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Introduction: The brain functional network can describe the spontaneous

activity of nerve cells and reveal the subtle abnormal changes associated with

brain disease. It has been widely used for analyzing early Alzheimer’s disease

(AD) and exploring pathological mechanisms. However, the current methods

of constructing functional connectivity networks from functional magnetic

resonance imaging (fMRI) heavily depend on the software toolboxes, which

may lead to errors in connection strength estimation and bad performance in

disease analysis because of many subjective settings.

Methods: To solve this problem, in this paper, a novel Adversarial Temporal-

Spatial Aligned Transformer (ATAT) model is proposed to automatically map

4D fMRI into functional connectivity network for early AD analysis. By

incorporating the volume and location of anatomical brain regions, the region-

guided feature learning network can roughly focus on local features for

each brain region. Also, the spatial-temporal aligned transformer network is

developed to adaptively adjust boundary features of adjacent regions and

capture global functional connectivity patterns of distant regions. Furthermore,

a multi-channel temporal discriminator is devised to distinguish the joint

distributions of the multi-region time series from the generator and the

real sample.

Results: Experimental results on the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) proved the e�ectiveness and superior performance of the

proposed model in early AD prediction and progression analysis.

Discussion: To verify the reliability of the proposed model, the detected

important ROIs are compared with clinical studies and show partial

consistency. Furthermore, themost significant altered connectivity reflects the

main characteristics associated with AD.

Conclusion: Generally, the proposed ATAT provides a new perspective in

constructing functional connectivity networks and is able to evaluate the

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1087176
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1087176&domain=pdf&date_stamp=2022-11-28
mailto:lin.wang1@siat.ac.cn
https://doi.org/10.3389/fnins.2022.1087176
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1087176/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zuo et al. 10.3389/fnins.2022.1087176

disease-related changing characteristics at di�erent stages for neuroscience

exploration and clinical disease analysis.

KEYWORDS

functional brain connectivity, temporal-spatial transformer alignment, generative

adversarial learning, graph convolutional network, early Alzheimer’s disease

1. Introduction

Early Alzheimer’s disease (AD) includes the following three

successive stages: significant memory concern (SMC), early

mild cognitive impairment (EMCI), and late mild cognitive

impairment (LMCI). AD is a common long-term neurological

disorder in the elderly, which is generally connected with

the gradual decline in understanding, judgment, memory, and

executive ability until complete loss. AD is known as the leading

cause of death among old people worldwide (Zhang et al., 2022),

and its great harmfulness brings heavy psychological pressure

and economic burden to the families of patients. According to

literature (Derby, 2020), the number of people suffering from

AD and other dementias in the world currently exceeds 50

million, and the aging population further aggravates the rise of

the patient population. However, there is no consensus on the

pathological mechanism (Yuzwa et al., 2008; Diplas et al., 2018),

and many pharmaceutical companies had tried and failed to

develop effective drugs to cure AD. Therefore, early detection

and timely intervention for AD are the only possible way in

slowing down or preventing disease deterioration (Jack et al.,

2013). The development of neuroimaging has made the use

of non-invasive AD study become the mainstream of current

research because of no side effects on patients (Wang et al.,

2018c; Grassi et al., 2019; Yu et al., 2021; Alvi et al., 2022; Lei

et al., 2022; You et al., 2022). It is very promising for the scientific

community to develop effective methods to detect brain disease

and assist clinical treatment from medical imaging data (Wang

et al., 2022).

The brain functional network (BFN) derived from

functional Magnetic Resonance Imaging (fMRI) describes

the functional interactions among spatially distributed brain

regions. Brain science indicates that abnormal functional

connectivity always appears at the early stage of AD (Berron

et al., 2020). The BFN can give a universal understanding

of neurological symptoms and unravel the pathogenesis of

cognitive diseases. As mentioned in Yu et al. (2020) and Zuo

et al. (2021a), the whole brain is divided into several Region-

of-Interests (ROIs) according to the anatomical template. The

BFN is modeled as a graph, where each node represents the ROI

and each edge represents the functional connection strength

between paired ROIs. The conventional method is to use a

software toolbox to construct functional connectivity (FC)

and then extract effective features for disease diagnosis. For

example, Kabbara et al. (2018) investigated the abnormal hub

patterns associated with patients’ cognitive performance by

applying graph-theory analysis on the constructed functional

connectivity. This work preserved the topological structure

and gained better evaluation performance than the feature

extraction algorithm (Wang et al., 2017; Zuo et al., 2021b; Yu

et al., 2022) in Euclidean space. Considering the complexity of

brain neural activities and noisy data preprocessed from the raw

fMRI, it is significant for clinicians to investigate more advanced

methods for modeling effective BFNs in early AD analysis.

Brain functional network construction by using time series

can be divided into two classes: static-based method, and

dynamic-based method. The former utilized the whole brain

time series of fMRI to bridge links between ROIs for AD

analysis. The direct way of constructing a brain functional

network is to compute the person’s correlation (PC) between

any paired brain regions (Wang et al., 2007). To reduce

the possible impact of adjacent ROIs, Fransson and Marrelec

(2008) employed partial correlations to handle this problem and

achieved good performance in characterizing the changes of

the default mode network associated with the disease. But the

calculation of an inverse matrix usually comes up with multiple

solutions, so researchers adopted certain constraints on the

partial correlation estimation for a stable solution. For example,

thematrix-regularized network was encoded asmodularity prior

to optimizing sparse brain network and they (Qiao et al., 2016)

discovered potential biomarkers for personalized diagnosis. The

latter method benefits the temporal changes of brain functional

connectivity for capturing subtle transient neural abnormalities

and has recently been a hot spot in neurological disease analysis.

The direct approach is to generate a sequence of functional

networks and designed a fused learning algorithm to jointly

estimate the temporal network for early MCI detection (Wee

et al., 2016). Furthermore, the work in Gong et al. (2022) treated

the functional time series and functional connectivity as the

node features and edges respectively, and developed a graph

convolutional network (GCN) based model to generate multiple

brain networks for characterizing brain temporal community

by setting six-time sliding steps. To address the noisy problem

of limited volumes in a sliding window, Zhou et al. (2018)

proposed a matrix-regularized learning framework to learn

sparse and modular high-order connectivity features for MCI

classification. Although many studies have been conducted

in BFN construction, they mainly rely on some specific
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preprocessing in the software toolboxes to obtain temporal

features of each ROI. The drawbacks lie in two fields: one is

that the multiple parameter settings may lead to different errors

from person to person, and another is that a series of processes

can consume much time and fall far away from the goal of

clinical application.

Recently, data-driven models are capable of mining effective

common characteristics from noisy data. It has been widely

applied in various fields of medical image analysis, such as

disease severe assessment (Wang et al., 2020c), lesion area

segmentation (Hong et al., 2022b), health assessment (Wang

et al., 2018b), disease detection (Wang et al., 2018a; Yang et al.,

2022), image reconstruction (Hu et al., 2020b). To improve

disease analysis performance, many advanced machine learning

algorithms are designed to extract discriminative and robust

features (Zeng et al., 2017; Lei et al., 2018; Hong et al.,

2019; Wang et al., 2020b). Compared with the classification

performance of traditional Convolutional Neural Networks

(CNN) (Wang S.-Q. et al., 2015), the 3D Convolutional Neural

Network (C3D) is good at capturing the local spatial features in a

three-dimensional volume and has been successfully applied on

the cross-modal image synthesis (Hu et al., 2020a) and disease

recognition (Wang et al., 2020a). Moreover, the transformer

network (Jiang et al., 2021) can model the global relationship

between distant sub-patch regions. The ROI-based features can

be learned by C3D and transformer in sequence from 4D

fMRI data. Besides, Generative adversarial networks (GANs)

are regarded as a special case of variational inference (Mo

and Wang, 2009; Wang, 2009) and demonstrates impressive

performance in matching generated data distributions. The

obvious evidence is the success in generating cross-modal

medical images (Hu et al., 2019, 2021) and domain adaptation

segmentation (Hong et al., 2022a). It can be used as a

regularizer to constrain the representation learning for stable

and generalizable disease analysis.

Inspired by the above observations, in this paper, a novel

Adversarial Temporal-Spatial Aligned Transformer (ATAT)

model is proposed to automatically learn brain functional

networks from 4D fMRI for detecting early AD. The

constructed brain functional networks are also analyzed to

identify important ROIs and abnormal connections. The main

contributions of this work are as follows: (1) The region-

sequence aligned generator (RAG) is developed to first learn

rough ROI-based features by incorporating the brain anatomical

information, then finely adjust the boundary features of adjacent

ROIs to generate ROI time series and connectivity features.

It greatly enhances the ROI time series learning and fully

explores the spatial-temporal characteristics and connectivity

information among the whole brain. (2) The multi-channel

temporal discriminator is designed to constrain the learned

ROI time series with the empirical samples. It regularizes

the generator optimization and makes the connectivity feature

more robust. (3) Experimental classification results prove the

effectiveness of our model, and the discovered important ROIs

and abnormal connectionsmay be potential biomarkers for early

AD diagnosis or treatment.

The rest of this article is organized as follows. Section 2

describes the novel proposed ATAT model for brain functional

network construction. The experimental settings and prediction

results with competing methods are presented in Section 3. In

the Section 4, the reliability and limitations of this work are

discussed. Finally, the Section 5 summarizes the main remarks

of this paper.

2. Materials and methods

The proposed model includes three main parts, such as (1)

data preprocessing, (2) architecture of the proposed model, and

(3) objective functions for optimization.

2.1. Data description and preprocessing

The experimental data comes from the public Alzheimer’s

Disease Neuroimaging Initiative (ADNI-3). A total of 330

subjects with functional Magnetic resonance (fMRI) were

downloaded from the website1, including 86 Normal Control

(NC), and three successive stages of early AD (i.e., 82 SMC,

86 EMCI, 76 LMCI). The fMRI data is acquired under the 3.0

Teslamachine. The detailed scanning parameters for fMRI are as

follows: the imaging resolution ranges from 2.5 to 3.75mmalong

X and Y dimensional direction, the imaging slice thickness is

between 2.5 and 3.4 mm; the time of repetition (TR) ranges from

0.607 to 3.0 s, and the time of echo (TE) value is in the range of 30

to 32 ms. The recording time length is about 10 min. The mean

age of NC, SMC, EMCI, and LMCI is 74.4, 76.1, 75.7, and 75.8,

respectively. The gender is roughly the same in each category.

The fMRI data is preprocessed by the software toolbox

GRETNA (Wang J. et al., 2015), which contains about six

procedures for constructing ROI-based time series. Each 4D

fMRI data is processed by balancing magnetization equilibrium,

removing head-motion artifacts, normalizing spatial space,

smoothing, and filtering (0.01Hz ≤ f ≤ 0.08Hz). Finally, the

automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002) warps the preprocessed image to 90 non-overlapping

spatial ROIs, and the final functional features with the size

90 × 187 are obtained as the truth samples. Meanwhile, the

empirical functional connectivity is estimated by calculating the

Pearson correlation coefficients between paired ROI time series,

and this procedure can generate a 90× 90 correlation matrix for

each subject.

1 http://adni.loni.usc.edu/
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FIGURE 1

The framework of the proposed model. It consists of three parts: generator, discriminator, and classifier. The input is a four-dimensional fMRI,

and the output is a brain functional network.

2.2. Architecture

The architecture of the proposed ATAT is shown in Figure 1.

It contains three parts: the region-sequence aligned generator

(RAG), the multi-channel temporal discriminator (MTD), and

the global-local connectivity classifier (GCC). The RAG includes

a region-guided feature learning network(RFLNet), and a

spatial-temporal aligned transformer (SAT), which transforms

the 4D fMRI into ROI time series and brain functional network.

Firstly, the raw fMRI data is first sent to the RFLNet for

rough ROI-based feature extraction, and the SAT is utilized to

finely adjust the feature for adjacent ROIs and align the global

temporal correlation between any paired ROIs. Meanwhile,

the obtained ROI time series is linearly transformed into

brain functional networks through the connectivity learning

(CL) network. After that, the generated ROI time series is

constrained with the real sample distribution by the MTD.

Finally, both ROI time series and brain functional networks are

sent to the GCC for disease prediction. There are five objective

functions in the model’s optimization, including generator

loss, discriminator loss, reconstruction loss, classifier loss, and

regularized loss.

2.2.1. Region-sequence aligned generator

2.2.1.1. Region-guided feature learning network

As illustrated in Figure 2. This network learns a rough

mapping from the raw 4D fMRI to ROI-based time series by

introducing the position and volume of the brain anatomical

regions. The size of input data X is 64 × 64 × 48 × 187. It

first passes through four blocks with three successive layers:

3 × 3 × 3 convolutional layers with 1-stride, 2 × 2 × 2

average pooling layer with 2-stride, and a combination layer

of batch normalization(BN) + ReLu activation. The channel

number of the above four convolutional layers are 8, 16, 32, 64.

Then one 1 × 1 × 1 convolutional layer with 1-stride is used to

increase the channels for matching the N ROIs, followed by a

sigmoid activation function.

Next, we normalize the central location (x, y, z) and volume

(v) of N anatomical ROIs to constrain the brain region

information in the range 0− 1. Finally, the (x, y, z, v) of N ROIs

are treated as ROI embeddings, which are concatenated with

the flattened feature of sigmoid layer output, which is sent to a

one-layer linear projection (LP) layer for generating rough ROI

features. The rough ROI feature can be expressed as:

F1 = RFLNet(X, x, y, z, v) (1)

here, the X is the four dimensional volume data fMRI; x, y, z, v ∈

R
N×1; F1 ∈ R

N×q, the RFLNet is a combination of several

convolution and pooling operations.

2.2.1.2. Spatial-temporal aligned transformer

To learn more fined ROI temporal features, the spatial-

temporal aligned transformer module is designed to recalibrate

boundary ROI features and time sequence variations. It splits

into two parts: the spatial multi-head central attention (SMCA)

and the temporal aligned feed-forward (TAFF). Every ROI is

regarded as a token. The rough ROI feature is first sent to three
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FIGURE 2

The detailed structure of the RFLNet. The input is an example of three-dimensional fMRI volume with the size 64× 64× 48, and the ROI

information of the anatomical atlas with the size N× 4. The FRFNet outputs the initial feature for each ROI.

parallel LP layers to get query (Q), key (K), and value (V). Note

that, the calculation of K and V needs to consider the ROI

embeddings. The formulas can be defined as:

Q = LP(F1), K = LP(F1||x||y||z||v), V = LP(F1||x||y||z||v)

(2)

where, || means the concatenation operation. Then Q,K,V ∈

R
N×q are separated into h heads. Each head of token (i.e.,

Qi,Ki,Vi) has the dimensional size q/h. Taking one head as an

example, the central attention (CA) can be expressed:

CAi = Softmax(QiK
T
i /

√

q/h)Vi (3)

here, i means the index of h heads. The output of the spatial

multi-head central-attention module is the concatenation of all

heads and then with an LP layer (including residual mapping

and layer normalization). It can be defined as:

SMCA = LP(CA1||CA2||...||CAh)+ F1 (4)

The SMCA has the size N × q.

Next, the TAFF module adjusts the temporal characteristics

through the down mapping (DM) and up mapping (UM) layers

and reduces the potential noise effect. The DM layer reduces the

dimensional of SMCA from q to q/2, and the UM layer recovers

the feature’s dimension. Finally, the output of the TAFF module

can be defined as:

Fg = UM(DM(SMCA))+ SMCA (5)

where, Fg is the generated ROI time series with the size N × q.

To learn an effective brain functional network Ag , we

first compute the Euclidean distance between any pair of ROI

features and then apply a mapping matrix to it for similarity

adjustment. Finally, a Gaussian kernel is introduced to learn

non-linear projection for precise connectivity estimation. The

formula can be defined as:

Ag(i, j) = exp(−
(Fig − F

j
g)
2W

2σ 2
) (6)

here, Ag(i, j) represents the functional connectivity between

pairwise ROIs. Fig ∈ R
1×q means the ith ROI time series. W ∈

R
q×q is time series transformable matrix. σ is the bandwidth

of the Gaussian kernel, controlling the sparsity with the default

value 2.

2.2.2. Multi-channel temporal discriminator

As shown in Figure 3, the multi-channel temporal

discriminator (MTD) is used to constrain the generated

functional time series (Fg) distribution consistent with the

empirical functional time series (Fe). The Fe is computed from

the software toolbox, which is treated as the true sample. The

structure of MTD consists of N parallel networks, containing

three linear projections with q/2, q, and q/2 neurons. Each

MTD accepts i-th ROI time series and outputs one discriminate

value. Averaging all the discriminate values is the final

discriminate result.

2.2.3. Global-local connectivity classifier

The structure of the global-local connectivity classifier

(GCC) is illustrated in Figure 4. It accepts both functional

time series (i.e., Fe or Fg) and functional network (i.e., Ae

or Ag), outputs the disease label. A total of 5 layers are

designed in the GCC, including three graph convolutional

layers, one graph pooling layer, and one three-layer perceptron.

It is based on the graph convolutional network. The first

three layers (i.e., Gconv1,Gconv2,Gconv3) are utilized to diffuse
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global features and reduce the ROI feature dimension. The

graph pooling layer (Gpool) is utilized to average features

along the ROI feature dimension and get one value for each

ROI. And the MLP layer learns a linear mapping to recognize

the disease.

2.3. Objective functions

In this section, the five loss functions defined below

are utilized to optimize the model for disease prediction

and analysis. The reconstruction loss Lrec can constrain the

generator and retain the empirical features Fe, the generate

loss Lg and discriminate loss Ld are combined to optimize

the generator and discriminator, the classification loss Lcls and

regularized loss Lreg are utilized to upgrade the parameters

of CL network and GCC network. For the convenience of

explanation, we make the following simplification: G means

all the operations in the Region-sequence aligned generator, D

means the multi-channel temporal discriminator, and C is the

FIGURE 3

The structure of the multi-channel temporal discriminator. It

accepts the empirical time series or the generated time series,

and outputs the average discriminant result for distribution

constraints of all ROI time series.

global-local connectivity classifier. The raw fMRI data X follows

the distribution PfMRI , the PFe and PAe represent the empirical

functional time series Fe and empirical BFN Ae distribution,

respectively. Y is the truth label. These loss functions are defined

as follows:

Lrec = EX∼PfMRI ,Fe∼PFe ( ||G(X)− Fe|| ) (7)

Lg = EX∼PfMRI
[ (1− D(G(X)))2 ] (8)

Ld = EX∼PfMRI
[ (D(G(X)))2 ]+ EFe∼PFe [ (1− D(Fe))

2 ] (9)

Lcls = EX∼PfMRI
[−Y · log(C(G(X)))]

+ EAe∼PAe ,Fe∼FAe [−Y · log(C(Ae, Fe))] (10)

Lreg = E(||W||) (11)

The hybrid cost of the proposed model is:

Lall = Lrec + Lg + Ld + Lcls + λLreg (12)

3. Experiments and results

3.1. Experimental setup

There are six binary classification tasks for the evaluation

of the proposed model, including NC vs. SMC, NC vs.

EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI,

and EMCI vs. LMCI. The evaluation metrics are Accuracy

(ACC), Sensitive (SEN), Specificity (SPE), and F1-score. We

repeated the 10 times experiment using the five-fold cross-

validation on each binary classification and utilized the mean

value metrics for the final prediction. To demonstrate our

model’s good ability in FBN construction, we introduce two

classifiers [i.e., SVM (Suthaharan, 2016) and GCN (Kipf and

Welling, 2016)] to compare the BFN constructed by ATAT

and Empirical.

FIGURE 4

The structure of the global-local connectivity classifier.
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FIGURE 5

Display of brain functional network examples at di�erent disease stages. The BFNs in the upper row are generated by the GRETNA toolbox, and

the BFNs in the lower row are generated by the proposed model.

FIGURE 6

Prediction results of three scenarios tasks using (A) the SVM classifier and (B) the GCN classifier.

Our proposed model was implemented with the TensorFlow

framework on Ubuntu18.04 and the GPU of NVIDIA GeForce

RTX 3080 Ti. The parameters in the experiments are defined

as follows: N = 90, q = 187, h = 11,m = 3, λ =

10−5. During the training, we first update the weights in the

generator and the discriminator, then fix part of the generator

and optimize the network of CL and GCC. The learning rate

of the generator and the classifier were set to 0.0001, and

for the discriminator, the learning rate is set to 0.0004. The

Adam was adopted for training the proposed model with batch

size 2.

3.2. Prediction results

This section demonstrates the good performance of BFN

constructed by the proposed model. As shown in Figure 5, the

upper row shows the four stages of empirical FBN derived from

the GRETNA, while the lower row displays the corresponding

FBNs by the proposed model. The main connectivity patterns

have been preserved and dense connections become sparse

by comparing the empirical and ours. Figure 6 gives the

classification result comparison in terms of three scenarios tasks.

For the GCN classifier, the BFNs constructed by ours achieve the
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FIGURE 7

Spatial visualization of top 10 brain regions in the six classification scenarios. (A) NC vs. SMC. (B) NC vs. EMCI. (C) NC vs. LMCI. (D) SMC vs. EMCI.

(E) SMC vs. LMCI. (F) EMCI vs. LMCI.

best prediction results with a mean ACC of 87.50%, a mean SEN

of 84.26%, a mean SPE of 90.58% and a mean F1 of 86.81% in

NC vs. SMC task; the mean values of SMC vs. EMCI are 90.47,

91.86, 89.02, and 90.80%; in EMCI vs. LMCI task, the predicted

results are 85.61, 84.86, 86.27, and 84.70%. The standard error

also shows the superior stability of the proposed model.

To investigate the potential AD-related ROIs, we shield

one brain region and calculate the classification ACC as

the effect of this ROI on AD progression. After sorting the

ACCs in ascending order, the top 10 values are the most

important ROI in the classification evaluation. As is shown in

Figure 7, the spatial distribution of 10 important AD-related

ROIs is displayed in lateral, medial, and dorsal views using

the BrainNet Viewer (Xia et al., 2013). Specifically, the top 10

related ROIs are IFGoperc.L, MTG.R, PCL.L, PUT.R, CUN.L,

SMA.R, LING.L, DCG.R, PCUN.R, DCG.L in NC vs. SMC

classification scenario; The ten ROIs, including PCL.R, CAL.L,

CUN.R, HIP.R, CAL.R, TPOsup.L, SFGdor.L, ACG.R, CAU.R,

PCL.L, are important for NC vs. EMCI; also, the top 10

ROIs of NC vs. LMCI are SOG.L, ORBsup.L, REC.L, PUT.L,

PCG.L, ITG.L, PCUN.R, MTG.R, PUT.L, ORBsupmed.L; For

SMC vs. EMCI and SMC vs. LMCI classification, the important

ROIs are OLF.L, CUN.R, PCUN.L, CAL.R, CAU.R, LING.L,

ACG.R, CAL.L, PCL.L, DCG.R, and PCUN.R, PUT.L, PUT.R,

PCL.L, SMA.R, ORBsup.L, LING.L, ANG.L, HIP.R, ACG.R,

respectively; For EMCI vs. LMCI, the important ROIs are

PCUN.L, ORBsupmed.R, THA.L, ORBsupmed.L, ORBsup.R,

CAU.R, CAL.L, PUT.L, REC.L, ORBsup.L.

3.3. Brain network analysis

Besides the prediction of different early AD stages, the

other major purpose is to analyze the learned FBNs. After

applying the ATAT model to each subject, we can obtain

the mean FBN for each group of patients (i.e., NC, SMC,

EMCI, and LMCI). To investigate the altered connectivity of

FBN between different groups, we compute the difference of

six paired scenarios as shown in Figure 8. In each subplot,

reduced and increased connectivity can be observed between

different paired groups. To analyze the significant connections,

we set the 90% quantile value of the altered connectivity

strength as the threshold. The pictures in the lower row of

each subplot are the corresponding connectivity matrices by

setting the threshold value. Figure 9 shows these significant

connections in a circular graph. The number of reduced

connections are 219, 263, 235, 251, 222, and 163 for NC vs.

SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC

vs. LMCI, EMCI vs.LMCI, respectively; the corresponding

number of increased connections are 183, 139, 166, 150, 179,

239. To show the main connectivity patterns in different

classification scenarios, we select the top 2% largest altered

connections (i.e., reduced, and increased). As shown in

Figure 10, different connectivity patterns can be seen in different

classification scenarios. Figure 11 depicts the top 5 reduced

and top 5 increased connections in the axial and coronal

view direction. The connectivity-related ROIs are listed in

Tables 1, 2.
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FIGURE 8

(A–F) The results of the altered functional connectivity estimated from the averaged BFNs between di�erent groups (i.e., NC vs. SMC, NC vs.

EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI, EMCI vs. LMCI). In each subfigure, the upper row means the reduced and increased

connections, the lower row shows the altered connections selected from the upper row with a threshold of 90% quantile value.

FIGURE 9

Circular graph of altered functional connectivity in MCI patients among 90 Anatomical Automatic Labeling (AAL) atlas regions. (A) From NC to

SMC. (B) From NC to EMCI. (C) From NC to LMCI. (D) From SMC to EMCI. (E) From SMC to LMCI. (F) From EMCI to LMCI.
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FIGURE 10

Top 2% altered functional connections in strength evaluation in the six classification scenarios. Each subfigure shares the same color bar, which

means the absolute connection strength. (A) NC vs. SMC. (B) NC vs. EMCI. (C) NC vs. LMCI. (D) SMC vs. EMCI. (E) SMC vs. LMCI. (F) EMCI vs.

LMCI.

FIGURE 11

The most significant 5 reduced connections and 5 increased connections mapped on the AAL 90 template using the BrainNet Viewer software

package. Blue color means the ROIs, red color means reduced connections, and green color means increased connections. (A) From NC to

SMC. (B) From NC to EMCI. (C) From NC to LMCI. (D) From SMC to EMCI. (E) From SMC to LMCI. (F) From EMCI to LMCI.
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TABLE 1 The top 10 significant altered connections estimated from the generated FBNs in NC vs. SMC, NC vs. EMCI, NC vs. LMCI using AAL90

template (− means reduced connections, + means increased connections).

From NC to SMC From NC to EMCI From NC to LMCI

Indices Names Indices Names Indices Names

-

11, 13 IFGoperc.L, IFGtriang.L 11, 13 IFGoperc.L, IFGtriang.L 11, 13 IFGoperc.L, IFGtriang.L

3, 24 SFGdor.L, SFGmed.R 19, 20 SMA.L,SMA.R 48, 56 LING.R, FFG.R

25, 26 ORBsupmed.L, ORBsupmed.R 25, 26 ORBsupmed.L, ORBsupmed.R 2, 58 PreCG.R, PoCG.R

45, 46 CUN.L, CUN.R 2, 58 PreCG.R, PoCG.R 53, 89 IOG.L, ITG.L

54, 90 IOG.R, ITG.R 6 9, 70 PCL.L, PCL.R 54, 90 IOG.R, ITG.R

+

7, 19 MFG.L, SMA.L 3, 20 SFGdor.L, SMA.R 4, 19 SFGdor.R, SMA.L

14, 20 IFGtriang.R, SMA.R 46, 56 CUN.R, FFG.R 5, 26 ORBsup.L, ORBsupmed.R

29, 30 INS.L, INS.R 59, 65 SPG.L, ANG.L 25, 27 ORBsupmed.L, REC.L

32, 33 ACG.R, DCG.L 71, 72 CAU.L, CAU.R 21, 73 OLF.L, PUT.L

47, 48 LING.L, LING.R 87, 89 TPOmid.L, ITG.L 40, 88 PHG.R, TPOmid.R

TABLE 2 The top 10 significant altered connections estimated from the generated FBNs in SMC vs. EMCI, SMC vs. LMCI, EMCI vs. LMCI using AAL90

template (− means reduced connections, + means increased connections).

From SMC to EMCI From SMC to LMCI From EMCI to LMCI

Indices Names Indices Names Indices Names

-

31, 32 ACG.L, ACG.R 20, 24 SMA.R, SFGmed.R 3, 20 SFGdor.L, SMA.R

47, 48 LING.L, LING.R 32, 33 ACG.R, DCG.L 53, 55 IOG.L, FFG.L

46, 60 CUN.R, SPG.R 47, 48 LING.L, LING.R 67, 68 PCUN.L, PCUN.R

51, 61 MOG.L, IPL.L 43, 56 CAL.L, FFG.R 71, 72 CAU.L, CAU.R

20, 69 SMA.R, PCL.L 67, 68 PCUN.L, PCUN.R 48, 90 LING.R, ITG.R

+

3, 4 SFGdor.L, SFGdor.R 5, 6 ORBsup.L, ORBsup.R 4, 19 SFGdor.R, SMA.L

51, 53 MOG.L, IOG.L 25, 26 ORBsupmed.L, ORBsupmed.R 26, 27 ORBsupmed.R, REC.L

71, 72 CAU.L, CAU.R 27, 28 REC.L, REC.R 5, 28 ORBsup.L, REC.R

81, 83 STG.L, TPOsup.L 45, 46 CUN.L, CUN.R 31, 32 ACG.L, ACG.R

48, 90 LING.R, ITG.R 51, 53 MOG.L, IOG.L 50, 52 SOG.R, MOG.R

4. Discussion

4.1. E�ect of the generator

The main goal of the proposed model is to generate

BFNs from 4D fMRI data. The modules in the generator play

an important role in disease prediction and brain network

analysis. To investigate the influence of the generator structure

on the classification performance (i.e., NC vs. LMCI), we

replace the RFLNet and the SAT modules with traditional

C3D (Hong et al., 2020) and transformer (Jiang et al., 2021),

respectively. In both cases, the anatomical ROI information

is not included in the module. Figure 12 shows that either

the C3D or Transformer network can degrade the prediction

performance, and the traditional transformer network has a

worse influence on classification than the C3D network. It may

indicate the proposed RFLNet learns rough ROI-based features

with a litter effect on the results, and the SAT network finely

adjusts the adjacent ROI-based temporal features which may

greatly influence the classification performance. Furthermore,

the reconstructed error of the ROI time series is measured by

the mean absolute error (MAE) metric. As shown in Figure 13,

the divergence of the MAE for each disease (i.e., NC, SMC,

EMCI, and LMCI) demonstrates the reliable results of the

designed generator.

4.2. Comparison with related works

In the six classification scenarios, there are eight ROIs that

overlap more than three times in the identified brain regions.

These important ROIs are the orbital part of the superior frontal

gyrus (ORBsup.L), the anterior cingulate and paracingulate

gyri (ACG.R), the calcarine fissure and surrounding

cortex (CAL.L), the lingual gyrus (LING.L), the precuneus

(PCUN.R), the paracentral lobule (PCL.L), the caudate

nucleus (CAU.R), the lenticular nucleus putamen (PUT.L).

Most of these ROIs are consistent with the previous studies
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FIGURE 12

Influence of di�erent generator structures on the classification

performance.

FIGURE 13

Mean absolute error between the empirical and generated time

series over the training processes.

(Li et al., 2017; Yu et al., 2017; Ye et al., 2019), which

demonstrates the strongly correlation with AD. In addition,

the most significant altered connectivity (also called abnormal

connections) related ROIs contain the identified eight brain

regions. These listed ROIs in the table are mainly distributed

in the frontal lobe, temporal lobe, and occipital lobe. The

frontal lobe is located in the most anterior part of the cerebral

hemispheres, accounting for the first 1/3 of the surface of the

cerebral hemispheres. It is mainly related to higher mental

activity, including physical activity control, language speaking,

self-awareness, and emotional expression. The identified ROIs

(i.e., SFGdor, ORBsup, IFGoperc, IFGtriang) associated with

the superior frontal gyrus can be founded in Whitwell et al.

(2007). The visual and language information is memorized by

the temporal lobe, in which patients with AD showed abnormal

levels of tau protein in the inferior temporal gyrus (Mormino

et al., 2016). The occipital lobe participates in visual processing,

for example, the lingual gyrus shows altered functional

connectivity in AD patients (Skouras et al., 2019). In general,

the derived important ROIs and abnormal connections by the

proposed model can reflect the main characteristics associated

with AD.

4.3. Limitations and future directions

Although the proposed model in the experiment has

achieved good classification results and reliable connectivity

analysis, there are two deficiencies in this work. One is that it

only considers the binary classification tasks, which may not

capture the continuously changing characteristics during the

disease progression. We will conduct multi-class classification

experiments to investigate the common changes at different

stages of AD. Another limitation is that the dataset used in this

study is relatively small. In the future study, we will increase the

amount of data to validate the proposedmodel for brain disorder

analysis by using other larger datasets [UK biobank (Sudlow

et al., 2015), ABIDE (Heinsfeld et al., 2018)].

5. Conclusion

In this paper, we proposed a novel ATAT model to

construct brain functional networks for early AD diagnosis

and analysis. The three-player generative adversarial network

is alternatively optimized and can learn effective functional

connectivity features from 4D fMRI. By incorporating the brain

anatomical information, the rough ROI features can be extracted

by focusing on the local spatial information of individual brain

region. Furthermore, the SAT module explores the temporal

characteristics and connectivity information for finely adjusting

the boundary features of adjacent ROIs. Meanwhile, the

generated features from the region-sequence aligned generator

are constrained by the adversarial loss and reconstruction

loss. Compared to the empirical method, the brain functional

networks constructed by the proposed model achieve higher

classification performance. The identified important ROIs

and abnormal connections may be the potential biomarkers

for early AD diagnosis. Generally, our proposed model has

the potential in constructing complex functional connectivity

features and exploring abnormal functional connections for

neurodegenerative diseases study.
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