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Editorial on the Research Topic

Hardware implementation of spike-based neuromorphic computing

and its design methodologies

Spiking Neural Network (SNN), as the third-generation neural network, mimics the

operations of brains and integrates thememory (synapse) and processing units (neurons)

in proximity. Implementing the SNN in a modular, parallel, distributed and scalable

manner, promises a computing system with low power consumption and short latency

(Berggren et al., 2021; Christensen et al., 2022) The biologically plausible, hardware based

neuromorphic computing, based on mature CMOS technologies or emerging memristor

technologies (Zhu et al., 2020), is revolutionary and excels in the computations of

spatial-temporal dynamics with plasticity and fault-tolerance.

This Research Topic achieves five excellent papers related to design and deployment

of SNNs on hardware, including design methodologies, system implementations, and

benchmarking against those with von Neumann architecture. For implementations into

available SNN frameworks, algorithm-hardware co-design is generally the approach

to follow. Either starting directly from an SNN design or starting with an artificial

neural network (ANN) then converting to an SNN, simulations with the neural network

module taking into account hardware properties, is the first step toward hardware

implementation. It is similar to the use of electronic design automations (EDA) tools for

the CMOS integrated circuit designs. Similar design methodology has already been used

in memristor-based neuromorphic computing systems (Ishii et al., 2019), but remains in

small scale. Looking into the future, neuromorphic computing-oriented EDA (may be

coined as NC-EDA) is going to grow together with the hardware in the era of non-von

Neumann computing.
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In their work, Patiño-Saucedo et al. developed a method

to implement liquid state machines (LSMs) into SpiNNaker

to classify visual event. They design their LSMs with an

input layer, a hidden layer with recurrently connected SNNs

and an output layer, on top of the PyTorch module. The

training of hidden-to-output parameters is done using the

spatio temporal back propagation algorithm by keeping the

other weights untrained. LSMs parameters are extracted and

then used in an equivalent LSM model defined with a PyNN-

based API of the SpiNNaker. After setting the parameters

using the specific software of the SpiNNaker platform, the

authors map them into the hardware and perform inference

on the N-MNIST dataset. Benchmarks show that an accuracy

of 93.9% is achieved with a liquid size of 4,096. The effect

of weight quantization is also discussed from the perspective

of accuracy.

A second hardware implementation of neuromorphic

computing was proposed by LeBow et al. The application

scenario is a real-time edge neuromorphic tasting system. In

order to deploy the SNN into the Intel Loihi neuromorphic

chip in the Kapoho Bay USB stick form factor, the authors

trained a convolutional neural network (CNN) with a kernel

size of 4 and 32 convolutional kernels per layer. The

training is performed in Keras and then converted to

a rate-based SNN using the SNN Toolbox. The NxTF

framework with a Keras-like API allows the deployment of

the converted SNN on Loihi. Sensors, dataset, etc. have also

been discussed in the work thoughtfully and made available

to the community. Significant advantages over other devices

are achieved. The 15 mW dynamic power is 49 and 643

times lower than the same model on non-spiking ANN and

GPU, respectively, with similar accuracy. In terms of inference

energy, the SNN is 15 and 290 times lower, showing very

promising advantages.

Li et al. discussed their proposal of quantization framework

for fast spiking neural networks. While the ANN-to-SNN

conversion is one way to develop neuromorphic hardware,

traditional conversion suffers a trade-off between the

accuracy and latency. It is difficult to maintain accuracy

with low activation bit-width. The authors propose

to perform learned step size quantization (LSQ) first

before the ANN-to-SNN conversion. Furthermore, the

authors develop ways to reduce occasional noise and

model the max pooling for SNN, and eventually derive

the lossless quant-ANN-to-SNN conversion. Using the

proposed technique, the authors achieve a large increase

in accuracy with limited latency, i.e., 70.18% accuracy on

ImageNet within eight time-steps. The work pioneers fast

ANN-to-SNN conversions.

Gao et al. presented their work on SNN implementation

in a field-programmable gate array (FPGA). Instead of

converting ANNs to SNNs, the authors started directly from

an SNN architecture design. The SNN consists of three

layers, while the hidden layer consists of three compartments,

i.e., a multi-compartment leaky integrated-and-fire (MLIF)

model. Targeting for online training, feedback from the

output layer to the apical dendrite is introduced for error

backpropagations. The output layer also consists of two

compartments and a teaching current is added to the

soma neurons. A training is designed that consists of

two stages, the forward stage and the target stage. At

the end of the target stage, the synaptic weights and

biases in the hidden layer are updated according to the

plateau potential of the dendrites of the output layer. The

authors simulated their SNN design on MATLAB before

deploying into the Alterra FPGA. Benchmarks of FPGA

implementations including R-square metrics are reported with

encouraging results.

A review of neuromorphic computing systems is presented

by Ivanov et al. From their perspective, the authors proposed a

list of neuromorphic properties to characterize neuromorphic

computing hardware, including connectivity, parallelism,

asynchrony, the impulse nature of information transfer, online

learning, local learning, sparsity, analog computing, and

in-memory computing. Looking around, authors introduce

several popular neuromorphic projects from industry and

academia, including TrueNorth, Loihi, Tianjic, SpiNNaker,

BrainScales, NeuroFlow, DYNAP, Akida, and Mythic. A

comparison between different projects is also performed from

several ways.
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