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Background: Postoperative neurocognitive disorder (PND) is a common central

nervous system (CNS) complication that might increase the morbidity and mortality

of elderly patients after anesthesia/surgery. Neuroinflammation, oxidative stress,

and synaptic dysfunction are closely related to cognitive dysfunction, an important

clinical feature of PND. Transcranial near-infrared laser (TNIL) is regarded as

an effective treatment for cognitive-related diseases by improving mitochondrial

function and alleviating neuroinflammation and oxidative stress damage.

Materials and methods: Aged male C57BL/6 mice underwent a carotid artery

exposure procedure under isoflurane anesthesia. We treated PND-aged mice for

three consecutive days (4 h post-operation, 1-laser) with 810 nm continuous wave

(CW) laser 18 J/cm2 at 120 mW/cm2. The post-treatment evaluation included

behavioral tests, RTq-PCR, immunofluorescence, and Western blot.

Results: The results demonstrated that TNIL improved PND and the levels of

synaptic function-associated proteins such as post-synaptic density protein 95

(PSD95), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Besides,

neuroinflammatory cytokine levels of tumor necrosis factor (TNF)-α and interleukin

(IL)-1β as well as microglia activation and oxidative stress damage were attenuated

after TNIL treatment in aged mice with PND. Further investigation suggested that

TNIL relieved oxidative stress response by activating the SIRT3/AMPK/Nrf2 pathway.

Conclusion: Transcranial near-infrared laser improved cognitive impairment in aged

mice with PND, which may be a promising therapeutic for PND.

KEYWORDS

postoperative neurocognitive disorder, neuroinflammation, oxidative stress, synaptic
dysfunction, SIRT3/AMPK/Nrf2 pathway

1. Introduction

Postoperative neurocognitive disorder (PND) is the functional impairment of the
nervous system activities, such as memory, executive function, and language impairment in
anesthesia/surgery populations (Liu J. et al., 2021). The incidence of PND is about 8.9–46.1%,
which is higher in patients over the age of 65 years (Kapila et al., 2014). PND seriously affects
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a patient’s life quality (Gao et al., 2005). At present, the exact
pathogenesis of PND remains unclear, and there is a lack of effective
treatments.

Neuroinflammation, oxidative stress, and synaptic dysfunction
have been testified to be involved in the pathological process
of PND (Netto et al., 2018; Wang et al., 2018; Xiao et al.,
2018). Studies showed that inflammatory cytokine levels of tumor
necrosis factor (TNF)-α and interleukin (IL)-1β were notably
increased in the hippocampus of aged mice with PND, which
indicated that neuroinflammation is an important pathogenesis
of PND (Subramaniyan and Terrando, 2019). Microglia, as the
main source of inflammatory factor release, closely contribute
to neuroinflammation (Kim and de Vellis, 2005). Anesthesia
and surgical stimulation can damage the neuronal mitochondrial
function and cause an imbalance of reactive oxygen species (ROS).
Furthermore, it has been reported that mitochondrial oxidative stress
can result in the injury of neurons that emits excessive inflammatory
cytokines (Leyane et al., 2022). The continuous release of pro-
inflammatory cytokines causes a concatenation of events involving
oxidative stress and cognitive impairment activation (Zhang et al.,
2021).

SIRT3 is an NAD+-dependent deacetylation enzyme that affects
mitochondria energy metabolism and oxidative stress (Zhang et al.,
2020). SIRT3 not only directly deacetylates SOD2 but also increases
the activity of the antioxidant enzyme Nrf2 by activating AMPK
to improve the antioxidant capacity (Tao et al., 2010; Park et al.,
2020). Importantly, nuclear factor-erythroid 2-related factor 2
(Nrf2) is an important transcription factor regulating oxidative
stress response (Staurengo-Ferrari et al., 2018). Studies found that
neurological damage and cognitive impairment were accompanied
by the downregulated AMPK/Nrf2 pathway (Cao et al., 2020),
suggesting that the SIRT3/AMPK/Nrf2 pathway may be a target for
the treatment of PND.

Transcranial near-infrared laser (TNIL; λ = 600—1,070 nm)
therapy is emerging as an effective neuroprotective therapy,
regardless of acute brain damage or neurodegenerative disease
(Naeser et al., 2014). For example, in the traumatic brain injury (TBI)
model, TNIL increases brain-derived neurotrophic factor (BDNF)
and synaptogenesis (Xuan et al., 2015). In Alzheimer’s disease (AD)
model, TNIL attenuates Aβ burden and cognitive impairment (Tao
et al., 2021). TNIL protected mitochondrial function by enhancing
the activity of cytochrome C oxidase (CCO) and increasing adenosine
triphosphate (ATP) synthesis (Foo et al., 2020). TNIL can efficiently
and non-invasively penetrate into the central nervous system (CNS)
and provide excellent neuroprotection, such as decreasing neuronal
cell apoptosis, ameliorating dendrite atrophy, and promoting nerve
regeneration (Liang et al., 2012; Guo et al., 2021). Due to the positive
effect of TNIL use on the brain, we established a PND model
and investigated the roles and mechanisms of TNIL, to uncover a
potential treatment for PND.

2. Materials and methods

2.1. Animals

For this study, a total of 48 aged (18 months old, weighing 45–
50 g) male C57BL/6 mice were ordered from Sun Yat-sen University
(Guangzhou, China). Five mice per cage were group-housed (at

22–25◦C) with food and water available ad libitum under a 12-h
light/12-h dark cycle for 2 weeks to adapt to the environment. The
animals were randomly assigned to four groups, namely, the CON
group (no intervention), the CON + TNIL group (light therapy), the
PND group (anesthesia, surgery, and sham light therapy), and the
PND + TNIL group (anesthesia, surgery, and light therapy) (n = 12).
Mice in the PND group were treated for sham light therapy with
the device turned off; mice in the CON + TNIL and PND + TNIL
groups received light therapy (18 J/cm2, 3 days). All mice heads
were shaved to eliminate hair interference. In the experiment, mice
received isoflurane anesthesia and surgery on day 1; TNIL treatment
was performed during days 1–3; behavioral testing was performed
during days 7–8 (n = 12); the brain was harvested to perform
biochemical (n = 6) and histological (n = 6) analyses on day 9.
The schematic timeline of the experimental process is shown in
Figure 1.

2.2. PND mouse model

The right carotid artery exposure procedure was performed
under isoflurane anesthesia to establish the PND model, as described
in other studies (Min et al., 2022). Mice were anesthetized by 2%
isoflurane and kept on spontaneous respiration during the procedure.
Rectal temperature was monitored and maintained at 37◦C with the
aid of a heating blanket (69020, RWD, China). After the mouse was
anesthetized by isoflurane for at least 20 min, a 1.5-cm midline neck
incision and soft tissue dissection with 1-cm long right common
carotid artery exposure were carefully performed without any damage
to the vagus nerve. Subsequently, the wound was irrigated and closed
by using a 4–0 surgical suture. The surgical procedure was performed
under sterile conditions and lasted around 12 min. The total duration
of general anesthesia was 2 h, and an anesthesia monitor (B450,
GE, USA) was used to dynamically monitor the depth of anesthesia
and maintain the anesthesia level. No response to toe pinching was
observed during the whole process. After the surgery, the incision
was supplied with 2.5% lidocaine cream to alleviate the postoperative
pain.

2.3. Transcranial near-infrared laser
treatment

Aged mice in the CON + TNIL and PND + TNIL groups received
laser treatment 4 h after surgery for 3 consecutive days. We used
an 810 nm wavelength and 1 W maximum power output diode
laser (HW810AD2000-34F, Shenzhen Infrared Laser Technology Co.,
Ltd., China), which emitted 810 nm CW wavelength near-infrared
radiation. Mice were manually restrained by holding the body and
shaved head, and a laser was fixed above the midline on the back
of the head in the area between the eyes and ears. The spot size
was 1 cm2 and the distal tip of the fiber optic provided a power
density of 120 mW/cm2. The laser irradiation was continued for
150 s, and the total energy fluence was 18 J/cm2. We also made
a measurement of TNIL penetration across the skull of the mice,
where the skull was excised from the head of the mice and placed
on a foil-coated vessel with a calibrated light sensor at the bottom.
Then, TNIL was irradiated to the skull, and the penetration power
was recorded by the sensor (the laser was about 4 cm away from
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FIGURE 1

Diagram of the timeline of experimental procedures.

the skull, and the skull was about 3 cm away from the sensor), and
the measured transmittance was about 8%. All complete parameters
including device information, irradiation parameters, and treatment
parameters used in TNIL treatment are reported in Table 1.

2.4. Behavioral tests

All behavioral experiments were conducted during the light phase
between 8 a.m. and 6 p.m. in a sound-isolated room and an unbiased
double-blind manner.

2.4.1. Open field test (OFT)
After 7 days of anesthesia/surgery, each mouse was placed

in a black opaque plastic chamber (60 × 60 × 50 cm, ZH-
ZFT, Anhui Zhenghua Biological Instrument Equipment Co., Ltd.,
Anhui, China) and freely explored for 5 min. A video camera
was used to automatically track and record the movement traces
of the mice with the video tracking system (Smart version 3.0.06;
Panlab Harvard Apparatus, Barcelona, Spain) and then analyze the
total distance in the whole area and the time spent in the center
area. The field was wiped with 75% ethanol after each test to
avoid olfactory cues.

TABLE 1 Transcranial near-infrared laser parameters.

Device information

Manufacturer Shenzhen Infrared Laser
Technology Co., Ltd., CHN

Model identifier HW810AD2000-34F

Emitter type Laser

Irradiation parameters

Center wavelength 810 nm

Operating mode Continuous wave

Treatment parameters

Beam spot size 1 cm2

Irradiance 120 mW/cm2

Exposure duration 150 s

Radiant exposure 18 J/cm2

Number and frequency of treatment sessions Once daily, 3 consecutive days

2.4.2. Novel object recognition (NOR) test
To evaluate the mice’s momentary and long-term memory as

described by Zhang et al. (2022), we conducted the novel object
recognition (NOR) in an open field (60 × 60 × 50 cm) 2 h after the
open field test (OFT). In the training period, two identical objects
were placed at adjacent angles in the field. The mice were placed in
the experimental plat with their backs turned towards the objects
and allowed to explore freely for 5 min. If the total exploration time
on two objects was less than 5 s, the mouse was eliminated. One
of the objects was replaced by a new object 30 s and 24 h later.
The mice were placed in the room with their backs turned towards
the object and allowed to explore for 5 min. Animal behavior was
recorded by a video tracking system (Smart version 3.0.06, Panlab
Harvard Apparatus, Barcelona, Spain). The exploration time of new
(T2) and old (T1) objects within 5 min was recorded, and the
memory ability of the mice was quantified by the discriminant index
(DI) = T2/(T1 + T2). As others described earlier (Lai et al., 2021), the
DIs at 30 s and 24 h after training reflected momentary and long-term
memory, respectively. During the test interval, the field was cleaned
with 75% ethanol to eliminate feces and odors.

2.5. Brain tissue harvesting

After behavioral tests, mice were deeply anesthetized by
isoflurane and transcardially perfused with normal saline,
after which the brain tissue was removed (n = 6). The
hippocampus was isolated for subsequent experiments on
genes and protein levels. All dissection procedures were
performed on ice and stored at −80◦C before use. As for
others, the transcardial perfusion was given with normal saline
and 4% paraformaldehyde (n = 6). Brains were fixed in 4%
paraformaldehyde solution for 24 h and then transferred to 10,
20, and 30% sucrose solution for 1 day each to dehydration. The
brain tissue was embedded with optimum cutting temperature
(OCT) (4583, SAKURA, JP) and then stored for subsequent
immunofluorescent staining.

2.6. Immunofluorescent staining

The immunofluorescent labeling and quantification of the
staining were similar to previous studies (Zheng et al., 2017; Lai
et al., 2021). Notably, 20-µm thick sections of the coronal brain were
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sequentially cut from bregma -2 to -4 mm in the hippocampus of
mice. The sections were washed three times with phosphate-buffered
solution (PBS) to remove OCT from the surface. Subsequently,
permeable liquid (PBS plus 0.3% TritonX-100) was added and
the sections were allowed to stand at room temperature (RT) for
10 min. Then, the sections were washed three times with PBS. After
blocking with 5% goat serum (16210072, Gibco, USA) for 30 min
at RT, the sections were incubated with the primary Iba-1 antibody
(1:100, 10904-1-AP, Proteintech, China) at 4◦C overnight. Tissue
sections were washed three times with PBS and then incubated
with Cy3-labeled goat anti-rabbit IgG (H + L) (1:200, A0516,
Beyotime, China) at RT for 2 h and then incubated with DAPI
(G1012, Servicebio, China) at RT for 10 h. The tissue sections
were sealed with an anti-fluorescence quenching reagent (P0128M,
Beyotime, China). The images of each section were acquired by
an inverted fluorescence microscope (Olympus IX73, JP). Image J
(National Institutes of Health, Bethesda, MD, USA) was used to
quantify the mean value of the immunofluorescence and numbers of
Iba1+ cells in each section. For each mouse brain, six consecutive
slices of the hippocampus were used for positive staining and cell
counting and averaged to reflect the level of fluorescence intensity
and Iba1+ cells. The positively stained area for the Iba1 marker was
presented as a ratio of average fluorescence intensity. The numbers
of Iba1- and DAPI-co-staining positive cells in the CA1 region
were counted. The quantitative analyses were performed by blind
method.

2.7. Western blot

Hippocampus was dissolved in RIPA lysis buffer (P0013B,
Beyotime, China) and protein concentration was measured by a
BCA protein quantification kit (P0010, Beyotime, China). The sample
was electrophoresed on SDS-PAGE gels to separate protein and
transferred to PVDF membranes. The membranes were blocked with
5% skim milk (A600669, Sangon Biotech, China) in Tris-buffered
saline with Tween (TBST) for 2 h at RT and then incubated with
primary antibodies overnight at 4◦C. After the membranes were
washed three times in TBST, they were incubated with secondary
antibodies for 2 h at RT. The protein bands were detected by
ECL reagent (WBKLS0100, Merck Millipore, USA), exposed to
a chemiluminescence imager (SmartChemiTM 910, China), and
quantitated with Image J. Each sample was subjected to Western
blotting analysis using the following primary antibodies, as reported
in Table 2. Horseradish peroxidase (HRP)-conjugated goat anti-
rabbit IgG (1:1,000, A0208, Beyotime, China) was used as the
secondary antibody.

2.8. Reverse transcription-quantitative
polymerase chain reaction

Total RNA was extracted by an RNA Quick Purification kit
(RN001, ES Science, China). The concentrations of the RNA
samples were determined by NanoDrop ND-2000 (Thermo, USA)
instrument. Reverse transcription was finished by using All-in-
One First-Strand Synthesis MasterMix (with dsDNase) (F0202,
LABLEAD, China). Taq SYBR R© Green qPCR Premix (R0202,
LABLEAD, China) and Roche Light Cycler 480 II Real-Time PCR

TABLE 2 Primary antibodies used in the present study.

Antigen Host Manufacturer
(catalog number)

Dilution
used

TNF-α Rabbit AF8208, Beyotime, CHN 1:1,000

IL-1β Rabbit AF7209, Beyotime, CHN 1:1,000

SYP Rabbit AF8091, Beyotime, CHN 1:1,000

PSD95 Rabbit AF1096, Beyotime, CHN 1:1,000

BDNF Rabbit AF1423, Beyotime, CHN 1:1,000

SIRT3 Rabbit AF5303, Beyotime, CHN 1:1,000

phospho-AMPKα

(Thr172) (40H9)
Rabbit 2535, Cell Signaling

Technology, USA
1:1,000

AMPKα Rabbit 2532, Cell Signaling
Technology, USA

1:1,000

Nrf2 Rabbit T55136, Abmart, CHN 1:1,000

GADPH Mouse T0004, Affinity, USA 1:10,000

β-tubulin Rabbit AF1216, Beyotime, CHN 1:1,000

System (Roche, USA) were used for qPCR quantification. GAPDH
was used as the internal reference for normalizing target gene
expression. Data were obtained using the 2−11Ct method. The
sequences of primers are presented in Table 3.

2.9. MDA evaluation

Malondialdehyde (MDA) was measured by a Lipid Peroxidation
MDA Assay Kit (S0131S, Beyotime, China) according to the
manufacturer’s instructions. A microplate reader (TECAN
Spark10M, China) was used to determine MDA activity by
measuring the absorbance at 532 nm (U/mg of protein).

2.10. Statistical analysis

All data were presented as the mean ± SEM. Statistical analyses
were performed using GraphPad Prism version 7.0 (GraphPad
Software, Inc.). The inter-group comparisons were analyzed by one-
way ANOVA with a Tukey post hoc test for multiple comparisons.
The data of NOR were analyzed by the Kruskal–Wallis test and
post hoc comparisons were conducted by Dunn’s test. A statistically
significant difference was defined as p < 0.05.

3. Results

3.1. TNIL improved cognitive function in
aged PND mice

At 7 days after surgery, we assessed the locomotor activity
and exploratory behavior among four groups by OFT. Mice in
all groups had no significant difference in total distance and time
spent in the center of OFT (Figures 2A–C). The results suggested
that locomotor activity and postoperative anxiety behavior were not
affected. Based on the nature of exploring new things in rodents, the
spatial memory ability of mice was tested by the NOR experiment.
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TABLE 3 Primer sequences for RT-PCR (mouse).

Primers for RT-PCR (5′–3′) Sequence

Glutathione peroxidase-1 (GPX1) Forward CCACCGTGTATGCCTTCTCC

Reverse AGAGAGACGCGACATTCTCAAT

Thioredoxin-2 (TXN2) Forward TGGGCTTCCCTCACCTCTAAG

Reverse CCTGGACGTTAAAGGTCGTCA

Peroxiredoxin 3 (PRDX3) Forward GGTTGCTCGTCATGCAAGTG

Reverse CCACAGTATGTCTGTCAAACAGG

Forkhead box protein O1 (FOXO1) Forward CCCAGGCCGGAGTTTAACC

Reverse GTTGCTCATAAAGTCGGTGCT

Heme oxygenase 1 (HO-1) Forward AGGTACACATCCAAGCCGAGA

Reverse AGGTACACATCCAAGCCGAGA

NADPH oxidase 2 (NOX2) Forward TGTGGTTGGGGCTGAATGTC

Reverse CTGAGAAAGGAGAGCAGATTTCG

BTB and CNC homology 1 (BACH1) Forward TGAGTGAGAGTGCGGTATTTGC

Reverse GTCAGTCTGGCCTACGATTCT

Acyl-CoA synthetase long-chain family member 4 (ACSL4) Forward CTCACCATTATATTGCTGCCTGT

Reverse TCTCTTTGCCATAGCGTTTTTCT

Myeloperoxidase (MPO) Forward AGTTGTGCTGAGCTGTATGGA

Reverse CGGCTGCTTGAAGTAAAACAGG

Mice were tested for instant and long-term memory, respectively,
30 s and 24 h after the training sessions. The CON group was not
significantly different from the CON + TNIL group in DI either
30 s or 24 h after training sessions. Then, we found that the DIs
were decreased in the PND group compared with the CON group,
and TNIL improved the DIs at 30 s and 24 h (Figures 2D–H). In
other words, these results indicated that anesthesia/surgery induced
instant and long-term memory dysfunctions that were attenuated by
TNIL in aged mice. In addition, these data showed that TNIL had no
significant effect on the behavior of mice in the CON + TNIL group.
Therefore, we conducted subsequent experiments in the CON, PND,
and PND + TNIL groups to investigate the possible mechanism and
signaling pathway.

3.2. TNIL attenuated neuroinflammation in
aged PND mice

The IL-1β and TNF-α were employed to assess the levels of
neuroinflammation. Compared with the CON group, the expressions
of IL-1β and TNF-α were significantly upregulated in the PND
group. Furthermore, the expressions were downregulated in the
PND + TNIL group compared with the PND group (Figures 3A–
C). Given the proinflammatory factors are mainly produced by
activated microglia, we studied the activated microglial marker
Iba1 by immunofluorescence staining. The results showed the Iba1
expression and the number of Iba1+ cell increased in the PND group
compared with the CON group, and TNIL attenuated the increase
(Figures 3D–F). These results suggested that the neuroinflammation
and microglia activation of the hippocampus of aged mice with PND
were attenuated by TNIL.

3.3. TNIL alleviated oxidative stress
imbalance in aged PND mice

To research the oxidative stress response of aged mice with PND,
we first detected the levels of antioxidant enzyme SOD2 and lipid
peroxidation product MDA. The results showed a decreased protein
expression of SOD2 but an increased content of MDA existed in
the PND group, which was relieved in the PND + TNIL group
(Figures 4A–C). Then, we tested the expression of antioxidant- and
oxidant-related genes in the hippocampus among the three groups. It
was found that the mRNA levels of these antioxidant genes (GPX1,
TXN2, PRDX3, FOXO1, and HO-1) were decreased in the PND
group, and TNIL reversed these changes (Figure 4D). Conversely,
compared with the CON group, the mRNA levels of oxidant genes
(NOX2, BACH1, ACSL4, and MPO) were significantly increased
in the PND group, while TNIL significantly attenuated these
upregulated genes (Figure 4E). These results indicated that oxidative
stress response may be closely involved in the pathogenesis of PND,
and TNIL can significantly reduce oxidative stress imbalance.

3.4. TNIL improved hippocampal synaptic
dysfunction of aged PND mice

The normal synaptic function is considered to be the biological
basis of learning and memory (Shivarama Shetty and Sajikumar,
2017). BDNF is the crucial regulator of synaptic function, which
promotes synaptogenesis and synaptic transmission (Waterhouse
and Xu, 2009). Western blot results showed that the expressions of
PSD95, SYP, and BDNF were reduced in the PND group compared
with the CON group while increased in the PND + TNIL group

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.1100915
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1100915 January 24, 2023 Time: 10:29 # 6

Zhong et al. 10.3389/fnins.2022.1100915

FIGURE 2

Transcranial near-infrared laser alleviated anesthesia-/surgery-induced cognitive dysfunction in aged mice. (A) Representative movement traces of OFT.
(B) The total distance among four groups in OFT. (C) Time spent in the center among four groups in OFT. (D) The schematic diagram of NOR. (E,F) The
representative movement traces at 30 s and 24 h after training sessions of NOR. (G,H) Performance in NOR. Data are shown as mean ± SEM (n = 12).

(Figures 5A, B). These data indicated that TNIL may have a
protective effect against hippocampal synapse impairment in aged
mice with PND.

3.5. TNIL improved PND via adjusting
SIRT3/AMPK/Nrf2 pathway

To reveal whether the balance of SIRT3/AMPK/Nrf2 was affected
by TNIL, we carried out Western blotting to measure the expression
levels of SIRT3, p-AMPK, AMPK, and Nrf2 proteins. The results
showed that the expression of SIRT3, p-AMPK/AMPK, and Nrf2 was

significantly decreased in the PND group compared with the CON
group while increased in the PND + TNIL group (Figures 6A, B).
These results suggested that the SIRT3/AMPK/Nrf2 pathway might
participate in TNIL treatment of PND-aged mice.

4. Discussion

The postoperative neurocognitive disorder is a common CNS
complication in patients after anesthesia/surgery, especially in aged
people, which causes a negative effect on personality, social ability,
and cognitive function (Evered et al., 2018; Liu J. et al., 2021).
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FIGURE 3

Transcranial near-infrared laser alleviated hippocampus neuroinflammation of PND mice. (A) Representative Western blots of IL-1β and TNF-α. (B,C)
Relative protein expressions of IL-1β and TNF-α, normalized to that of the GADPH internal control. (D) Representative images of Iba1 in the hippocampal
CA1 region. (E) Quantification of Iba1 relative fluorescence intensity. (F) Quantitative analysis of Iba1+ cells. Scale bar = 100 µm. Data are shown as
mean ± SEM (n = 6).

Increasing evidence showed that neuroinflammation, oxidative stress
damage, and synaptic dysfunction could be responsible for PND
(Zhao et al., 2019; He et al., 2022). Consequently, alleviating these
mechanisms may provide a potential method for the treatment
of PND.

Transcranial near-infrared laser has shown positive results in
the treatment of stroke, TBI, and neurodegenerative diseases (Oron
et al., 2006; Xuan et al., 2015; Lu et al., 2017). TNIL at a wavelength
of 810 nm can effectively and non-invasively penetrate into the
skull and brain tissue (Streeter et al., 2004). It was reported that
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FIGURE 4

Transcranial near-infrared laser alleviated hippocampal oxidative stress of PND mice. (A) Representative Western blot images of SOD2. (B) Relative
protein expression of SOD2. (C) The content of MDA in the hippocampus of mice. (D,E) Antioxidant genes and oxidant genes mRNAs expression
measured by RT-qPCR. The abundance of each mRNA of interest was expressed relative to the abundance of GAPDH-mRNA, as an internal control. Data
are shown as mean ± SEM (n = 6).

810 nm laser improved cognitive function and increased BDNF and
synaptogenesis in TBI mice. Besides, studies showed that the most
effective treatment was 3 consecutive days after surgery (Xuan et al.,
2014). Our study showed that TNIL improved spatial learning and
memory in aged mice with PND and had no influence on the normal
group. The results indicated that TNIL improved cognitive function
in aged PND mice.

A main mechanism of TNIL was absorbed by CCO, further
increased ATP production, inhibited neuroinflammation, and
improved antioxidant activity (Lapchak and De Taboada, 2010;
Lee et al., 2017). The microglia activation secreted inflammatory
cytokines including IL-1β and TNF-α, causing impaired synaptic
plasticity, which further induced cognitive dysfunction (Xiao et al.,
2018; Liu Y. et al., 2021). TNIL decreased the levels of TNF-α and
IL-1β that have been reported in TBI mice (Salehpour et al., 2019).
We found that massive activation of microglia accompanied by the
levels of the inflammatory mediators including TNF-α and IL-1β

was significantly increased in the hippocampus of PND mice, and
TNIL attenuated these changes. These results suggested that TNIL
ameliorated the anesthesia-/surgery-induced microglial activation
and neuroinflammation response.

Oxidative stress is defined as an imbalance between pro-oxidants
and antioxidants, which is a crucial step in the mechanisms involved
in PND (Patel, 2016). A previous study has reported that the oxidative
damage to lipids was enhanced and antioxidant enzyme SOD2
activity was decreased in the PND model (Netto et al., 2018). In
the present study, we found that anesthesia and surgery induced
upregulation of MDA and downregulation of SOD2 expression in
PND mice, and TNIL could reverse the above phenomenon. While
the mRNA expressions of antioxidant genes were decreased, those
of oxidant genes were increased in the hippocampus of aged mice
with PND, which were also reversed after the treatment with TNIL.
These results demonstrated the role of TNIL in the benefit of reducing
oxidative stress damage.
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FIGURE 5

Transcranial near-infrared laser improved hippocampal synaptic dysfunction of aged mice with PND. (A) Representative Western blots of PSD95, SYP, and
BDNF in the hippocampus. (B) Relative protein expression of PSD95, SYP, and BDNF in the hippocampus. Data are shown as mean ± SEM.

FIGURE 6

Transcranial near-infrared laser activated SIRT3/AMPK/Nrf2 pathway. (A) Representative Western blots of SIRT3, p-AMPK, AMPK, and Nrf2. (B) Relative
protein expression of SIRT3, p-AMPK, AMPK, and Nrf2. Data are shown as mean ± SEM (n = 6).

Synapses are the key parts for functional connection and
information transmission between neurons (Park and Goda, 2016).
ROS is regarded as a major regulator of synaptic function and growth,

and its reduction prevents the age-related decline in long-term
potentiation (LTP) (Milton and Sweeney, 2012; West and Sweeney,
2012). In addition, neuroinflammation and oxidative stress influence
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neurotrophic factors, especially BDNF, which can increase synaptic
plasticity and neurogenesis (Gardiner et al., 2009; Wang et al., 2020).
Our previous studies have shown that the lower level of the synaptic
proteins, i.e., PSD95, SYP, and BDNF, is closely related to cognitive
impairment (Wu et al., 2021). In the present study, we found that
the expression levels of SYP, PSD95, and BDNF were downregulated
in the hippocampus of PND mice, and TNIL treatment ameliorated
these phenomena. The result suggested that TNIL has a positive
therapeutic effect on PND via improving synaptic function.

However, the mechanisms underlying the antioxidant effect
after TNIL treatment are still unclear. TNIL corresponds to
light absorption by CCO and causes more electron transfer
through the mitochondrial respiratory chain, accelerating NADH
transformation into NAD+ (Salehpour et al., 2017; Heinig et al.,
2020). Previous experiments showed that increased nicotinamide
adenine dinucleotide+ (NAD+)/nicotinamide adenine dinucleotide
(NADH) ratio improved SIRT3 activity and thus alleviated oxidative
stress (Karamanlidis et al., 2013; Mathieu et al., 2016; Ren
et al., 2017). Sirtuin3 (SIRT3) is a class III histone deacetylase
(HDAC) predominantly located in mitochondria and plays an
important role in oxidative protection and neuroinflammation in
cognitive-related diseases (Ansari et al., 2017; Jiang et al., 2017;
Liu Q. et al., 2021). AMPK is a key molecule in biological
energy regulation and also could reduce ROS (Hou et al., 2019;
Deng et al., 2020). SIRT3 directly affects AMPK activity via
phosphorylation (Lee et al., 2019). The antioxidant effect of the
upregulation of SIRT3-dependent AMPK expression has also been
reported (Xin and Lu, 2020). Moreover, AMPK could also modulate
oxidative stress through the regulation of Nrf2-mediated phase II
antioxidant enzymes including SOD and catalase, thus reducing
the cell damage caused by ROS and electrophiles (Zimmermann
et al., 2015; Lv et al., 2019). Attenuated oxidative stress via
activating the AMPK/Nrf2 pathway has been proposed in rats after
subarachnoid hemorrhage (SAH) (Huang et al., 2022). In our study,
TNIL significantly increased SIRT3/AMPK/Nrf2 signaling expression
in the hippocampus of PND mice and demonstrated that the
SIRT3/AMPK/Nrf2 pathway may be the target of TNIL-induced
antioxidant effect.

However, there are several limitations to our study. First, only
7 days of cognitive performance by NOR after anesthesia/surgery
was evaluated. It is expected that the detection of the effect
in the medium term (1–3 months) or longer in a future
study. Second, we will intensively study the relationship between
SIRT3/AMPK/Nrf2 pathway and oxidative stress in the PND model
by using the SIRT3 inhibitor (3-TYP) in the follow-up studies.
Third, the synaptic function is not perfect, and we will add
Golgi staining and transmission electron microscopy experiment
to observe the form of dendrites, dendritic spines, and synapses
of neurons in the later experiment. Finally, TNIL improved
PND in aged mice, but whether it is effective in other animal
models or patients remains unclear, which needs to be confirmed
in future studies.

5. Conclusion

The current study indicated that TNIL attenuated
PND by improving the anesthesia- and surgery-induced
neuroinflammatory, oxidative stress response, and synaptic

dysfunction in the hippocampus via activating the
SIRT3/AMPK/Nrf2 pathway. TNIL may provide a new
and effective countermeasure for the treatment of PND
in aged patients.
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