keypoint
matching loss function with structured triplet ranking loss. The
structured triplet ranking loss supervise the network to learn the
structured relationship among multiple keypoints. Compared to
original pair-wise ranking loss, the AUC of AN-200 is enlarged
from 71.4 to 72.9%, and the AUC of FIRE is improved from 69.7
to 71.1%. These results effectively show the effectiveness of the
employed structured triplet ranking loss.

Among the SAPCA-Net with the above three different loss
functions, the SAPCA-Net-Structured-Triplet achieves significantly
better results, which effectively demonstrates the superiority of the
structured triplet ranking loss for the learning of matching keypoints.
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FIGURE 7

Example of the keypoint detection and matching results of normal adult and neonatal fundus images. We also show the fused image with the matching

keypoints.

The change curve of registration success ratio under different error
thresholds is shown in Figure 8.

4.4. Comparison to state-of-arts

In order to compare our proposed best-performing SAPCA-
Net with state of the art methods, the widely used FIRE dataset
is employed for evaluation. We first focus on the deep learning

based methods. As shown in Table 4, compared to previous two-
stage UNet + RANSAC (Rivas-Villar et al., 2022), our end-to-end
registration method achieves consistently better results on the S,
P, A sub-datasets and the whole FIRE dataset. Concretely, on the
four dataset settings, our SAPCA-Net achieves the registration score
of 93.9, 36.2, 71.9, and 71.1%, significantly outperforming UNet +
RANSAC by 3.1, 6.9, 5.9, and 5.4%, respectively.Moreover, ourmodel
accomplishes the two steps of keypoint detection and matching with
a single network. However, for previous UNet + RANSACmodel, the
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keypoint detection is first accomplished by a U-Net, which is followed
by traditional RANSAC (Fischler and Bolles, 1981) for the keypoint
matching step. In this way, the execution time of our proposed
SAPCA-Net is much shorter.

TABLE 3 Ablation study on the loss function.

Method AN-200(%) FIRE(%)

SAPCA-Net-Pairwise 71.4 69.7

SAPCA-Net-Triplet 72.2 70.3

SAPCA-Net-Structured-Triplet 72.9 71.1

With the structured triplet loss, SAPCA-Net-Structured-Triplet achieves the best result. The bold

values mean the best performance.

FIGURE 8

The curve of successful registration percentage under di�erent error

thresholds for the model with di�erent loss functions on FIRE dataset.

Then, we compare our method with traditional registration
methods. As shown in Table 4, our SAPCA-Net obtains the best
registration score on the A sub-dataset, by achieving 71.1%
AUC. This result is 3.8% better than previous best performing
VOTUS. On the S sub-dataset, our method obtains the registration
score of 93.9%, slightly better than VOTUS, while is 1.9%
lower than the REMPE. On the whole FIRE dataset, our
method outperforms most of the traditional methods. Although
VOTUS and REMPE achieve better registration scores than
our SAPCA-Net, the execution time of these two methods are
two orders of magnitude slower than our method. Concretely,
the execution time of our method is only 0.32s, which shows
significant advantage compared to the VOTUS (106s) and REMPE
(198s). This is a big advantage for applications in clinical
scenarios.

5. Conclusion

Current deep learning based image registration methods
directly learn to align the geometric transformation or the dense
displacement vector field between the input image pair. These
previous modeling paradigms fail to achieve keypoint detection
and registration results in a reliable and stable way. To this
end, in this paper, we aim to tackle this challenging issue. First,
considering that the vessel crossing and branching points can
reliably and stably characterize the key components for fundus
image, a single network is employed to simultaneously learn to
detect and match all the crossing and branching points of the
input image pair in an end-to-end manner. Moreover, a spatially-
varying adaptive pyramid context aggregation network is proposed
to aggregate contextual cues in multi-scale field-of-view, which
are much beneficial for accurate keypoint detection and matching.
Furthermore, a structured triplet ranking loss is employed to guide

TABLE 4 Comparison to state-of-arts on FIRE dataset.

Method S P A FIRE Execution
time

SIFT +WGTM (Lowe, 2004) 83.7 54.4 40.7 68.5 –

GDB-ICP (Yang et al., 2007) 81.4 30.3 30.3 57.6 19

Harris-PIIFD (Yang et al., 2007) 90.0 9.0 44.3 55.3 13

SURF +WGTM (Bay et al., 2008) 83.5 6.1 6.9 47.2 –

ED-DB-ICP (Tsai et al., 2009) 60.4 44.1 49.7 55.3 44

RIR-BS (Chen et al., 2011) 77.2 0.49 12.4 44.0 -

ATS-RGN (Serradell et al., 2014) 36.9 0.0 14.7 21.1 -

EyeSLAM (Braun et al., 2018) 30.8 22.4 26.9 27.3 7

GFEMR (Wang J. et al., 2019) 81.2 60.7 47.4 70.2 10

RIFT + NTG (Zhou et al., 2022) 90.7 51.2 81.0 71.7 -

VOTUS (Motta et al., 2019) 93.4 67.2 68.1 81.2 106

REMPE (Hernandez-Matas et al., 2020) 95.8 54.2 66.0 77.3 198

U-Net + RANSAC (Rivas-Villar et al., 2022) 90.8 29.3 66.0 65.7 0.65

Our SAPCA-Net 93.9 36.2 71.9 71.1 0.32
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the learning of similar feature embedding for matching keypoint
and dissimilar feature embedding for non-matching keypoints.
The proposed model is trained on a new constructed large-
scale dataset with well-labeled ground-truths. Both quantitative
and qualitative results show the effectiveness of the proposed
method.
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