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Background: Spinal cord injury (SCI) may lead to impaired motor function,

autonomic nervous system dysfunction, and other dysfunctions. Brain-computer

Interface (BCI) system based on motor imagery (MI) can provide more scientific and

effective treatment solutions for SCI patients.

Methods: According to the interaction between brain regions, a coherence-

based graph convolutional network (C-GCN) method is proposed to extract the

temporal-frequency-spatial features and functional connectivity information of EEG

signals. The proposed algorithm constructs multi-channel EEG features based on

coherence networks as graphical signals and then classifies MI tasks. Different from

the traditional graphical convolutional neural network (GCN), the C-GCN method

uses the coherence network of EEG signals to determine MI-related functional

connections, which are used to represent the intrinsic connections between EEG

channels in different rhythms and different MI tasks. EEG data of SCI patients and

healthy subjects have been analyzed, where healthy subjects served as the control

group.

Results: The experimental results show that the C-GCN method can achieve the

best classification performance with certain reliability and stability, the highest

classification accuracy is 96.85%.

Conclusion: The proposed framework can provide an effective theoretical basis for

the rehabilitation treatment of SCI patients.

KEYWORDS

electroencephalogram, motor imagery, brain-computer interface, coherence-based graph
convolutional network, spinal cord injury

1. Introduction

Spinal cord injury (SCI) is a catastrophic disease, which can lead to the loss of motor and
sensory functions. In severe cases, it can lead to the interruption of some routes connecting
the brain and limbs. Many SCI patients experience chronic pain that is difficult to treat (Jensen
et al., 2005; Cardenas and Jensen, 2006). There are more than 3.7 million SCI patients in China,
with an annual incidence of about 90,000 new patients per year, and the annual incidence rate
is 17.9 to 60.2 people/million people. The motor dysfunction caused by SCI not only brings
serious physical and psychological harm to the patients themselves but also imposes a huge
economic burden on society and families (Aguilar et al., 2010). To reduce the harm caused by
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SCI patients, researchers have explored the changes in the brain of
SCI patients after chronic injury. Studies have shown that chronic
pain associated with SCI may be related to changes in brain activity
reflected in the electroencephalogram (EEG) (López-Larraz et al.,
2012), the differences in EEG reflect some extent the experience of
pain. At present, the EEG studies after SCI have the following aspects,
the changes in event-related synchronization/desynchronization
(ERD/ERS) after SCI, the changes in power spectrum occurring after
SCI, the changes in network characteristics of brain networks after
SCI, the changes in performance of brain-computer interface (BCI)
systems after SCI.

In recent years, motor imagery (MI)-based BCI systems have
become the focus of attention in the field of rehabilitation medicine,
such as neuro-robotics and neuro-prosthetic device control (Iturrate
et al., 2009; Millán et al., 2010; Escolano et al., 2011). The MI-BCI
system aims to deliver MI task interventions for SCI patients and
to assist in the formulation of rehabilitation programs to alleviate
patient suffering. As shown in Figure 1, MI-based BCI systems
mainly consist of four parts, signal acquisition, signal processing,
application, and feedback, use brain signals to control external
assistive devices (Collinger et al., 2014). Traditional SCI rehabilitation
training, which lacks the active participation of the patient and the
reconstruction of neural pathways is slow, is mainly based on the
passive movement by a patient to achieve the recovery of muscle
strength and the reconstruction of neural pathways. BCI technology
for SCI rehabilitation takes into account the functional coupling
between the patient’s MI intentions and the actual motor effects.
It is more in line with the theoretical requirements of neurological
reconstruction and can promote faster and better motor recovery in
SCI patients. In the study of MI-based BCI systems for SCI patients,
Müller-Putz et al. (2014) achieved an average accuracy of 66.1% using
common spatial pattern (CSP) algorithms and linear discriminant
analysis (LDA) for classification. Xu et al. (2022b) proposed Modified
Graph Convolutional Neural Network (M-GCN) method, which
performs time-frequency processing of data by modified S-transform
(MST) to improve decoding performance.

MI refers to the procedure of imagining limb actions without
actual limb movements (Zhang et al., 2018). Related studies have
shown that the sensorimotor cortical areas of the brain stimulated
by MI are the same as those stimulated by actual limb movement
(Azab et al., 2019). MI is considered to be a process involving
multiple higher cognitive functions (Rimbert et al., 2019). The
brain is a complex network, the information related to MI is
both spatially independent and interconnected, and brain network
correlation methods can investigate the functional mechanisms of
MI. EEG coherence provides an important estimate of the functional
interactions between neural systems in each frequency band and
is often used to assess the functional connectivity of the human
cortex (Srinivasan et al., 2007). Due to its targeting of functional
mechanisms, more and more people have begun to pay attention to
coherence networks and have used them to decode relevant cognitive
functions. Benefiting from MI therapy, patients with cortical damage
have better performance in functional recovery, and BCI investigators
achieve higher classification accuracy (Weiskopf et al., 2004).

Hinton and Salakhutdinov (2006) published a paper in Science
on the dimensionality reduction of data with neural networks,
which attracted great attention. AlexNet performed brilliantly in
the ImageNet image recognition competition (Krizhevsky et al.,
2017), which started the boom of deep learning (DL). Relying

on advances in various aspects such as large data volume, non-
convex optimization, hardware computation, and network structure,
DL methods represented by convolutional neural networks (CNN),
recurrent neural networks (RNN), and generative adversarial
networks (GAN) achieved excellent results in the processing of
regular data such as images, audio, video, and text. Deep neural
networks have achieved great success in data processing, more and
more people have begun to apply them to BCI systems. In 2022, Roy
(2022) proposed a multi-scale CNN (MS-CNN) model with intrinsic
feature integration for motor image EEG subject classification in the
BCI system. Supakar et al. (2022) used the recurrent neural networks-
Long Short-Term Memory (CNN-LSTM) method to analyze EEG
signal data to diagnose schizophrenia. Xu et al. (2022a) applied
the deep convolution generative adversarial network (DCGAN) to
rehabilitation-based BCI systems.

Deep learning frameworks generally have large models and many
parameters. They need higher amounts of training and requirements
for computing conditions. How to extend DL methods to irregular
data structures is a current research hotspot in the field of neural
networks. Data processing based on graph structures mainly involves
the representation learning of graph nodes, classification of graph
nodes, prediction of edges in graphs, classification of graphs, and
so on. Irregular data represented by graphs, such as traffic flow
networks with cities as nodes, molecular structure networks with
various types of atoms as nodes, and EEG structure networks
with electrodes as nodes, are playing an increasingly important
role in the storage of data and the description of relationships
between entities. To efficiently extract space features on this data
structure, graph convolutional network (GCN) is proposed. Chen
et al. (2020) proposed the E-GCN method to deeply mine the
relationship between EEG channels and to use it for the detection
of epileptic EEG signals. Zeng et al. (2020) proposed the hierarchical
graph convolution (HGCN) network for classification tasks using
topological relationships between each electrode, where power
spectral density and continuous wavelet transform features from the
raw EEG signal are used as frequency domain inputs.

The above methods only consider EEG channel location
relationships and do not explore functional linkages. Considering
the working mechanism for the division of labor and cooperation
between brain regions, the spatial location relationships and
functional linkages of EEG channels do not maintain their
consistency (Wang et al., 2019). In this paper, the coherence network-
based graph convolution (C-GCN) method is proposed to analyze
MI-based EEG data, the main contributions are as follows,

(1) Due to the fact that traditional GCN can only analyze
the spatial relationship of channels but not describe the
connection of brain functions, the C-GCN algorithm is
proposed to represent the temporal-frequency-spatial domain
representation of EEG data.

(2) Compared with Support Vector Machine (SVM), CNN,
EEGNet, RNN, LSTM, traditional GCN, M-GCN, Graph
Attention Network (GAT), and ResGCN, the proposed C-GCN
algorithm can obtain the best performance of 96.85% for two-
class MI recognition.

(3) The coherence network of EEG data at different frequency
bands from SCI patients and healthy subjects is used to perform
functional analysis and to provide rehabilitation training
guidance for SCI patients.
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FIGURE 1

Block diagram of motor imagery (MI)-based brain-computer interface (BCI) system. The system consists of four main parts: signal acquisition, signal
processing, application, and feedback.

FIGURE 2

The procedure for one electroencephalogram (EEG) signal acquisition trial. The duration of one trial is 7 s, including 3 s of rest state and 4 s of MI state.

FIGURE 3

Schematic diagram of electrode position distribution. (A) Three-dimensional electrode position distribution. (B) Two-dimensional electrode position
distribution. (C) Experimentally selected electrode position distribution.
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The rest content is arranged as follows, section “2. Experimental
data and experimental paradigm” introduces the experimental data.
Section “3. Materials and methods” introduces the pre-processing
work and the C-GCN model. Section “4. Results and discussions”
shows the experimental results and discussions. Finally, section “4.
Conclusion” summarizes the whole paper.

2. Experimental data and
experimental paradigm

The EEG data used in the experiment were collected from
the Department of Physical Medicine and Rehabilitation,

Qilu Hospital, Shandong University, and the protocol of this
experiment was approved by the Medical Ethics Committee of
Qilu Medical College, Shandong University [No. KYLL-2020(KS)-
475]. Before the experiment, all subjects signed an informed
consent form and were free from habitual medication, alcohol
consumption, and cognitive impairment. Experiments were
carried out in a closed environment where subjects were
undisturbed and attentive, E-Prime software was used for MI
stimulation, and 64-lead EEG signal acquisition system was
used to capture the subject’s EEG signals. Twenty-five subjects
were recruited for the experiment, including 18 SCI patients
and 7 healthy subjects, the healthy subjects serving as controls
in the experiment.

FIGURE 4

Motor imagery (MI) pattern recognition framework based on the coherence-based graph convolutional network (C-GCN) model. (A) Pre-processing of
EEG. (B) Construction of graphical signals. (C) Specific GCN structure.
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FIGURE 5

Classification performance of the coherence-based graph convolutional network (C-GCN) model. (A) Accuracy distribution of the C-GCN model.
(B) Loss distribution of the C-GCN model.

During the MI experiment, the subjects sat in front of the
instruction screen. Before each imaginary movement, the screen was
blank, which was a rest period to prevent visually evoked potentials,
that is, the time interval between two imaginary movements. After
the left and right arrow prompts appeared, the MI tasks began.
During this time, subjects began to imagine themselves performing
left-hand or right-hand movements, and the duration of the imagined
movements was 4 s. The experimental paradigm is shown in Figure 2.
Each group of experiments consisted of 20 randomly occurring MI
tasks, and each subject performed four groups of experiments with a
90 s rest period between every two groups. Each subject performed
80 trials, 40 each of the left-hand MI tasks and the right-hand MI
tasks, and the emergence of the left-hand and right-hand MI tasks
was randomized.

3. Materials and methods

3.1. Pre-processing

Electroencephalogram data are pre-processed before being fed
into the C-GCN model. Zero-reference processing is performed by
the reference electrode normalization technique (REST) (Xu et al.,
2014) to obtain artifact-free data. EEG signals are filtered by a fifth-
order Butterworth filter with 8–30 Hz to remove noise. Channel
selection and data segmentation techniques are also involved in
pre-processing procedure.

MI-related information is generally concentrated in specific
frequency bands, therefore during the EEG data filtering process,
the EEG data are divided into multiple data bands (µ rhythm,
β rhythm, µ, and β rhythms). To reduce the effect of volume
conduction between network nodes, 21 electrodes of 64 electrodes
(“Fp1”, “Fp2”, “F7”, “F3”, “Fz”, “F4”, “F8”, “T7”, “Cz”, “C4”, “T8”,
“P7”, “P3”, “Pz”, “P4”, “P8”, “O1”, “O2”, and “Oz”) are selected
for subsequent processing (Li et al., 2016), and the electrode
positions select for the experiment are shown in Figure 3. Resting-
state EEG shows spontaneous brain activity in the idle state,
whereas MI-state EEG records the event-related activity during
the desired task. One trial consists of 3 s resting state and 4 s

MI state. The MI state of EEG is employed for the analysis of
coherence network.

3.2. Coherence

The pre-processed EEG data are employed for coherence network
construction. Coherence is the squared correlation coefficient (Zhang
et al., 2015), which characterizes the connectivity between the brain
network channels of the MI tasks. Coherence, which is the degree
of linear correlation between two EEG signals x(t) and y(t) at
specific frequencies, is used to measure the strength of the interaction
between each pair of electrodes (Weiss and Mueller, 2003; Murias
et al., 2007). High coherence between the two EEG electrodes
indicates the contribution of synchronized neuronal oscillations
to each electrode, indicating functional integration between neural
populations. Low coherence indicates functional separation. The
coherence coefficients of the EEG signals x(t) and y(t) are defined as,

Cxy =

∣∣Pxy(f )
∣∣2

Pxx(f )Pyy(f )
(1)

where Pxy(f ) is the cross-spectral density of x(t) and y(t), Pxx(f ) and
Pyy(f ) are the self-spectral densities of x(t) and y(t), respectively.
Cxy

(
f
)

is the coherence at frequency f .
After the coherence calculation, the coherence is averaged over

the corresponding frequency band to obtain the final strength of
the connection between the two nodes. The coherence coefficient
takes values in the range of 0–1. When the coherence coefficient
is closer to 1, the two signals are more coherent. The coherence
network has 21 nodes due to the selected 21 channels of the subject.
Therefore, the EEG coherence network is constructed by a 21 × 21
weighting matrix.

3.3. C-GCN

In traditional convolutional networks, convolution essentially
uses a filter with shared parameters to extract spatial features by
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TABLE 1 Parameters values and experimental results of the
coherence-based graph convolutional network (C-GCN) model.

Label Parameters Value

1 Num_epochs 100

2 Batch_size 512

3 Regularization 0.001

4 Dropout 0.50

5 Learning_rate 0.01

6 Accuracy 96.85%

7 Loss 0.23

8 F1-Score 96.78%

computing a weighted sum of the central pixel and neighboring
pixels. Convolution is an operation between signals on a regular grid.
With the production of discrete data in the spatial domain, a graphical
representation is proposed. The properties of graphs are studied using
the eigenvalues and eigenvectors of the Laplacian matrix of the graph,
extending DL techniques to the domain of graphs. The graph can be
defined as,

G = (V, E, A) (2)

where V is the set of nodes, E is the set of edges, and A is the adjacency
matrix of the graph.

Let vi ∈ V denote a node and eij/∈E denote an edge from vi to vj.
The neighborhood of node v is defined as,

N(v) = {u ∈ V |(v, u) ∈ E } (3)

The adjacency matrix A is the diagonal matrix n× n. The
Laplacian matrix of a graph is defined as,

L = D− A (4)

where L is the Laplacian matrix and D is the degree matrix of
the graph.

Since L is a symmetric matrix, it can be singular value
decomposed (SVD) (Spielman, 2007), as follow,

L = U ∧ UT (5)

where U = [u0, · · · , uN−1] ∈ RN×N is the eigenvector matrix,
∧ = diag([λ0, · · · , λN ]) is the diagonal matrix.

GCN can be divided into two types of convolution including
spectral convolution and spatial domain convolution. Spectral
convolution is to filter both the convolutional network and graphical
signals into the Fourier domain and then process them. Spatial
domain convolution is to connect the nodes of the graph in the spatial
domain, implement a hierarchy, and then perform convolution.

The spectral convolution of the graph signal is defined as,

gθ∗x = UgθUTx (6)

where x ∈ RN , the filter is defined as gθ = diag(θ), θ ∈ RN is
parameter in the Fourier domain. U is consist of the eigenvectors
from the normalized Laplacian matrix, U is defined as,

L = IN − D−
1
2 AD−

1
2 = U ∧ UT (7)

where ∧ is a diagonal matrix, which is consist of the eigenvalues of
the Laplace matrix, UT is the Fourier transform of the graph.

To locate the filter in space and reduce its computational
complexity, the filter is approximated using a truncated expansion

FIGURE 6

F1-Score of the coherence-based graph convolutional network (C-GCN) model.
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TABLE 2 Classification accuracy of spinal cord injury (SCI) patients in the
coherence-based graph convolutional network (C-GCN) model at
different rhythms.

Subjects Method Accuracy%

µ rhythm β rhythm µ and β
rhythms

SCI_1 C-GCN 96.45 96.68 97.33

SCI_2 C-GCN 96.63 93.75 97.58

SCI_3 C-GCN 95.15 97.23 96.75

SCI_4 C-GCN 95.33 96.50 97.15

SCI_5 C-GCN 97.43 96.65 98.08

SCI_6 C-GCN 96.38 96.25 96.50

SCI_7 C-GCN 96.65 98.00 97.25

SCI_8 C-GCN 96.50 96.33 96.88

SCI_9 C-GCN 96.00 97.75 98.23

SCI_10 C-GCN 97.15 98.00 97.78

SCI_11 C-GCN 96.75 97.78 97.75

SCI_12 C-GCN 93.88 92.15 98.50

SCI_13 C-GCN 96.23 97.63 97.00

SCI_14 C-GCN 91.50 92.78 93.63

SCI_15 C-GCN 96.78 97.50 97.25

SCI_16 C-GCN 90.33 92.00 95.08

SCI_17 C-GCN 93.45 96.43 97.63

SCI_18 C-GCN 95.78 97.08 97.78

Average C-GCN 95.47 96.14 97.12

Standard
deviation

C-GCN 1.91 1.96 1.13

of a K-order Chebyshev polynomial (Defferrard et al., 2016). The
Chebyshev polynomial is defined as,

Tk(x) = 2xTK−1(x)− TK−2(x) (8)

where T0(x) = 1, T1(x) = x. Then, the signal x is filtered by a
k-domain filter y, which is defined as,

y = gθ(L)∗x =
k∑

k=0

θkTk(L̃)x (9)

where L̃ = 2L/λmax − INλmax represents the largest eigenvalue of L.
C-GCN is a model that combine coherence network with

GCN. The framework consists of two main modules, including
the construction of coherence-based graphical signals and pattern
recognition for GCN. Before feeding into the C-GCN model, EEG
data are first pre-processed as shown in Figure 4A. The input graphic
signals of the C-GCN model integrate the temporal-frequency-spatial
features from EEG data as shown in Figure 4B graphic signals of EEG
data are implemented by formula (1) (9). After the graphic signals
are constructed, EEG feature data is performed through two graph
convolution layers, two Relu layers (Glorot et al., 2011), two graph
pooling layers (Ouhmich et al., 2019), and one fully connected layer
(Xu et al., 2022c) to complete the MI tasks classification as shown in
Figure 4C.

The input of the C-GCN model is the pre-processed EEG time
series. The X in Figure 4B represents the temporal-frequency features

of EEG, the vertices in Figure 4B represent the EEG channels, and the
edges connecting the vertices represent the coherence connectivity
between electrodes. The purpose of performing graph convolution
operations is to extract more discriminative EEG features. The graph
convolutional layer is the core layer of C-GCN. To increase the non-
linearity of the C-GCN model, the Relu function (Nair and Hinton,
2010) is used to mitigate the appearance of fitting problems. When
the strength of the information is greater than a certain threshold, the
valve is opened and the information is passed, otherwise, the valve is
closed and the information is discarded. Graph pooling is a necessary
module for GCN to perform classification, this module aggregates the
previous results to obtain a smaller-scale representation of the graph.
Graph pooling can be described as follows,

P : (G = (V, E, A), Y)→ (G′ = (V ′, E′, A′), Y ′) (10)

where the array of graph G and corresponding node feature matrix Y
are mapped to a smaller array of graph G′ and corresponding node
feature matrix Y′. In a multilayer GCN, the operation of the pooling
layer is correspondingly expressed as,

P : (Gl = (Vl, El, Al), H(l))

→ (Gl+1 = (Vl+1, El+1, Al+1), H(l+1)) (11)

Then, a fully connected (FC) output layer is employed for
integrating global information from the graphs of the previous
localization filters. Finally, the Softmax function (Han et al., 2018)
is used for classification and recognition. In the C-GCN model,
the cross-entropy loss function is used to optimize the network
parameters, and the cross-entropy loss is expressed as follows,

Loss = −
∑

x
(p(x) log q(x)+ (1− p(x)) log(1q(x)))+ λK(w) (12)

where p(x) denotes the true value of the training data, q(x) denotes
the predicted value of the training data, K(w) is used to evaluate
the model complexity and λK(w) is aimed at preventing over fitting
of the model. In summary, the EEG data based on the MI tasks
are trained and tested in C-GCN to obtain classification recognition
results. Algorithm 1 is a summary of the classification training steps
of the C-GCN model.

Require: the pre-processed EEG signals,

the class labels corresponding to the

EEG signals, the numbers of Chebyshev

polynomial order k;

Ensure: The desired model parameters of

C-GCN;

1: for pre-processed EEG signals do

2: Cxy =
|Pxy(f )|2

Pxx(f )Pyy(f )
3: end for

4: for graphical signals do

5: L = IN − D−
1
2 AD−

1
2

6: L̃ = 2L/λmax − INλmax

7: Tk(L̃)(k = 0, 1, · · · , K − 1)

8:
∑K−1

K=0 θkTk(L̃)x
9: end for

10: Calculate the results of convolution

after activation, FC layer, and Loss.

Algorithm 1. Training procedure of the C-GCN model.
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FIGURE 7

Classification performance of spinal cord injury electroencephalogram (SCI EEG) in the coherence-based graph convolutional network (C-GCN) model.
This includes the classification accuracy under µ rhythm, β rhythm, µ and β rhythms.

4. Results and discussions

4.1. C-GCN

The classification performance is an important measure of data
quality, and can also provide ideas for the rehabilitation of SCI
patients. In the experiment, EEG data of 18 SCI patients have been
trained and validated on the proposed C-GCN model with the cross-
validation method. The 90% of the data set have been employed for
training and the 10% of the data set have been used for validation.
The parameters of the model and the experimental results are shown
in Table 1. In the C-GCN model, the accuracy of SCI patients can
achieve 96.85%. The accuracy and Loss are shown in Figure 5, the
F1-Score is shown in Figure 6. The experimental results show that
the C-GCN model has a high signal-to-noise ratio, good adaptability,
and robustness to individual specificity. The model can guide the
rehabilitation training and subsequent treatment of SCI patients.

To verify the difference of EEG data in MI tasks at different
frequencies and the superiority of the C-GCN model, this paper also
conducted experiments on µ rhythm, β rhythm, µ and β rhythms of
18 SCI patients respectively, the experimental results are shown in
Table 2. In Figure 7, good classification accuracy can be obtained in
µ rhythm, β rhythm, µ and β rhythms. There are slight differences in
the classification results at different frequencies. In the vast majority
of these cases, the classification accuracy of the MI tasks under µ

and β rhythms is higher than that under µ or β rhythms alone,
and the classification results of the MI tasks under β rhythms are
higher than those under µ rhythms. This result indicates that the µ

and β rhythms contains more information on MI in SCI patients,
the MI information in the µ rhythm is less than that in the β

rhythm. The information contained in the µ and β rhythms is more
valuable for the rehabilitation research of SCI patients. The intra-
individual classification accuracy of SCI patients is not significantly

different from the overall classification accuracy. Table 2 indicates
that the proposed C-GCN model has very strong adaptability and can
mitigate the effects due to individual differences and the number of
data samples.

In the experiment, healthy subjects as the control group. The
classification accuracy of the EEG data under different rhythms
in the C-GCN model for healthy subjects in Table 3. To observe
the experimental results of the healthy subjects more visually, the
classification results are presented in the form of histograms. In
Figure 8, the experimental results of healthy subjects at different
rhythms have the same regularity as those of SCI patients. The highest
classification accuracy is obtained at the µ and β rhythms, followed
by the second highest classification accuracy at the β rhythm and

TABLE 3 Classification accuracy of healthy subjects in the
coherence-based graph convolutional network (C-GCN) model at
different rhythms.

Subjects Method Accuracy%

µ rhythm β rhythm µ and β
rhythms

Sub_1 C-GCN 88.33 90.78 94.63

Sub_2 C-GCN 94.00 96.33 97.50

Sub_3 C-GCN 93.88 95.43 95.75

Sub_4 C-GCN 96.23 97.67 98.38

Sub_5 C-GCN 96.67 97.38 97.63

Sub_6 C-GCN 91.68 94.50 95.25

Sub_7 C-GCN 96.15 96.88 97.63

Average C-GCN 93.85 95.57 96.68

Standard
deviation

C-GCN 2.78 2.21 1.34
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FIGURE 8

Classification performance of healthy subjects electroencephalogram (EEG) in the coherence-based graph convolutional network (C-GCN) model. This
includes the classification accuracies under µ rhythm, β rhythm, µ and β rhythms.

FIGURE 9

Classification performance of spinal cord injury electroencephalogram (SCI EEG) in different classification models. These include SVM, EEGNet, RNN,
LSTM, CNN, GCN, M-GCN, GAT, ResGCN, and C-GCN models.

the lowest at the µ rhythm. Analysis of the mean accuracies revealed
that the classification accuracy of SCI patients is slightly higher than
that of healthy subjects at either rhythm and that the difference in

accuracy between rhythms is lower in SCI patients than in healthy
subjects. Combined with the self-assessment form of the subjects’
EEG acquisition procedure and the SCI pathology analysis, it is found
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FIGURE 10

Coherence connectivity maps of motor imagery (MI) tasks in different frequency bands for spinal cord injury electroencephalogram (SCI EEG). These
include left-hand and right-hand coherence connections under µ rhythm, β rhythm, µ and β rhythms.

FIGURE 11

The Coherence connectivity maps of motor imagery (MI) tasks in different frequency bands for healthy subjects electroencephalogram (EEG). These
include left-hand and right-hand coherence connections under µ rhythm, β rhythm, µ and β rhythms.

that SCI is more focused during the EEG acquisition experiment
and the quality of the collected EEG data is higher. Whereas healthy
subjects have more active minds and are more easily influenced by
their surroundings.

To verify the high performance of the model, this paper
compares SVM (Kaper et al., 2004), EEGNet (Lawhern et al.,
2018), RNN (Patnaik et al., 2017), LSTM (Wang et al., 2018),
CNN (Zhou et al., 2018), M-GCN (Xu et al., 2022b), GAT (Demir
et al., 2022), traditional GCN, and ResGCN with C-GCN. 18 SCI
patients’ EEG data are involved in the training and testing of
the above models. SVM is a traditional machine learning method
whose classification performance may be affected by the extracted

features and configuration parameters. EEGNet uses deep separable
convolution to build EEG-specific models. RNNs memorize the
previous information and apply it to the computation of the current
output. LSTM is a special type of RNN that learns long-term
dependent information. CNN can improve performance, but cannot
effectively use the spatial information of EEG data. Traditional
GCN only considers the spatial location relationships of channels,
without considering the intrinsic connections of brain functions.
M-GCN and ResGCN are improve patterns based on the traditional
GCN. GAT, which helps to focus on the important information in
the data, is a combination of graph neural network and attention
layer. By selecting the optimal model parameters, the classification
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performance of each model can achieve the highest level. The
classification results of SCI patient EEG data for the MI tasks in the
SVM, EEGNet, RNN, LSTM, CNN, GCN, and C-GCN models are
shown in Figure 9. The highest classification accuracy of 96.85% can
been obtained from the C-GCN model. Compare with other models,
the C-GCN model is 29.50% higher than the lowest SVM model.

4.2. Coherence networks

Electroencephalogram coherence can generate network and
functional integration information across brain regions. Any pair
of EEG signals may be coherent in some frequency bands and
incoherent in others. In the experiment, EEG coherence under µ

rhythm, β rhythm, µ and β rhythms of SCI patients are analyzed
separately, and the results are shown in Figure 10. According
to the coherence network connectivity maps of SCI patients, it
is found that SCI patients appear more obviously lateralized as
well as long-range connections in the frontal-occipital lobe when
performing left-hand and right-hand MI tasks. During performing
the left-hand MI task, the connection between the frontal lobe
(F8) and the parietal lobe (C4) is stronger under µ rhythm. The
connection between F8 and C4 is weakened under β rhythm. In
the µ and β rhythms, in addition to a strong connection at C4,
the connection between the left frontal lobe (F7) and the right
brain region becomes stronger. For right-handed subjects, the left
brain also participates in processing relevant information during
the execution of left-hand MI tasks to ensure task completion.
When performing right-hand MI, the connectivity between the
F3 and the C3 is enhanced under µ and β rhythms. In µ

and β rhythms, the F3 and the C3 have a stronger connection.
Meanwhile, the connectivity between the F7 and the parietal and
occipital lobes is enhanced. In summary, C4 and its nearby electrode
connectivity are enhanced when performing left-hand MI. C3 and
its nearby electrode connectivity are enhanced when performing
right-hand MI.

The coherence networks of healthy subject’s EEG data under
µ rhythm, β rhythm, µ and β rhythms have shown in Figure 11.
Healthy subjects have shown more significant laterality when
performing the MI tasks. When performing left-hand MI, the
connectivity is stronger in the parietal lobe (C4), and some electrodes
in the left brain (e.g., F7) are also stronger connected to the right
brain. In particular, C4 connectivity is strongest within the µ and
β rhythms, followed by the β rhythm, and the µ rhythm is weakest
in comparison. When performing right-hand MI, the connectivity of
the parietal lobe (C3) and P7 is enhanced in the µ rhythm. The C3 is
enhanced and the P7 connection is weakened under β rhythm. The
connectivity of the C3 connection is strongest and the P7 connection
is also enhanced under µ and β rhythms. In summary, C4 and partial
electrode connectivity in the left brain is enhanced during the left-
hand MI. C3 connectivity is enhanced during the performance of
right-hand MI.

The coherence network in Figures 10, 11 have shown that the
connection density of each electrode in SCI patients is significantly
higher than healthy subjects. The connections are mainly existed
on the prefrontal and occipital lobes. The Fp1, Fpz, and Fp2 have
stronger connectivity than the other electrodes under µ rhythm,
β rhythm, µ and β rhythms. The F7 in the SCI patients show
higher connectivity density than in the healthy subjects under
µ and β rhythms. Between the prefrontal and occipital lobes,

the SCI patients have significantly more long-range connections
than the healthy subjects. It can be inferred that the motor
functional areas and sensory functional areas are damaged after
SCI. The long-range connections existing between the frontal
and occipital lobes of SCI patients are blocked. The cortical
functional reorganization, neural activity increases, and functional
compensation occurs in related brain areas. The differences of the
coherence network between SCI patients and healthy subjects can
be used to evaluate SCI, it is important for the clinical rehabilitation
of SCI.

5. Conclusion

Spinal cord injury brings a lot of inconvenience to patients’ life. It
is necessary to provide effective and scientific rehabilitation treatment
methods. MI-based BCI system plays an increasingly important role
in the rehabilitation treatment of SCI patients. The C-GCN model has
been proposed to be applied for MI-based BCI system, which mainly
consists of two parts, coherence network and GCN. The coherence
network can analyze the intrinsic functional connectivity of the
brain and fully exploit the relevant information between channels.
GCN can connect the graphical information based on the functional
connectivity of the brain to the fully connected layer and can learn the
information of the surrounding nodes in the graphical signals. The
C-GCN method combines the coherence network with GCN, retains
the advantages of the two networks, and provides a guarantee for the
classification and recognition of MI tasks in SCI patients. Specifically,
the proposed algorithm uses a coherence matrix to characterize the
relationship between channels, EEG features as graphical data and
finally performs MI tasks classification recognition. The experiments
are conducted in SCI patients and healthy subjects, the highest
classification accuracy for the MI tasks in SCI patients is 96.85%,
and the results are better than with six other classifiers. The average
individual accuracy under µ rhythm for the MI pattern recognition
in SCI patients is 95.47%, the average individual accuracy under
β rhythm is 96.14%, and the average individual accuracy under
µ and β rhythms is 97.12%. These experiments have proved that
the C-GCN approach is reliable and effective. Furthermore, the
C-GCN approach can provide a new strategy for the rehabilitation
of SCI patients.
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