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Mild traumatic brain injury (mTBI) is a major public health concern that can

result in a broad spectrum of short-term and long-term symptoms. Recently,

machine learning (ML) algorithms have been used in neuroscience research

for diagnostics and prognostic assessment of brain disorders. The present

study aimed to develop an automatic classifier to distinguish patients suffering

from chronic mTBI from healthy controls (HCs) utilizing multilevel metrics

of resting-state functional magnetic resonance imaging (rs-fMRI). Sixty mTBI

patients and forty HCs were enrolled and allocated to training and testing

datasets with a ratio of 80:20. Several rs-fMRI metrics including fractional

amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo),

degree centrality (DC), voxel-mirrored homotopic connectivity (VMHC),

functional connectivity strength (FCS), and seed-based FC were generated

from two main analytical categories: local measures and network measures.

Statistical two-sample t-test was employed comparing between mTBI and

HCs groups. Then, for each rs-fMRI metric the features were selected

extracting the mean values from the clusters showing significant differences.

Finally, the support vector machine (SVM) models based on separate and

multilevel metrics were built and the performance of the classifiers were

assessed using five-fold cross-validation and via the area under the receiver

operating characteristic curve (AUC). Feature importance was estimated using

Shapley additive explanation (SHAP) values. Among local measures, the range

of AUC was 86.67–100% and the optimal SVM model was obtained based on

combined multilevel rs-fMRI metrics and DC as a separate model with AUC

of 100%. Among network measures, the range of AUC was 80.42–93.33%

and the optimal SVM model was obtained based on the combined multilevel

seed-based FC metrics. The SHAP analysis revealed the DC value in the left

postcentral and seed-based FC value between the motor ventral network and
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right superior temporal as the most important local and network features

with the greatest contribution to the classification models. Our findings

demonstrated that different rs-fMRI metrics can provide complementary

information for classifying patients suffering from chronic mTBI. Moreover,

we showed that ML approach is a promising tool for detecting patients with

mTBI and might serve as potential imaging biomarker to identify patients at

individual level.

Clinical trial registration: clinicaltrials.gov, identifier NCT03241732.

KEYWORDS

mild traumatic brain injury, machine learning, support vector machine, functional
magnetic resonance imaging, resting-state

Introduction

Traumatic brain injury (TBI) is one of the most common
neurological disorders across the world that can result in
a broad spectrum of symptoms that tremendously impact
a person’s personality, behavior, thinking, and memory. In
the United States it accounts for more than 2 million death
and hospitalization and over 10 million worldwide (Taylor
et al., 2017; Vedaei et al., 2021). TBI may happen as the
result of multiple incidents including falls, vehicle accidents,
athletic collisions, blast-related trauma, and abuse or assault.
The majority of TBI cased are closed-head injuries, but some
cases are open-head injuries, which occur when the skull is
fractures or penetrated (Asken et al., 2018; O’Neill et al., 2018).
Mild TBI (mTBI) is characterized by short-term and long-term
clinical deficits including emotional and cognitive impairments
in patients with subtle injury which only result in dysfunction of
brain functional connectivity (FC) (O’Neill et al., 2018).

Resting-state functional magnetic resonance imaging (rs-
fMRI) has been widely used in neuroscience for detecting
intrinsic brain functional architecture as well as interactions
between and within neural networks as the biomarkers of
cognitive and neurological disorders (Jeter et al., 2013; Sours
et al., 2015). Various approaches have been proposed for
analyzing rs-fMRI data in mTBI cohorts including independent
component analysis (ICA) (Bittencourt-Villalpando et al.,
2021), graph theory (van der Horn et al., 2017), seed-based
FC (Madhavan et al., 2019; Lemme et al., 2021; Philippi
et al., 2021), amplitude of low-frequency fluctuation (ALFF),
regional homogeneity (ReHo) (Zhan et al., 2015; Vedaei et al.,
2021), degree centrality (DC) (Li et al., 2019), voxel-mirrored
homotopic connectivity (VMHC) (Puig et al., 2020; Song et al.,
2022). The growing body of studies of functional neuroimaging
of the resting brain has shown that mTBI is accompanied by
alterations of resting-state functional connectivity between and
within intrinsic brain networks including the default mode

network (DMN), fronto-parietal, motor, dorsal attention, and
visual networks (Shumskaya et al., 2012; Stevens et al., 2012;
Zhou et al., 2012, 2014; Dall’Acqua et al., 2017; Palacios et al.,
2017; Liu et al., 2018; Li et al., 2019; Madhavan et al., 2019; Meier
et al., 2020; Song et al., 2022). However, most of the studies were
performed at the group level analysis which makes it challenging
to generalize the findings to the identification of mTBI findings
in individuals. Moreover, the consensus is far from certain
regarding the use of different imaging metrics suggesting the
need for a comprehensive study of various rs-fMRI metrics for
depicting brain function alterations in mTBI patients. It has
been proposed that various metrics may be complementary to
each other in showing brain function alterations from different
perspectives, thus providing more valuable information (Lv
et al., 2018; Pang et al., 2021).

In recent years, machine-learning (ML) approaches as a
branch of artificial intelligence have been used in clinical
applications to facilitate predictive diagnoses and thereby
help treatment plans (Ahmed et al., 2020). In neuroscience,
ML algorithms have shown great promise in combining
multimodal neuroimaging data and analyzing brain structural
and functional alteration at the individual level, suggesting
their high translational potential clinically (Janssen et al., 2018;
Senders et al., 2018; Singh et al., 2022). The support vector
machine (SVM), one of the popular supervised ML algorithms,
recently has been increasingly used in the classification
of neurodegenerative diseases applying to a range of MRI
modalities and promising superior classification performance.
It has been employed in patients’ classification tasks in a
wide variety of neurological and psychiatric disorders including
Parkinson’s disease (Zhang et al., 2020; Pang et al., 2021),
Alzheimer’s disease (Schouten et al., 2016), traumatic brain
injury (Vergara et al., 2017), bipolar disorder (Li H. et al.,
2020), Schizophrenia (Wang et al., 2018; Liu et al., 2020),
Obsessive-Compulsive Disorder (Jia et al., 2020), Epilepsy
(Zhou et al., 2020; Wang et al., 2021), multiple sclerosis
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(Buyukturkoglu et al., 2021), and major depressive disorder
(Sacchet et al., 2015).

The SVM has a great potential for transforming high-
dimensional neuroimaging data into clinically effective
decision-making criteria. It works based on constructing a
separating hyperplane that maximizes the margin between
the classes. In some cases that the dataset is not linearly
separable in the original input space, the samples are mapped
into a higher dimensional space using a kernel function to
makese the classification easier in the transformed space. The
commonly adopted kernel function is called a Gaussian radial
basis function (RBF) which is corresponding to a non-linear
SVM (RBF-SVM). The RBF-SVM is suitable for countless
rs-fMRI features and for small sample sizes which in turn avoids
over-fitting during classification (Amari and Wu, 1999; Noble,
2006; Pereira et al., 2009; Wang, 2009; Gravesteijn et al., 2020;
Pang et al., 2021).

In the present study, several rs-fMRI metrics were measured
and categorized in two types of features including local and
network measurements. Local measures were voxel-based brain
maps of fALFF, ReHo, DC, VMHC, and FC strength (FCS) and
network measures including seed-based FC of brain networks
(Ding et al., 2017). RBF-SVM classifier was employed on both
local and network features using single level and combined
rs-fMRI metrics. To the best of knowledge, our study is the
first in classification of mTBI patients from healthy controls
(HCs) using SVM and multilevel rs-fMRI metrics. We aimed
to develop a non-invasive, automatic classification method to
distinguish mTBI patients from HCs that can be translated into
clinical practice as the imaging biomarker to identify patients
at chronic state of mTBI. We hypothesized that each separate
model is able to provide informative diagnostic performance.
However, the combination of the multivariate metrics of rs-
fMRI would lead to highest accuracy of classification.

Materials and methods

Participants

Sixty patients including 23 males (age: 46 ± 14.3 years) and
37 females (age: 45 ± 15.2 years) suffering from mTBI with
chronic symptoms and forty matched HCs comprising 21 males
(age: 41 ± 9.4 years) and 19 females (age: 39 ± 10.6 years)
enrolled in this study after providing a written informed
consent, approved by the local Institutional Review Board.
Participants were recruited from local neurology offices and
from the local community by self-referral. Exclusion criteria
included if the patients had a history of other neurological
disorders, significant medical illness, a current substance-use
disorder, or current Diagnostic and Statistical Manual of Mental
Disorders, 5th Edition (DSM-V) Axis I psychiatric illness. This
study was registered on clinicaltrials.gov with the following

identifier: NCT03241732. mTBI was defined according to the
Mayo Classification System for Traumatic Brain Injury Severity,
in which an injury was classified as mild if it met the following
criteria: loss of consciousness <30 min, amnesia for <24 h,
and no abnormal MRI findings (Malec et al., 2007). Enrolled
patients had to report a history of one or more prior TBIs
(one or multiple) meeting these criteria for mild TBI and
have no structural injury to the brain such as a contusion,
dura penetration, hematoma, or brainstem injury. They had to
meet ICD-10 criteria for chronic mTBI (i.e., post-concussion
syndrome) based upon symptoms that were the result of
TBI and could include dysfunctionality such as cognitive
problems, emotional problems (e.g., depression or anxiety),
headache, dizziness, irritability, hypersensitivity to auditory or
visual stimuli, balance problems, insomnia, or other subjective
complaints specifically associated with the TBI. Also, patients
had to report the chronic symptoms lasting for at least 6 months
from the most recent TBI. For the HCs group, individuals were
excluded if they had a history of previous TBI, a history of other
neurological disorders, significant systemic medical illness, a
current substance-use disorder, and current Diagnostic and
Statistical Manual of Mental Disorders, 5th Edition (DSM-V)
Axis I psychiatric illness.

Imaging protocol

For each individual MRI examination was performed using
a 3T Siemens Biograph mMR Positron Emission Tomography-
MR (mMR PET-MR) scanner with a 32-channel head coil.
A structural T1-weighted was acquired to check the lack of any
sign of radiological findings of brain injury and to use during
segmentation and registration steps of data preprocessing. MRI
parameters for the anatomical T1-weighted sequence were as
follows: repetition time = 1,600 msec, echo time = 2.46 msec,
field of view (FOV) = 250 mm × 250 mm, matrix = 512 × 512,
voxel size = 0.49× 0.49, 176 slices with slice thickness = 1 mm.

Next, a resting-state BOLD scan was administered using
an echo planar imaging (EPI) sequence using the imaging
parameters including: FOV = 240 mm × 240 mm; voxel
size = 3 mm× 3 mm× 4 mm; TR = 2,000.0 msec; TE = 30 msec;
slice thickness = 4 mm; number of slices = 34; number of
volumes = 180; and acquisition time = 366 s. During rs-fMRI,
the participants were asked to close their eyes, and rest quietly
without thinking about anything.

Data processing

For all the participants, the rs-fMRI data was preprocessed
using Data Processing Assistant for Resting-State fMRI
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TABLE 1 Seed location of 12 functional networks used in seed-based
connectivity analysis.

Network Seed region MNI coordinates
(x, y, z)

DMN PCC (2,−54, 26)

DAS IPS R (24,−60, 50)

ECN (L) Left DLPFC (−42, 34, 20)

ECN (R) Right DLPFC (44, 36, 20)

Motor dorsal (L) Left precentral gyrus hand knob (−28,−26, 64)

Motor dorsal (R) Right precentral gyrus hand knob (34,−24, 60)

Motor ventral (L) Left precentral gyrus ventral (−56,−6, 24)

Motor ventral (R) Right precentral gyrus ventral (60,−2, 24)

Salience (L) Left anterior insula (−32, 26,−14)

Salience (R) Right anterior insula (38, 22,−10)

Visual primary BA17 (8,−78, 8)

Visual secondary BA18 (−22,−90, 2)

DMN, default-mode network; DAS, dorsal attention network; ECN, executive control
network; DLPFC, dorso-lateral prefrontal cortex; IPS, intraparietal sulcus; PCC,
posterior cingulate cortex; L, left; R, right.

(DPARSF. V6.1_2201011) (Yan et al., 2016; Vedaei et al., 2022).
The preprocessing included the following steps: the first 10
volumes were discarded to allow magnetization to reach steady
state and account for T1 relaxation effects. Then, the slice timing
correction and head motion correction using six rigid body
motion parameters were performed. Next, for each individual
T1-weighted structural data and the mean of the realigned EPI
images were co-registered and normalized to the EPI template in
Montreal Neurological Institute (MNI) space with a resampling
voxel size of 3 × 3 × 3 mm. Further, the Friston 24-parameter
model (the 24 parameters including 6 head motion parameters,
6 head motion parameters of the previous scan, and the 12
corresponding squared items) was employed to regress out the
micro head motion effects from the realigned data (Friston
et al., 1996). No participants excluded from the study due
to excessive head motion (>2.0 mm translation and/or 2.0◦

rotation) (Fox et al., 2005; Power et al., 2014). Further, signal
from white matter and cerebrospinal fluid were regressed out
and filtered with a temporal band-pass of 0.01–0.08 Hz to
reduce the effects of low-frequency drifts and high-frequency
respiratory and cardiac noise. The head motion was measured
using frame-wise displacement (FD) and was not significantly
different among mTBI and HCs groups (two-sample t-test,
p-value = 0.205).

All data processing steps were limited within gray
matter. Statistical parametric mapping 122 was used
to segment the brain to the gray matter for each

1 http://rfmri.org/DPARSF

2 https://www.fil.ion.ucl.ac.uk/spm/

participant. Then, the generated probabilistic map was
binarized using fslmaths tools (cutoff = 0.2) to make the
gray matter mask.

Feature extraction

Different features were generated conducting different
methods of rs-fMRI data processing. The features were
categorized into two types including local measurements
and network measurements. The features were extracted as
the voxel-wise brain maps using DPARSF. V6.1_220101 and
are detailed below. The motivation for extracting these
number of rs-fMRI measurements were, first, because
these are among the most common methods to analyze
rs-fMRI data in neurodegenerative diseases and second,
to evaluate the performance of SVM classification models
by employing any of the local and network features as
separate models as well as combining the local measures
and network measures as multilevel measure models
(Ding et al., 2017).

Local measures

Fractional amplitude of low frequency
fluctuation

For each participant, spatial smoothing [Gaussian kernel of
full-width half maximum (FWHM) = 6 mm] was performed.
Then, with the FFT, the time courses of rs-fMRI signal were
converted to frequency domain, and the square root of the
power spectrum was measured and averaged across the 0.01–
0.08 Hz domain. Then, voxel-wise fALFF was measured as the
ratio of power in low-frequency band (0.01–0.08 Hz) to the
power of the entire frequency range (0–0.25 Hz). While ALFF
describes the local spontaneous brain activity across the whole
brain, by estimating the amplitude of neural activity in the
low-frequency range (0.01–0.08 Hz), fALFF is a normalized
derivation of ALFF representing the ratio of low-frequency
range amplitudes (0.01–0.08 Hz) relative to the entire frequency
range (e.g., 0–0.25 if TR = 2 s) amplitudes. As such, fALFF
has been recommended to be used instead of ALFF due to
its robustness against non-specific signal components such as
physiological noise (Zou et al., 2008). To ensure standardization,
for each participant, the fALFF of each voxel was transformed
to z-scores using Fisher’s z-transform, and zfALFF maps were
obtained (Zhou et al., 2014).

Regional homogeneity
Regional homogeneity was measured after band-pass

filtering (0.01–0.08 Hz). This is accomplished on a voxel-based
basis by calculating Kendall’s coefficient of concordance (KCC)
for a given time series that is assigned as the center voxel with
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FIGURE 1

Workflow of the study including five main steps: data processing, feature extraction using statistical two-sample t-test, classification, model
performance, and model interpretation.

TABLE 2 Demographic of participants in the mTBI and HCs groups.

HCs mTBI P-value Statistic

Demographics n = 40 n = 60

Age (year) (SD) 40.3 (9.9) 46.0 (14.8) 0.03a T =−2.1a

Sex (M/F) 21: 19 23: 37

CN: 0.75b χ2 (CN): 0.1b

mTBI: 0.08b χ2 (mTBI): 3.6b

Injury-to-imaging interval
(95% lower CI–95% upper
CI) (months)

– 24–37

Single concussion vs.
multiple (single: multiple)

– 17: 43

HCs, healthy controls; mTBI, mild traumatic brain injury; SD, standard deviation; CI,
confidence interval. ap-value and T-statistic obtained by two-sample t-test. bp-value and
χ2-statistic obtained using chi-square t-test.

those of its nearest 26 neighboring voxels (Eq. 1) (Zang et al.,
2004).

w =
6 (Ri)− n

(
Ri
)2

1
12K

2(n3 − n)
(1)

In this formula w is the KCC (range from 0 to 1) among
given voxels; K is the number of neighboring voxels (K = 26);
R−i is the mean rank across nearest neighbors (26 voxels) at
the ith time point; and n is the total number of time points.
For standardization purpose, ReHo value at each voxel was
transformed to the standardized Fisher’s Z-transformation to
obtain the zReHo maps. Spatial smoothing with an isotropic
Gaussian kernel of 6 mm FWHM was performed after
ReHo calculation.

Degree centrality
Degree centrality is a graph theory-based measurement that

considers each voxel of the brain as a node and estimates
how many edges it has with other nodes. As such, it

measures functional connection between each voxel and any
other voxel is defined as an edge. By computing Pearson
correlation coefficients between time courses of each pair of
voxels, a correlation matrix was firstly obtained. To remove
the weak correlations that might be induced by noise, a
threshold of r > 0.25 was used to obtain the undirected
adjacency matrix. Then, for each voxel, the degree centrality
was calculated as the sum the connections between this voxel
with other voxels. For standardization purpose, the weighted
DC was transformed to z-scores using Fisher’s z-transform.
Finally, the zDC map was smoothed with an isotropic 6 mm
FWHM Gaussian kernel (Pang et al., 2021; Wang et al.,
2021).

Voxel-mirrored homotopic connectivity
Voxel-mirrored homotopic connectivity measures the

synchrony in spontaneous activity between geometrically
corresponding interhemispheric regions between pairs
of symmetric voxels. It can be quantified by calculating
the Pearson correlation coefficient between each voxel’s
time series and that of its symmetric inter-hemispheric
counterpart. For standardization purpose, correlation values
were then transformed to z-scores using Fisher’s z-transform
to generate zVMHC maps (Zuo et al., 2010; Pang et al.,
2021).

Functional connectivity strength
The voxel-wise FC was measured by estimating Pearson’s

correlations between the time series of any pairs of brain voxels
within the gray matter mask. Then, for a given voxel i, FC was
measured using the equation as follows (Eq. 2): (2):

FC (i) =
1

Nvoxels − 1

∑
j 6=i

Zij, rij > r0 (2)

where zij was the Fisher’s Z-transformed version of correlation
coefficient, rij, between voxel i and voxel j, and r0 was a
correlation threshold that was used to exclude weak correlations
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possibly arising from noises (r0 = 0.2 in this study). rij was
converted to zij using Fisher’s Z-transformation. Nvoxels was also
defined as total number of voxels within the gray matter mask
(Dai et al., 2015; Vedaei et al., 2022).

TABLE 3 Brain regions with significant local measure differences
between the mTBI patients and HCs.

Local
measure

Brain region
(AAL)

Voxels Peak MNI
coordinate (x,

y, z)

T-value

fALFF Occipital_Mid_L 2,539 (−36,−78, 36) 6.77

Cerebellum_Crus1_L 434 (−33,−63,−36) −3.18

Cingulate_Mid_L 72 (0,−30, 33) 5.70

Precuneus_R 62 (9,−57, 24) 4.10

Cerebellum_8_R 60 (27,−45,−45) −3.18

Rectus_R 48 (6, 42,−24) −3.18

Calcarine_L 38 (−9,−54, 6) 4.48

Precentral_R 32 (39, 0, 48) −3.19

FCS Occipital_Mid_L 5,983 (−18,−12, 27) 8.61

Frontal_Mid_L 134 (−30, 24, 60) 4.32

Frontal_Sup_R 111 (33, 0, 69) 4.37

DC Occipital_Mid_R 2,706 (33,−99, 3) 33.27

Cerebellum_4_5_L 368 (9,−36,−24) 4.14

Fusiform_L 162 (−36,−30,−15) 26.00

Rolandic_Oper_R 117 (36,−3, 18) 10.11

Postcentral_L 96 (−51, 21, 48) 19.22

Temporal_Sup_L 84 (−72,−24, 3) 11.78

Fusiform_L 77 (−24, 9,−45) 12.22

Rectus_L 55 (−9, 60,−24) 4.80

Calcarine_R 54 (27,−66, 12) −3.17

ReHo Occipital_Mid_L 4,753 (−33,−87, 33) 7.08

Frontal_Sup_L 2,018 (−15,−9, 72) −3.17

Fusiform_R 726 (30,−54,−3) 5.61

Temporal_Sup_R 603 (48,−9,−15) −3.17

Frontal_Sup_Medial_L 207 (3, 57, 33) −3.17

Lingual_L 186 (−24,−69,−12) 5.11

OFCpost_L 178 (−27, 21,−27) -3.17

Putamen_L 154 (−24, 0, 6) 5.55

VMHC Occipital_Mid_L 3,058 (−27,−93, 0) 7.76

Calcarine_R 2,968 (27,−93, 0) 7.76

Cerebellum_Crus2_R 180 (18,−84,−42) 5.84

Cerebellum_9_L 68 (−6,−45,−48) 4.85

Rolandic_Oper_R 57 (39,−30, 18) 4.53

Rolandic_Oper_L 56 (−39,−30, 18) 4.53

(Continued)

TABLE 3 (Continued)

Local
measure

Brain region
(AAL)

Voxels Peak MNI
coordinate (x,

y, z)

T-value

Supp_Motor_Area_R 51 (9, 21, 48) 4.95

Cerebellum_9_R 48 (6,−45,−48) 4.85

Parietal_Sup_R 48 (39,−15, 72) 4.02

Frontal_Sup_L 43 (−9, 21, 48) 4.95

fALFF, fractional amplitude of low-frequency fluctuations; FCS, functional connectivity
strength; DC, degree centrality; ReHo, regional homogeneity; VMHC, voxel-mirrored
homotopic connectivity; mTBI, mild traumatic brain injury; HCs, healthy controls;
ALL, automated anatomical labeling; MNI, Montreal Neurological Institute; T, statistical
value of peak voxel. x, y, z, coordinates of primary peak locations in the space of MNI;
L, left; R, right.

Network measures

A total of 12 seed-based FC maps were computed from 6-
mm spherical region of interests (ROIs). The seeds are supposed
to be the center of the main brain functional networks and
obtained from previously published locations, as summarized
in Table 1 (Fox et al., 2005; Madhavan et al., 2019). For each
seed, mean time series were measured from the pre-processed
rs-fMRI data. Pearson correlation of the mean time series of
each seed with every other voxel in the brain was computed
to generate the corresponding FC map. The correlation maps
were then transformed to z-scores using Fisher’s z-transform to
produce 12 functional network maps for each participant.

Statistical analysis

In order to evaluate the distribution of gender and age
within and between groups of mTBI and HCs, a chi-square
and two-sample t-test were employed, respectively. A p-value
of ≤0.05 was considered statistically significant. Voxel-based
two-sample t-test were employed for group comparisons (mTBI
versus HCs) on rs-fMRI metric maps including local and
network measurements using the statistical analysis module in
the Data Processing and Analysis of Brain Imaging (DPABI-
V6.1_220101 toolbox3) (Yan et al., 2016). Gaussian random
field (GRF) theory was employed for correction of multiple
comparisons (voxel significance p < 0.001, cluster significance
p < 0.01) controlling for age, gender, and mean FD were
considered as covariates (Wang et al., 2018; Zhang et al.,
2020; Gao et al., 2022). The clusters showing significant group
differences were selected as ROIs. The average of rs-fMRI
metrics including local and network measures were extracted
over the mask of ROIs. The mean values were further utilized
to prepare data frames and used as input features of the
SVM algorithm following classification analysis. The name

3 http://rfmri.org/dpabi
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TABLE 4 Brain regions with significant network measure differences
between the mTBI patients and HCs.

Network-
seed

Brain region
(AAL)

Voxels Peak MNI
coordinate

(x, y, z)

T-value

DAS Temporal_Mid_R 1,354 (51,−60, 0) 5.49

Occipital_Inf_L 895 (−18,−99,−9) 5.44

Precuneus_R 190 (15,−30, 12) 5.56

ParaHippocampal_R 103 (36,−18,−24) 4.98

Parietal_Sup_R 80 (24,−51, 57) 4.08

DMN Precuneus_R 1,973 (15,−54, 39) 5.73

Angular_L 603 (−42,−72, 36) 6.01

Calcarine_R 427 (15,−99, 3) 5.38

Angular_R 370 (48,−66, 36) 5.73

Temporal_Mid_L 77 (−63,−18,−15) 4.50

Frontal_Sup_Medial_L 76 (−6, 33, 63) 3.96

Cerebellum_9_R 75 (3,−54,−48) 5.27

ECN (L) Temporal_Mid_L 431 (−66,−39,−12) 5.99

Frontal_Mid_L 361 (−27, 45, 12) 5.61

Occipital_Mid_L 226 (−27,−99, 6) 5.21

Frontal_Mid_L 206 (−45, 18, 39) 5.13

Temporal_Inf_R 200 (60,−57,−9) 5.88

Cerebellum_Crus1_R 126 (36,−63,−33) 5.75

Precuneus_L 89 (−6,−51, 18) 4.93

ECN (R) Temporal_Inf_R 372 (60,−54,−15) 5.95

Calcarine_L 200 (−6,−93, 9) 5.17

Caudate_R 139 (18,−6, 27) 7.78

Cerebellum_8_R 127 (27,−66,−51) 4.75

Frontal_Inf_Tri_R 84 (45, 36, 6) 4.79

Motor dorsal
(L)

Angular_L 2,055 (−48,−51, 33) 5.84

Hippocampus_L 182 (−18,−12, 27) 6.83

Precuneus_R 122 (9,−48, 9) 4.17

Temporal_Inf_L 84 (−42,−33,−24) 4.28

Precentral_L 76 (−21,−12, 78) 3.95

Motor dorsal
(R)

Cuneus_R 2,423 (24,−84, 45) 5.44

Precuneus_R 205 (6,−51, 15) 5.10

Motor ventral
(L)

Angular_L 429 (−45,−54, 30) 4.55

Occipital_Mid_L 190 (−27,−96, 0) 4.64

Putamen_L 154 (−18,−15, 27) 6.25

Temporal_Inf_L 134 (−45,−42,−24) 5.15

Rolandic_Oper_L 90 (−39,−18, 18) 5.02

Cerebellum_8_L 83 (−12,−60,−51) 4.91

(Continued)

TABLE 4 (Continued)

Network-
seed

Brain region
(AAL)

Voxels Peak MNI
coordinate

(x, y, z)

T-value

Motor ventral
(R)

Occipital_Mid_R 189 (33,−93, 0) 4.55

Temporal_Sup_L 99 (−57,−9, 6) -3.18

Temporal_Mid_R 84 (45,−78, 21) 4.13

Salience (L) Temporal_Mid_L 152 (−45,−57, 24) 4.91

Occipital_Mid_R 144 (30,−87, 33) 5.20

Angular_L 77 (−48,−66, 45) 4.51

Calcarine_L 74 (−9,−96,−9) 4.67

Salience (R) Temporal_Sup_R 170 (54,−3,−15) 4.67

Fusiform_R 157 (42,−30,−24) 5.08

Temporal_Mid_L 132 (−54,−63, 15) 4.51

Temporal_Mid_R 103 (63,−54,−33) 4.63

Occipital_Mid_L 75 (−30,−87, 27) 4.56

Visual primary Angular_L 4,195 (54,−66, 24) 6.71

Frontal_Mid_L 375 (−45, 6, 54) 5.01

Temporal_Inf_L 124 (−51,−45,−21) 5.82

Fusiform_R 82 (45,−30,−24) 6.01

Visual
secondary

Occipital_Inf_L 3,849 (−30,−90,−9) 7.55

Postcentral_L 248 (−48,−30, 57) 4.57

DAS, dorsal attention; DMN, default mode network; ECN, executive control network;
mTBI, mild traumatic brain injury; HCs, healthy controls; ALL, automated anatomical
labeling; MNI, Montreal Neurological Institute; T, statistical value of peak voxel. x, y, z,
coordinates of primary peak locations in the space of MNI; L, left; R, right.

of the brain regions were reported based on the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

Classification and evaluation

The kernel-based RBF-SVM implemented on
Anaconda platform4 with the “scikit-learn” package5

(Abraham et al., 2011) running on Python 3 was used as
the classifier to examine the possibility of the combination of
the clusters with significant differences to differentiate mTBI
patients from HCs. For training and test datasets generation,
data was split in the ratio of 80:20. Prior to training the
classifiers, each feature in the training dataset was scaled using
MinMaxScaler which modifies the dataset in a standardized
scale with mean of 0 and a unit variance of 1 (Khatri and Kwon,
2022). The hyperparameters of C and gamma (C range: 10−4,
10−3, 10−2, 10−1, 1, 10, 102, 103, 104; gamma range: 1, 0.1, 0.01,

4 www.anaconda.com

5 scikit-learn.org
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FIGURE 2

Brain regions with significant differences in local resting-state
functional magnetic resonance imaging (rs-fMRI) measures
between the mild traumatic brain injury (mTBI) and healthy
controls (HCs) groups (two-sample t-test, GRF-corrected,
voxel-level p < 0.001, cluster-level p < 0.01).

0.001, 0.0001) were optimized using grid research via stratified
nested five-fold cross validation (CV) in the training dataset.
The C parameter assumed to control the tradeoff between
empirical classification error and generalization of the model,
while the gamma parameter defined the extent of influence of
a single training example implemented in the kernel function.
The parameter “class_weight” was set as “balanced” to deal with
the sample imbalance. After the nested CV step, the RBF-SVM
model with the optimal set of values of the hyperparameters
was trained using the whole training dataset. The performance
of the model was evaluated and quantified on the test dataset
via five-fold stratified CV (repeated 100 times) using the
receiver operator characteristic (ROC) curve analysis. The
corresponding area under the curve (AUC), balanced accuracy,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were obtained.

During the multilevel measure analysis, the features were
concatenated into a row vector (local and network measures,
separately), the RBF-SVM was applied, and all the above-
mentioned procedures executed to evaluate the performance
of the classifier following multivariate analysis (Pettersson-Yeo
et al., 2014; Lei et al., 2020). To interpret and understand
the SVM model prediction, the Shapley Additive exPlanations
(SHAP) algorithm was employed, which is a game-theoretic
approach to measure how much each feature contributes to
the model prediction by assigning an importance value to each
feature corresponding to the probability of the diagnosis of
chronic mTBI in this study (Lundberg and Lee, 2017). Further,
20 top features among local measures and network measures

FIGURE 3

Brain regions with significant differences in the network
seed-based functional connectivity measures between the mild
traumatic brain injury (mTBI) and healthy controls (HCs) groups
(two-sample t-test, GRF-corrected, voxel-level p < 0.001,
cluster-level p < 0.01).

with the greatest contribution to the classification were reported.
Figure 1 shows the workflow of the study.

Results

Demographic characteristics

Demographic statistical analysis showed a significant
difference between the age of HCs and mTBI groups
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(two-sample t-test, p-value = 0.03). However, no significant
difference in the proportion of males and females was found in
each group (HCs: chi-square, χ2 = 0.1, p-value = 0.75; mTBI:
chi-square, χ2 = 3.6, p-value = 0.08) (Table 2).

Group differences in rs-fMRI measures

Several brain regions have been found as significant
differences between the mTBI and HCs groups for each local
and network measure. The detail of the results of two-sample
t-tests comparing between the groups for the local and network
measures are summarized in Tables 3, 4, and shown in
Figures 2, 3, respectively.

Classification performance

In identification of mTBI patients versus HCs, the %AUC,
balanced accuracy, sensitivity, specificity, PPV, and NPV values
were obtained for single and combined local and network
measures. The list of these values and ROC analysis are
summarized in Table 5 and Figures 4, 5. The %AUC value for
local measures was 88.75 for fALFF, 96.25 for ReHo, 100 for
DC, 96.25 for VMHC, and 86.67 for FCS. Also, the %AUC for
the network measures was 86.25 for the default mode network
(DMN), 82.5 for dorsal attention network (DAS), 80.42 for
both left and right executive control network (ECN), 86.67 and
82.5 for left and right motor dorsal, respectively; 81.67 and
93.33 for left and right motor ventral, respectively; 82.92 and
81.25 for left and right salience network, respectively; 82.08
for visual primary; and 97.5 for visual secondary. Additionally,
we found highest performance of SVM classification using
multilevel measure analysis achieving an %AUC of 100 for
both the local and network measures. However, DC as a single
measure showed the highest %AUC of 100 among the whole
rs-fMRI metrics.

Brain regions with the greatest
contribution to classification

The SHAP summary plots of top 20 features with the
greatest contribution to classification in the multilevel local
and network measure models are presented in Figures 6, 7,
respectively. The DC value of left postcentral had the greatest
contribution to the model prediction among the local measures.
ReHo values in left superior frontal cortex and VMHC in
right superior parietal cortex were also important for model
prediction. Among the network measures, FC between the
right motor ventral and left superior temporal gyrus served as
the most important feature. The FC between right ECN and
right caudate, and FC between right salience network and right

middle temporal gyrus, as well as FC between the DMN and left
medial superior frontal cortex were found as important features
in model prediction.

Discussion

There is an important need to differentiate chronic
mTBI and HCs, and yet, there is a lack of objective
imaging biomarkers. The scientific motivation of this study
was to investigate classification performance of distinction
chronic mTBI patients and HCs utilizing multivariate rs-
fMRI metrics. We employed voxel-wise two-sample t-test
comparing between the groups to generate two types of
resting-state features including local and network measures.
To our knowledge, no previous studies have combined voxel-
wise rs-fMRI metrics to distinguish mTBI patients at the
level of an individual. This is well-known that the vast
majority of neurological and psychiatric diseases are associated
with a combination of regional and network-level brain
function alteration (Fornito and Bullmore, 2015; Worbe,
2015). Furthermore, different neuroimaging modalities capture
different aspects of neuropathology and hence, may provide
complementary information for detecting mTBI at individual
level.

In recent years, a few studies have attempted to develop a
manner for making an mTBI diagnosis using brain functional
imaging with ML methods. Vergara et al. (2018) used dynamic
functional network connectivity (dFNC) for mTBI detection
using a linear SVM algorithm. They found the highest
classification performance of 92% for one of the dFNC
states (Vergara et al., 2018). Also, Vivaldi et al. (2021) used
electroencephalography (EEG) for two-class classification of
patients with mTBI and normal subjects employing SVM and
K-nearest neighbors (KNN) models and achieved the accuracy
of 0.94 via 10-fold CV during classification. In a recent study,
researchers conducted linear SVM ML algorithm using diffusion
tensor imaging (DTI) including fractional anisotropy (FA) and
the ratio of axial diffusivity (AD) to radial diffusivity (RD)
to different patients with mTBI from HCs. They found FA
of the anterior/superior corona radiata and AD/RD of the
corpus callosum and internal capsule are the best features in
classification with the maximum accuracy of 89% (Harrington
et al., 2022). To our knowledge, this study is the first to explore
multilevel rs-fMRI metrics that includes both local and network
measures, in the classification of patients with chronic mTBI and
HCs using a ML method. We categorized the rs-fMRI metrics to
two types of local and network measures and investigated the
classification performance for separate and combined metric(s)
models. As for the separate metric model, almost all showed
similar and moderate classification performance. However, the
combined models outperformed the separate models.
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TABLE 5 Classification performances of single metric model and combined model for local and network rs-fMRI metrics.

Metrics AUC (%) B-ACC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Local metrics fALFF 88.75 88.75 95.00 82.50 89.19 92.14

ReHo 96.25 96.25 100 92.50 95.60 100

DC 100 100 100 100 100 100

VMHC 96.25 96.25 100 92.50 95.60 100

FCS 86.67 86.67 98.33 75.00 86.86 97.78

Combined 100 100 100 100 100 100

Network metrics DMN 86.25 86.25 100 72.50 84.75 100

DAS 82.50 82.50 95.00 70.00 83.44 91.79

ECN (L) 80.42 80.42 98.33 62.50 81.57 97.50

ECN (R) 80.42 80.42 98.33 62.50 82.01 97.50

Motor dorsal (L) 86.67 86.67 93.33 80.00 89.29 92.32

Motor dorsal (R) 82.50 82.50 90.00 75.00 85.71 85.84

Motor ventral (L) 81.67 81.67 93.33 70.00 82.89 88.45

Motor ventral (R) 93.33 93.33 96.67 90.00 93.85 94.92

Salience (L) 82.92 82.92 93.33 72.50 83.83 87.98

Salience (R) 81.25 81.25 90.00 72.50 84.37 86.70

Visual primary 83.33 83.33 91.67 75.00 86.40 90.00

Visual secondary 82.08 82.08 81.67 82.50 88.98 74.71

Combined 97.50 97.50 100 95.00 96.92 100

AUC, area under the receiver operator curve; B-ACC, balanced accuracy; PPV, positive predictive value; NPV, negative predictive value; fALFF, fractional amplitude of low frequency
fluctuation; ReHo, regional homogeneity; DC, degree centrality; VMHC, voxel mirrored homotopic connectivity; FCS, functional connectivity strength; DMN, default mode network;
DAS, dorsal attention network; ECN, executive control network; L, left; R, right.

Using multimodality MRI, several studies constructed
SVM classifier for identification of neurological and psychiatric
diseases. Vergara et al. (2017) compared the classification
performance of SVM classifier using both resting-state
functional network connectivity (rsFNC) and diffusion
MRI in detection of mTBI patients; however, the feature
selection method they used was relatively loose and they
failed to include and combine several MRI modalities. Similar
to our study, Pang et al. (2021) included multivariate rs-
fMRI metrics including ALFF, DC, ReHo, VMHC, and FC
and examined the classification performance of single and
combined metric(s) models to distinguish between motor
subtype of Parkinson’s disease. Identical to our results, they
found improved classification performance using combined
metrics model (Pang et al., 2021). Also, another study employed
combination of several rs-fMRI metrics and SVM classifying
patients with bipolar disorder and reported the AUC of
0.919. However, they failed to build a single model for each
metric (Wang et al., 2020). In line with this, Lei et al. (2020)
incorporated multimodal MRI imaging including structural
and rs-fMRI data in classification study of patients with
schizophrenia using SVM algorithm. They found that the
combination of images and metrics enhances classification

performance resulting in highest accuracy of 90.83% (Lei et al.,
2020).

The most recent study utilized different rs-fMRI metrics and
structural MRI including hippocampal subfield and amygdala
volumes for diagnosis of patients with Alzheimer’s disease (AD).
They conducted SVM and random forest (RF) ML algorithm for
classification task and found that combination of the structural
and rs-fMRI metrics could significantly enhance the accuracy of
classification in diagnosing AD. Moreover, it was suggested that
SVM classifier performs better than RF in binary classification
(Khatri and Kwon, 2022). Our experiment extended the results
of the previous studies showing that classification performance
can be improved by combining multilevel characteristic of rs-
fMRI. Our finding demonstrated the classification accuracy of
100% for both the combined local and network measures that
can be generalized to new dataset and at the patient individual
level.

In order to address the black box nature of the ML method,
the SHAP methodology was employed to enable interpretation
of the ML models and yield the feature importance values. It
assigns numerical values indicating the magnitude and direction
of feature contributions to the model prediction. The best-
discriminative regions were widespread and not restricted to
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FIGURE 4

Receiving operating characteristic curve (ROC) of the support vector machine (SVM) model based on the single and combined local measures.

particular brain regions and networks across the whole rs-
fMRI metrics.

Among local measures, the DC value of the postcentral
gyrus served as the most important feature. The postcentral
gyrus is the main part of the somatosensory cortex and higher
DC values in this area represents the higher-order integration
of different inputs like sensory and motor (Wang et al., 2021).
ReHo in the frontal cortex was also shown as important feature
in discrimination of individual patients with mTBI. Several
studies have demonstrated the vulnerability of the frontal lobe
in mTBI. Specifically, the medial superior frontal lobe as the
main part of the DMN plays a role in cognitive processing.
Cognitive impairment is often associated with patients with
mTBI. Therefore, the functional activity of brain regions within
the DMN plays a key role in differentiating mTBI from normal
subjects. In a recent study on subjects with acute sport-related
concussion, Meier et al. (2020) showed increased connectivity
localized in the frontal lobe regions that are typically associated
with the DMN.

Additionally, it has been shown that abnormal structure,
function, and FC in frontal regions are common in individuals
suffering from pain disorders including headache, migraine,
and mTBI. Indeed, FC alteration in the frontal lobe is linked
with pain processing including the affective and cognitive

processing of pain (Schwedt et al., 2017; Lu et al., 2020b).
Further, researchers have repeatedly reported that the pattern
of functional disruption of the DMN is associated with
psychological and emotional distress in neuropsychological
diseases including mTBI, suggesting the role of the DMN as a
predictive biomarker of prognosis of individual patients with
mTBI (Zhan et al., 2015; Guo et al., 2019; Shi et al., 2021;
Vedaei et al., 2021). In the present study, we found the superior
parietal gyrus as one of the regions with a great contribution
to the classification. Our results are in line with previous
studies reporting abnormality of resting-state FC in fronto-
parietal network in patients with chronic mTBI (Marquez de la
Plata et al., 2011; Shumskaya et al., 2012; Stevens et al., 2012).
The fronto-parietal network has been shown to be involved
in top-down attention control that is activated when attention
is shifted from self-awareness to the external environment.
Several reports have described abnormality in fronto-parietal
connectivity during working memory task in mTBI patients
(Kasahara et al., 2011). As such, increased rs-fMRI measures
might be associated with excessive cognitive fatigue frequently
reported in mTBI patients (Spikman and Van Der Naalt, 2010).
Another important feature for the model prediction was the
Rolandic operculum. This is a region that covers parts of the
frontal, temporal and parietal cortex, and abnormal FC in this
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FIGURE 5

Receiving operating characteristic curve (ROC) of the support vector machine (SVM) model based on the single and combined network
measures.

area has been shown to be linked with worse psychological
conditions such as anxiety and depression (Sutoko et al., 2020).

Among the network measures analysis, FC value between
the motor ventral area and superior temporal gyrus has
been served as the most important feature with the greatest
contribution to the prediction model. The motor network

and temporal gyrus have been shown as two main targets of
TBI. A number of studies have shown that the frontal and
temporal lobes are at increased risk of contusion in moderate
to severe brain injury (Zhou et al., 2014; Vedaei et al., 2021).
A recent study demonstrated increased functional and structural
connectivity between subnetwork nodes in the DMN including
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FIGURE 6

Summary plot of the top 20 features with the most contribution to the model prediction of the local measures. (Left) The mean absolute
Shapley Additive explanations (SHAP) values of the features. (Right) The SHAP values of features in every sample. Each line represents a feature,
and each dot visualizes the SHAP value for one subject and corresponding feature. A positive SHAP value indicates an increase in the risk of
predicting mild traumatic brain injury (mTBI) and vice versa. The vertical axis represents both the features, ordered by the mean absolute SHAP
values and their distribution.

FIGURE 7

Summary plot of the top 20 features with the most contribution to the model prediction of the network measures. (Left) The mean absolute
Shapley Additive explanations (SHAP) values of the features. (Right) The SHAP values of features in every sample. Each line represents a feature,
and each dot visualizes the SHAP value for one subject and corresponding feature. A positive SHAP value indicates an increase in the risk of
predicting mild traumatic brain injury (mTBI) and vice versa. The vertical axis represents both the features, ordered by the mean absolute SHAP
values and their distribution.

temporal superior temporal gyrus in patients with chronic mTBI
1 year after injury (Dall’Acqua et al., 2017). Shi et al. (2021) in a
study on patients with mTBI showed an alteration of rs-fMRI
measures in the cerebellum and temporal lobe regions and

suggested that the FC abnormality is consistent with sensory
perception, movement control, and micro-motor coordination
in patients after injury. Also, it has been shown that motor
network functional activation and connectivity in mTBI patients
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with post-traumatic headache is related to patients’ response
to avoid movement during pain since physical movement may
worsen the pain (Lu et al., 2020b).

Functional connectivity between the ECN and right caudate
also were found to be important. The DLPFC as the center of the
ECN has been shown to be functionally engaged during working
memory tasks (Slobounov et al., 2010; Gillis and Hampstead,
2015; Mayer et al., 2015). The caudate is a part of limbic system
and basal ganglia and is defined to be engaged in emotional
processing. As such, we speculate that increased FC between the
DLPFC and caudate is linked with compensatory mechanism of
top-down cognitive control and mood-regulating in the patient
group. This finding is consistent with the result of a recent
study demonstrating that rs-fMRI connectivity between DLPF
and cingulate-pallidostriatal- thalamic-amygdala is correlated
with depressive scores in TBI cohort (Luo et al., 2021). We also
found the FC between the salience network and middle temporal
gyrus as one the important features. Structural and functional
abnormality of the anterior insula, the center of salience
network, have been reported during acute stage of mTBI. In
line with our results, Lu et al. (2020a) has shown alteration of
FC between insula and temporal gyrus in patients with mTBI
compared to controls as well as significant correlation between
this FC and Montreal cognitive assessment (MoCA) sub-scores
including orientation and abstraction scores. They speculated
that accumulation of amyloid in the temporal gyrus is associated
with cognitive function dysfunction in patients suffering from
traumatic injury (Lu et al., 2020a).

Another important feature in our model prediction was
FC between the DMN and medial superior frontal gyrus.
General speaking, FC abnormality between the DMN and
other brain regions has been shown in many studies in
patients with neurological and psychiatric disorders including
mTBI. Our findings are consistent with prior literature
showing hyperconnectivity between DMN regions including
posterior cingulate cortex (PCC) and regions in frontal gyrus,
representing brain neuroplasticity operative in neural repair
and recovery after injury. Therefore, we speculate that this
hyper-connectivity is linked with compensatory reallocation
and recruitment of cognitive resources (Zhou et al., 2012;
Sours et al., 2013; Shumskaya et al., 2017; Li F. et al., 2020).
FC between visual network and middle frontal gyrus was
also served as one of the important features. The occipital
gyrus in the center of visual cortex has been shown to be
vulnerable to brain injury. Our findings are in line with previous
literature revealing that the FC abnormality in this network is
linked with visual disturbances, memory, and motor perception
disturbances (Palacios et al., 2017; Shi et al., 2021). Additionally,
it has been shown that mTBI symptoms are strongly correlated
with between-network connectivity particularly between motor,
DMN, and visual networks (Madhavan et al., 2019). Palacios
et al. (2013) in a study on patients suffering from chronic mTBI
showed that loss of structural connectivity in these patients is

compensated for by an increased in the functional connectivity
of local circuits.

Prior work in mTBI using rs-fMRI has revealed abnormal
FC in several brain networks including the DMN, DMN-
basal ganglia, attention-sensorimotor, fronto-parietal, and visual
network. For instance, Stevens et al. (2012) in an rs-fMRI study
on mTBI population used independent component analysis
(ICA) comparing between the patients and normal subjects and
showed abnormal FC in several brain networks including visual,
motor, limbic, and several other circuits involved in executive
function. They proposed that abnormalities were not included
FC deficits, but also reflecting compensatory neural processes.

Our findings are in line with prior studies reporting that
alterations in FC in mTBI patients are more between-network
than within-network indicating disruption of communication
between brain network modules in this patient population.
Taken collectively, these findings confirm that the hub
organization and networks might interfere with multiple
integrative roles such as executive function, social cognition,
internal focus of attention, divided attention, vision, memory,
and language (Vakhtin et al., 2013; Madhavan et al., 2019; Meier
et al., 2020; Li et al., 2022).

This study has several limitations. Considering the relatively
small sample size and imbalanced proportion of the classes,
future studies need to validate our findings with a larger
cohort and multiple clinical centers. Also, inhomogeneity of the
patient population may affect the outcomes. Future studies are
needed to be more considerate involving homogenous datasets.
In addition, including multimodal data such as structural,
diffusion weighted, and cerebral perfusion data might provide
more information assisting each other in interpretation of the
model predictions following individual patient classification
task. Finally, different classification ML algorithms other than
SVM, and feature selection methods could be executed and
compared in order to introduce the optimized classification
model which ultimately can be employed in clinical practice and
patient classification and diagnostic at individual level.

Conclusion

In sum, the present study provided a comprehensive
approach employing SVM in classification of chronic mTBI
patients using local and network rs-fMRI measures. We
showed relatively high classification performance using separate
models. Specifically, DC among the whole measures showed
the highest classification accuracy suggesting using this metric
in classification tasks when just one measure needed to be
employed. Additionally, we proposed that combined multilevel
rs-fMRI metrics may improve classification accuracy relative to
single models. Given the pressing need of automatic clinical
tools for detecting mTBI in patients with high levels of accuracy,
combining neuroimaging measures within a multivariate
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supervised ML framework may provide a new avenue for the
diagnosis of individual patients in the clinical setting.
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