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Video emotion recognition aims to infer human emotional states from the

audio, visual, and text modalities. Previous approaches are centered around

designing sophisticated fusion mechanisms, but usually ignore the fact that

text contains global semantic information, while speech and face video show

more fine-grained temporal dynamics of emotion. From the perspective of

cognitive sciences, the process of emotion expression, either through facial

expression or speech, is implicitly regulated by high-level semantics. Inspired

by this fact, we propose a multimodal interaction enhanced representation

learning framework for emotion recognition from face video, where a

semantic enhancement module is first designed to guide the audio/visual

encoder using the semantic information from text, then the multimodal

bottleneck Transformer is adopted to further reinforce the audio and visual

representations by modeling the cross-modal dynamic interactions between

the two feature sequences. Experimental results on two benchmark emotion

databases indicate the superiority of our proposed method. With the semantic

enhanced audio and visual features, it outperforms the state-of-the-artmodels

which fuse the features or decisions from the audio, visual and text modalities.

KEYWORDS

emotion recognition, representation learning, cross-modal interaction,

cross-attention, semantic enhancement

1. Introduction

Automatic emotion recognition, as the first step to enable machines to have

emotional intelligence, has been an active research area for the past two decades.

Video emotion recognition (VER) refers to predicting the emotional states of the target

person by analyzing information from different cues such as facial actions, acoustic

characteristics and spoken language (Rouast et al., 2019; Wang et al., 2022). At the heart

of this task is how to effectively learn emotional salient representations from multiple

modalities including audio, visual, and text.
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Previous works usually extract modality-specific features,

such as the word-level embeddings from text (Pennington et al.,

2014), and frame-level acoustic features from speech (Degottex

et al., 2014) or appearance descriptors from face images

(Baltrusaitis et al., 2018), then use various fusion strategies to

explore the temporal dependencies among the feature sequences

of different modalities. For instance, the bidirectional cross-

attention proposed by Tsai et al. (2019) to attend interactions

between any two pair-wise feature sequences, was extended by

Zheng et al. (2022) to implement interactions between three

modalities by connecting the cross-attention modules in series.

In He et al. (2021), the time squeeze fusion was proposed

to model the time-dependent modality-specific interactions. In

these works (Tsai et al., 2019; He et al., 2021; Zheng et al.,

2022), the audio, visual, and text modalities were treated as

three time-series that play the same role. Several works proposed

to first fuse the audio and visual feature sequences into a

higher level space, then fuse this bimodal feature sequence

with the textual feature sequence (Fu et al., 2022; Zhang et al.,

2022). Alternatively, text-centered frameworks were designed

to explore the cross-modal interactions between textual and

non-textual feature sequences (Han et al., 2021; He and Hu,

2021; Wu et al., 2021). In the works above, the textual features

are feature sequences composed of the word-level embeddings.

In fact, the whole sentence contains more accurate semantics

than the word-level embeddings. Accordingly, the challenge is

how to effectively leverage textual emotion information while

preserving the high-level global semantics. Facing this challenge,

Sun et al. (2020) adopted the pre-trained BERT model (Devlin

et al., 2019) to obtain global text embeddings and two long-

short term memory (LSTM) models to extract sentence-level

audio and visual features independently, then modeled the

correlations between the outer-product matrices of text-audio

and text-visual features to learn the multimodal representations.

In Dai et al. (2020), three LSTMs were used to get the global

representations of audio, visual, and text modality, respectively.

Meanwhile, a set of emotion embeddings was constructed

for each modality, representing the semantic meanings for

the emotion categories to be recognized. Specifically, the

pre-trained GloVe (Pennington et al., 2014) embeddings of

emotion category words (happy, sad, etc) were used as textual

emotion embeddings, which were mapped to obtain the audio

and visual emotion embeddings, respectively, through two

learnable mapping functions. Then, the similarity score between

the emotion embeddings and the global representation was

calculated for each modality separately, and finally fused to get

the emotion prediction. This work leveraged the global semantic

information, however, the semantics contained in the emotion

category words are less goal-oriented toward the target emotion

and the important cross-modal feature interactions are ignored.

In fact, as a complex psychological and physiological

phenomenon, emotion can be pre- and post-cognitive: initial

emotional responses produce thoughts, which produce affect

(Lerner and Keltner, 2000). From this perspective, the process

of emotional expression, either through facial expression or

the way of speaking, is implicitly regulated by the semantic

information. Therefore, in this work, we propose a semantically

enhanced module for audio or visual encoders, striving to learn

more emotion-relevant features from individual video frames

or speech segments with the guidance of high-level semantic

information from text.

Additionally, in order to capture the temporal dynamics

in audio and video signals, sequential learning is usually

performed over the unimodal or concatenated features (Dai

et al., 2021; Nguyen et al., 2021). However, such approach lacks

information exchanging between the audio and visual sequential

features. A classical solution is based on the bidirectional

cross-attention between the pair-wise modalities (Tsai et al.,

2019). Nevertheless, the redundancy that exists in audio and

video signals is ignored, moreover, the bidirectional cross-

attention leads to additional computational complexity. In

the field of video understanding, the Multimodal Bottleneck

Transformer (Nagrani et al., 2021; Liu et al., 2022) was

recently proposed for audiovisual fusion with the advantage

of condensing relevant unimodal information and meanwhile

reducing the computational cost. Inspired by this, we adopt

the bottleneck Transformer to reinforce the audio and visual

features, by leveraging attention bottlenecks as a bridge to

explore the temporal interactions between the two modalities.

By doing so, our model can simultaneously consider exchanging

complementary information and reducing redundancy during

the coordinate representation learning process of audio and

visual modalities.

Overall, we propose a representation learning approach

for video emotion recognition that achieves dual-enhancement

through multimodal interactions. First, the encoders of audio

and visual modalities are enhanced by the global semantic

information in text. Then, the audio and visual feature sequences

are reinforced again with the complementary information of

each other. Finally, the attentive decision fusion is performed

to obtain the final emotion prediction. The effectiveness of the

proposed method is verified by extensive experiments on two

widely used emotion datasets, i.e., IEMOCAP (Busso et al.,

2008) and CMU-MOSEI (Zadeh and Pu, 2018). In summary, the

contributions are summarized as follows:

• We propose a semantic enhancement module for the audio

and visual feature encoder to enhance the audio and visual

features under the guidance of global semantics from the

text modality. The enhanced audio and visual features

contain more emotion-relevant information.

• To achieve efficient cross-modal interaction between

temporal audio and visual feature sequences, the bottleneck

Transformer is adopted as the cross-modal encoder.

Specifically, the bottleneck Transformer reinforces audio

and visual representations by modeling their dynamic
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interactions and meanwhile reducing redundancy in the

temporal sequences.

• We conduct extensive experiments on two benchmarks and

the results demonstrate the superiority of our proposed

method for video emotion recognition.

The remainder of this paper is organized as follows.

Section 2 reviews the previous related works on video emotion

recognition. Section 3 explains our proposed framework in

detail. Section 4 reports the experiment results, followed by the

conclusions and future work in Section 5.

2. Related works

2.1. Feature representations for video
emotion recognition

Extracting effective feature representations is the first and

foremost step in video emotion recognition. By considering

the heterogeneity of different modalities in the video, separate

models are used to extract unimodal features from the raw

data of each modality. For text modality, with the advances

in natural language processing, pre-trained models such as

Word2Vec (Mikolov et al., 2013) and BERT (Devlin et al., 2019)

are commonly used for word embedding. As for audio and visual

modalities, various hand-crafted features have been designed

based on corresponding domain knowledge, such as acoustic

descriptors including prosodic and spectral related parameters

(Degottex et al., 2014) and visual features based on facial

landmarks, facial action units, etc. (Baltrusaitis et al., 2018).

Alternatively, benefiting from the development of deep learning,

deep-learned feature representations based on the large-scale

pre-trained convolutional neural networks (CNN) such as

ResNet (He et al., 2016) and VGGish (Hershey et al., 2017) also

have been widely used for emotion recognition (Alisamir and

Ringeval, 2021; Li and Deng, 2022). Compared with those hand-

crafted features, the pre-trained CNN encoders can extract more

powerful visual/audio features. However, the general encoding

of versatile CNNs does not consider the speciality of emotion

and may further limit the emotional representation ability of

extracted deep features.

Recently, Nguyen et al. (2021) proposed a two-stream auto-

encoder architecture to learn compact yet representative features

from audio and visual raw data individually. Then the learned

audio and visual features are concatenated and fed into an LSTM

for sequential learning and predicting the dimensional emotion

scores. In Hazarika et al. (2020), shared-private representations

were learned through two separate encoders by projecting each

modality to modality-invariant and -specific subspaces, then

a Transformer was used to fuse these features into a joint

vector for final prediction. By decoupling the common and

specific patterns in audio, visual, and text modalities, the learned

shared-private representations were highly effective in reducing

the modality gap and contributed to significant gains. Self-

supervised representation learning also has been adopted for

emotion recognition. For instance, Yu et al. (2021) leveraged

self-supervised multi-task learning strategy to learn modality-

specific representations. Through joint training the multimodal

and uni-modal tasks, this model learned the consistency and

difference between different modalities simultaneously.

Our work aims at representation learning enhanced with

multimodal interactions. Different from previous work, we

leverage the high-level global semantics extracted from text

modality to guide the representation learning of audio and visual

encoders, and therefore the learned audio/visual features could

contain more emotion-related information.

2.2. Multimodal fusion for video emotion
recognition

Multimodal fusion is another core challenge for video

emotion recognition. Early works usually adopted the traditional

feature-level or decision-level fusion methods (Ma et al., 2019;

Zhang et al., 2019, 2021b; Sharma and Dhall, 2021). With the

rise of attention mechanisms, recent works are mostly focusing

on cross-modal interactions to explore more effective fusion

strategies.

In Tsai et al. (2019), the powerful Transformer network

was introduced to multimodal emotion recognition task, to

take its advantage of modeling long-term dependencies across

modalities. The authors adopted the Transformer decoder-like

module to fuse cross-modal information between any two paired

modalities by latently adapting one modality to another. To

further mine the cross-modal interactions between two or three

modalities simultaneously, Zheng et al. (2022) proposed cascade

multi-head attention for full fusion of multimodal features by

connecting attention modules in series and regarding different

modality features as query for different attention modules.

The above-mentioned works focus on exploring the

interactions between different modalities by treating

audio, visual, and text modalities equally. Another type of

representative works argues that text plays a more important

role than audio and visual modalities and designs diverse

text-centered frameworks for multimodal emotion recognition.

In Han et al. (2021), the authors proposed a Transformer-based

bi-bimodal fusion network, consisting of two text-related

complementing modules, to separately fuse textual feature

sequence with audio and visual feature sequences. In Wu et al.

(2021), two cross-modal prediction modules, i.e., text-to-visual

and text-to-audio models, were designed to decouple the shared

and private information of non-textual modalities compared to

the textual modality. The shared non-textual information was

used to enrich the semantics of textual features and the private
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non-textual features were later fused with the enhanced textual

features through a regression layer for final prediction.

Apart from regarding text as the central modality that plays

the most important role among the three modalities, several

researchers take into account the difference between audio-

visual and text modalities in terms of information granularity.

For instance, Fu et al. (2022) proposed a non-homogeneous

fusion network by first fusing audio and visual feature sequences

through an attention aggregation module and then fusing

audio-visual features with textual feature sequence via cross-

modal attention. Similarly, Zhang et al. (2022) proposed a

hierarchical cross-modal encoder module to gradually fuse

the modality features. Specifically, an adversarial multimodal

refinement module was designed to decompose each modality-

specific features to common and private representations. The

audio and visual private features were first fused, then this

joint audio-visual feature sequence was fused with the textual

feature sequence, and finally the fused private features were

fused with the common features, resulting in the final joint

multimodal representation.

Different from these related works, we are inspired by the

emotion expression process that both facial expressions and

intonations are implicitly regulated by high-level semantics,

and propose a semantic enhancement module to leverage

the textual high-level semantics to guide audio and visual

representations. In addition, these semantically enhanced audio

and visual representations are further reinforced through a

multimodal bottleneck Transformer module to exchange their

complementary information while reducing redundancy.

3. Proposed method

Figure 1 depicts the architecture of the proposedmultimodal

emotion recognition (MER) framework with the semantic

enhancement module (SEM) and multimodal bottleneck

Transformer (MBT), denoted as MER-SEM-MBT. Specifically,

we first extract global textual features via the textual encoder

to represent the high-level semantics, which is used in the SEM

to guide the audio/visual encoder to learn emotionally relevant

audio/visual features. These semantically enhanced audio and

visual feature sequences are sent into the cross-modal encoder

to mutually reinforce their representations through cross-modal

interaction via a bottleneck Transformer. The reinforced audio

and visual features are then separately input into a global

average pooling (GAP) layer which is followed by a multi-

layer perceptron (MLP) to output unimodal decisions. In the

meanwhile, the global textual features are fed into another MLP

to get the textual decision. Finally, attention-based decision

fusion is adopted for the final emotion prediction.

The details are explained in the following subsections.

3.1. Unimodal encoder

For emotion recognition from text, one must analyze the

affective state from the complete sentence rather than individual

words or phrases. In contrast, regarding the audio and visual

modalities, a single video frame or a speech segment longer

than 250 ms (Provost, 2013) may contain meaningful emotion

information. Therefore, when designing the unimodal encoders,

the global semantic features are extracted from the transcripts of

the sentences, the audio feature sequence is extracted from the

temporal segments, and the visual feature sequence is extracted

at the frame level.

3.1.1. Textual encoder

With the advent of Transformer, pre-trained large models

such as BERT provided a new paradigm for dynamic text feature

encoding based on contextual information with the help of

the self-attention mechanism. Therefore, we use the pre-trained

BERT model provided in the HuggingFace library (Wolf et al.,

2020) as textual encoder. Specifically, the class token (“CLS”) of

the output layer is adopted as the high-level semantic features

It ∈ R
dt , where dt = 768.

3.1.2. Audio encoder

We first calculate the log mel-spectrogram by utilizing 64

Mel filters on the spectrum obtained from the Short-Time

Fourier Transform, with a window size of 25 ms and a hop

of 10 ms. Then the log mel-spectrogram is split into segments

of 960 ms, each of which is fed into the pre-trained VGGish

(Hershey et al., 2017) network, outputting a 128-dimensional

feature vector from the last fully-connected layer. Therefore, for

an audio clip of l s, the audio feature sequence Ia ∈ R
Nt×da is

obtained, with the sequence length Nt = l/0.96 and da = 128.

3.1.3. Visual encoder

The input of visual encoder is a facial image sequence after

face alignment. Considering the redundancy between adjacent

frames in the face video, we keep consistent with the rate of

audio features and randomly sample one frame every 960 ms,

forming a face image sequence as input to the visual encoder.

For each image, the ResNet18 (He et al., 2016) pre-trained on the

AffectNet emotion dataset (Mollahosseini et al., 2017) is adopted

as backbone to extract a 512-dimensional spatial feature vector.

Correspondingly, for a face video, the visual feature sequence

Iv ∈ R
Nt×dv is obtained, with dv = 512.
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FIGURE 1

The proposed end-to-end multimodal emotion recognition (MER) framework with the semantic enhancement module (SEM) and multimodal

bottleneck Transformer (MBT), is denoted as MER-SEM-MBT. Given a facial video clip, the global semantic feature is first extracted through the

textual encoder, which is used to guide the audio and visual representation learning through the semantic enhancement module. Then the

cross-modal encoder is adopted to reinforce audio and visual representations through temporal cross-modal interaction via a multimodal

bottleneck Transformer. Lastly, three separate multi-layer perceptrons (MLPs) are implemented to get unimodal decisions from audio, visual, and

text modalities, respectively. Attentive fusion is performed to aggregate these decisions for final emotion prediction. The example facial video is

from IEMOCAP dataset (Busso et al., 2008).

3.1.4. Semantic enhancement module in
audio/visual encoder

In order to guide the audio and visual representation

learning, a semantic enhancement module (SEM) is designed to

infuse high-level semantic information during audio and visual

feature encoding. The implementation of SEM is based on the

cross-attention mechanism. As shown in Figure 2, each SEM

takes the feature map Fi ∈ R
Ci×Hi×Wi from the middle layer

of the audio/visual encoder, as well as the semantic features

It ∈ R
dt from the textual encoder as inputs, then outputs the

enriched audio/visual feature map F′i ∈ R
Ci×Hi×Wi with high-

level semantic information. Here, Ci, Hi, and Wi represent the

number of channels, the height and width of the feature map

after the ith convolution group, respectively.

To retrieve emotion-relevant information from the semantic

features to guide audio/visual representation learning, we use

the input audio/visual feature map Fi as query Qf and the input

semantic features It as key Kt and value Vt during the cross-

attention computation, implying a latent adaption from text to

audio/visual modality. Formally, the query, key, and value are

computed as follows:

Qf = Convq(Fi) ∈ R
Ci×Hi×Wi ; Kt = Convk(It) ∈ R

Ci ;

Vt = Convv(It) ∈ R
Ci

(1)

where Convq, Convk, and Convv are projection functions with

1× 1 convolution operation. Next we compute the dot products

of Qf with Kt , divided by
√
Ci, and then apply a softmax

operator to obtain the weights on Vt . Note that Qf is first

flattened to unroll the spatial dimensions of feature map for

proper calculation, yielding Q′
f
∈ R

Ci×HiWi . The output matrix

is formulated as:

Eatt = softmax





Q′
f
T
Kt

√
C



Vt
T ∈ R

HiWi×Ci (2)

Then, the attention map Eatt is reshaped to the same size

of the input audio/visual feature map through the unflatten

and transpose operations, yielding E′att ∈ R
Ci×Hi×Wi . Finally,

the enriched feature map F′i is output with semantic guided

information as follows:

F′i = ReLU
(

Convo
(

Fi + LN(E′att)
))

∈ R
Ci×Hi×Wi (3)

whereConvo denotes 1×1 convolution operation, LN represents

layer normalization (Ba et al., 2016), and ReLU is the nonlinear

activation function.

Conventionally, the audio encoder backbone VGGish

contains four convolution groups, and the visual backbone

ResNet18 contains five convolution groups, as shown in

Figure 1. We empirically insert the semantic enhancement

module after the second and last convolution group (conv2 and

conv4) of VGGish, and the third and last convolution group

(conv3_x and conv5_x) of ResNet18, respectively. The effect of

the numbers of SEM in audio/visual encoder will be discussed in

the Section 4.

Equipped with SEM, the feature sequences output from

the audio and visual encoders are enhanced by the high-level

semantic information from the text modality, denoted as Ita and

Itv, respectively.
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FIGURE 2

The semantic enhancement module (SEM) in audio/visual encoder.

3.2. Cross-modal encoder

After obtaining the semantically enhanced audio and visual

feature sequences through the above-mentioned unimodal

encoders, a cross-modal encoder is required to model the cross-

modality relationship between audio and visual modalities.

The classical approach is to apply the pair-wise bidirectional

cross-attention (Tsai et al., 2019). In the case of considering

two modalities (audio and visual), this approach needs four

cross-modal Transformer branches, which greatly increases

the computational cost. Therefore, we borrow the solution of

multimodal bottleneck Transformer (MBT) (Liu et al., 2022)

from the field of video understanding, to implement the cross-

modal encoder with efficient interactions between audio and

visual feature sequences.

As shown in Figure 3, the MBT architecture contains two

parallel Transformer branches, serving audio and visual feature

sequences for temporal modeling, respectively. The attention

bottlenecks are used as the information bridge to exchange

complementary information and remove redundancy between

audio and visual modalities. Accordingly, the audio and visual

feature sequences are mutually reinforced through audio-visual

temporal interaction.

Specifically, linear projection is first performed to map the

audio/visual features into the identical dimension dm. Then, a

set of bottleneck tokens
{

bi
}Nb
i=1 are introduced to aggregate

audiovisual temporal information. Following Liu et al. (2022),

we use the same two-stage cross-modal interaction through

feature compression and expansion.

The first interaction stage implies a process of feature

compression using a multi-head attention (MHA) layer in the

audio and visual Transformer branch, respectively. By treating

bottleneck tokens as query and audio/visual tokens as key−value

pairs, the emotional-relevant multimodal information is

condensed into the corresponding audio/visual/bottleneck

tokens. Through summing up these three tokens, the

multimodal information is aggregated into
{

b′i
}Nb
i=1.

Subsequently, the second interaction stage is propagating

the aggregated multimodal emotional information to the target

audio/visual modality through another multi-head attention

layer in the audio and visual Transformer branch, respectively.

Different from feature compression, the bottleneck tokens are

treated as key − value and audio/visual tokens as query during

this process of feature expansion. Through this two-stage cross-

modal attention, audio and visual representations are reinforced

with complementary information through interaction with

another modality and different time stamps.

Next, the audio and visual features are separately fed into

a feed-forward network (FFN) layer to further increase non-

linearity, resulting in the reinforced audio and visual feature

sequences, denoted as Itva and Itav , respectively.

3.3. Attentive decision fusion

Finally, the mutually enhanced audio and visual feature

sequences are separately input into a global average pooling

(GAP) layer and anMLP to obtain unimodal decisions Sx ∈ R
M ,

where M represents the number of emotion categories and x ∈
{a, v} represents the audio or visual modality. Meanwhile, the

semantic feature vector It is input into another MLP to get the

textual decision St ∈ R
M .

When fusing these unimodal emotion decisions, we perform

attention-based decision fusion to assign higher weights to

emotionally salient modality. The unimodal decisions are first

concatenated as Scon = [Sa; Sv; St] ∈ R
M×3. Then, the

attention weights are calculated as:

S′ = tanh (W1Scon) (4)

αatt = softmax
(

WT
2 S

′
)

(5)
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FIGURE 3

The multimodal bottleneck transformer (MBT) architecture (Liu et al., 2022).

where W1 ∈ R
M×M and W2 ∈ R

M×3 are both trainable

parameters, and the attention weight αatt ∈ R
1×3. Finally, the

emotion prediction is output after attentive weighted fusion:

output = Sconα
T
att (6)

4. Experiments

4.1. Datasets

To validate the effectiveness of our proposed method,

we conduct experiments on two popular video emotion

recognition benchmarks, including the Interactive Emotional

Dyadic Motion Capture dataset (IEMOCAP) (Busso et al., 2008)

and the CMU Multimodal Opinion Sentiment and Emotion

Intensity dataset (CMU-MOSEI) (Zadeh and Pu, 2018):

• IEMOCAP consists of 10 performers, five males and five

females, who conduct dialogues in pairs to record 151

videos. These videos are segmented into 10,039 utterances

and annotated at the utterance level. Six categorical

emotions are considered in this work, namely happiness,

sadness, angry, frustrated, excited and neutral.

• CMU-MOSEI contains 3,228 video monologs of 1,000

speakers collected from the YouTube website. Annotation

of discrete emotion is performed on 23,453 video clips

with a total of six emotion categories: anger, disgust, fear,

happiness, sadness, and surprise.

For a fair comparison, we use the raw data reorganized

by Dai et al. (2021) to implement fully end-to-end training.

Specifically, the train/valid/test set of IEMOCAP includes 5,162,

737, and 1,481 samples, respectively, and the train/valid/test

split of CMU-MOSEI dataset corresponds to 14,524, 1,765,

and 4,188 video clips, respectively. Note that both datasets are

multi-labeled at the utterance level and the statistics are shown

in Table 1.

4.2. Evaluation metrics

We use the same metrics adopted in Dai et al. (2021): the

average binary accuracy (Avg. Acc) and the average F1 (Avg. F1)

for IEMOCAP, and the average binary weighted accuracy (Avg.

WA) and the average F1 for CMU-MOSEI. These metrics can be

formulated as follows:

Avg. Acc =
1

C

C
∑

i=1

Acci (7)

Avg. WA =
1

C

C
∑

i=1

WAi (8)

Avg.F1 =
1

C

C
∑

i=1

F1i (9)

where C is the number of emotion categories, Acci, WAi, and

F1i denotes the binary accuracy, binary weighted accuracy and

F1 score of the i
th emotion category, respectively:

Acci =
TP

P + N
(10)

WAi =
TP × N/P + TN

2N
(11)
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TABLE 1 Statistics of the IEMOCAP and CMU-MOSEI datasets used in this work.

IEMOCAP

Happiness Anger Excited Frustrated Sadness Neutral

Train 398 757 736 1,298 759 1,214

Valid 62 112 92 180 118 173

Test 135 234 213 371 207 321

CMU-MOSEI

Happiness Anger Disgust Surprise Sadness Fear

Train 7,587 3,267 2,738 1,465 4,026 1,263

Valid 945 318 273 197 509 169

Test 2,220 1,015 744 393 1,066 371

F1i =
2TP

2TP + FP + FN
(12)

In which P and N denote the total number of positive

and negative samples, respectively, TP/TN denotes the number

of positive/negative samples that are correctly predicted,

FP/FN is the number of negative/positive samples that are

incorrectly predicted.

Considering the unbalanced distribution of emotion

categories, the Avg. F1 is used as the main evaluation indicator

during the training process.

4.3. Implementation details

Data preprocessing: For the input audio, log mel-

spectrogram is first calculated by using 64 mel-spaced frequency

bins on the spectrum obtained from a short-time Fourier

transform applying 25 ms windows every 10 ms. The log mel-

spectrogram is divided into non-overlapping 960 ms segments

that form the input to the audio encoder. The OpenFace

(Baltrusaitis et al., 2018) toolkit is utilized to perform face

detection and alignment from original videos. After obtaining

the facial image sequence from OpenFace, we consider the

redundancy between adjacent frames and randomly sample one

frame within every 960ms-long duration for each video, yielding

the input to the visual encoder. In addition, this sampling

operation enables audio and visual features to be temporally

aligned at the video level.

Network parameters: For the audio encoder backbone

VGGish, the output feature dimension is da = 128. The

output feature dimension of visual encoder backbone ResNet18

is dv = 512. The pre-trained BERT (bert-base-uncased) provided

in the HuggingFace library (Wolf et al., 2020) is used as textual

encoder. The base BERT model contains 12 layers with a hidden

dimension of 768, therefore the semantic feature It (i.e., the class

token “CLS” of the output layer) is a 768-dimensional vector. For

cross-modal encoder, the number of bottleneck tokens of MBT

is insensitive and set to Nb = 4 according to the conclusions

in Liu et al. (2022), the number of attention heads in multi-

head attention layers is 8, the hidden dimension is dm = 64 and

sine-cosine positional encoding is used to preserve the temporal

information in the audio/visual feature sequence. The number

of floating point operations per second (FLOPs) is 7.22 × 109,

the number of parameters is 173M, and the recognition time of

one video is around 0.2 s.

Training parameters: Regarding the loss function, since

both IEMOCAP and CMU-MOSEI datasets are multi-labeled,

video emotion recognition is regarded as a multi-label binary

classification task in this work, and the binary cross-entropy loss

is adopted and weighted by the ratio of the number of positive

and negative samples to alleviate the problem of unbalanced

sample distribution. Adam optimizer is adopted with a mini-

batch size of 8 and the initial learning rate is 1e-4 with early-

stopping to prevent overfitting. For the audio and visual encoder

backbones, we freeze the first two convolution groups of VGGish

and the first three convolution groups of ResNet18, and use

a smaller learning rate 1e-5 to fine-tune the rest parameters.

The whole framework is implemented using PyTorch on one

NVIDIA TITAN RTX GPU.

4.4. Results and analysis

4.4.1. Comparison with the state-of-the-art

We compare our model with the following state of the

art (SOTA) works where the audio, visual and text modalities

are considered: (1) Late Fusion LSTM (LF-LSTM), where

each modality uses an individual LSTM to extract global

features followed by an MLP for unimodal decision, and

the final prediction is obtained by weighted fusion; (2) Late

Fusion Transformer (LF-TRANS) which is similar to LF-

LSTM except that the Transformer models are used instead of

LSTMs to model the temporal dependency for each modality;

(3) EmoEmbs (Dai et al., 2020) where three LSTMs are
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FIGURE 4

Comparison with state-of-the-art methods on two benchmark datasets. (A) Comparison results on IEMOCAP. (B) Comparison results on

CMU-MOSEI.

adopted to obtain the global features for each modality

and generates modality-specific emotion embeddings through

mapping the GloVe textual emotion embeddings to the non-

textual modalities respectively, and finally the similarity scores

between the emotion embedding and the global features are

calculated and fused to get the final prediction; (4) MulT (Tsai

et al., 2019) that employs six cross-modal attention modules

for any two pairs of the three modalities, and then three self-

attention modules to collect temporal information within each

modality. Finally the concatenated features are passed through

the fully-connected layers to make predictions; (5) BIMHA (Wu

et al., 2022) mainly consists of two parts: inter-modal interaction

and inter-bimodal interaction, where the outer product is first

used to represent three pairs of bimodal global features and then

the bimodal attention is calculated via an extended multi-head

attention mechanism; (6) CMHA (Zheng et al., 2022) where

the core is connecting multiple multi-head attention modules in

series, to model the interactions between two unimodal feature

sequences first and then with the third one. Additionally, the

sequential order of modality fusion is considered, resulting in

three similar fusionmodules but in different orders of fusion; (7)

FE2E (Dai et al., 2021) which is a fully end-to-end framework,

where the textual features are extracted from a pre-trained

ALBERT model and the audio and visual features are extracted

from two pre-trained CNNs, each followed by a Transformer

to encode the sequential representations, and then three MLPs

are adopted to make unimodal decision and weighted fusion is

performed to output predictions; (8) MESM (Dai et al., 2021)

which is similar to FE2E, except that the original CNN layers

are replaced with cross-modal sparse CNN blocks to reduce the

computational overhead.

The results are shown in Figure 4. Note that all the SOTA

results are based on tri-modal decisions from audio, visual and

text. It should also be mentioned that, the first five methods (LF-

LSTM, LF-TRANS, EmoEmbs, MulT, and BIMHA) are based

on hand-crafted features, where 142-dimensional audio features

are extracted using the DisVoice toolkit (Vasquez-Correa et al.,

2019), 35-dimensional visual features are extracted via the

OpenFace toolkit (Baltrusaitis et al., 2018), and 300-dimensional

word embeddings are extracted using the pre-trained GloVe

Pennington et al. (2014). To evaluate the significance of our

experimental results, following (Zhang et al., 2021a), the paired

t-test is performed with a default significance level of 0.05.

As it can be seen, our proposed model outperforms all the

SOTA works on both IEMOCAP and CMU-MOSEI datasets.

The average accuracy reaches 0.874 and the average F1 is

0.646 on IEMOCAP dataset. On CMU-MOSEI dataset, our

model also achieves the highest average weighted accuracy of

0.696 and an average F1 of 0.509. In addition, the end-to-end

methods achieve superior recognition results compared to the

two-stage methods based on hand-crafted features, indicating

that joint optimization of unimodal feature extraction and

multimodal fusion helps improve the performance of video

emotion recognition. It should also be mentioned that MESM

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.1086380
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xia et al. 10.3389/fnins.2022.1086380

(Dai et al., 2021) was equipped with cross-modal attention

in the feature encoding stage with the aim to make CNN

encoders sparse, however, modeling the emotion dependency

between audio-video sequences, as a key for multimodal

emotional representation learning, was neglected in their whole

framework. Compared with MESM, our proposed MER-SEM-

MBT obtains better performance due to additional audio-visual

temporal interaction.

We also list the binary classification results regarding each

emotion category to make a deeper comparison. The detailed

results are listed in Table 2, and the best results are bolded. One

can notice that our proposed MER-SEM-MBT model achieves

the best results on majority emotion category. In addition, we

verify a variation of the proposed model by removing the textual

decision and the corresponding results are listed in the last row.

Under this circumstance, our proposed method, equipped with

SEM andMBTmodules, still obtains a comparative performance

without a textual decision.

4.4.2. Ablation study

4.4.2.1. E�ect of SEM and MBT

To evaluate the contribution of each design module, we

further carry out experiments on different model variants by

ablating either SEM or MBT, corresponding to MER-MBT

(without SEM in unimodal audio/visual encoder) and MER-

SEM (without MBT as the cross-modal encoder) respectively.

The results are shown in Table 3, where MER stands for a

baselinemodel with unimodal encoders and late attentive fusion.

As we can see, either MER-SEM or MER-MBT yields a sub-

optimal performance on both IEMOCAP and CMU-MOSEI

datasets. Specifically, when MBT is removed, meaning there

is no temporal interactions between audio and visual feature

sequences, the modal variant MER-SEM obtains an average F1
of 0.636 on IEMOCAP dataset with a decrease of 1% compared

with our full model MER-SEM-MBT, but still 2.2% better than

the baseline MER model benefiting from the semantic guidance

from SEM. Similarly, when SEM is removed, the model variant

MER-MBT achieves an average F1 of 0.633 on IEMOCAP, which

is 1.3% lower than the full model. Furthermore, if both SEM

and MBT modules are removed, i.e., the baseline MER model,

the average F1 only reaches 0.614 on IEMOCAP, which is 3.2%

lower than our proposed full model MER-SEM-MBT. This may

be due to the fact that the baseline model MER only adopts

attentive fusion to aggregate the individual audio and visual

decisions without interaction across different modalities. Similar

conclusions can also be drawn from the reuslts on the CMU-

MOSEI dataset.

4.4.2.2. E�ectiveness of SEM in audio/visual encoder

We further analyze the effectiveness of SEM on audio and

visual representation learning for audio and visual emotion

recognition, respectively. For convenience, we denote the audio

emotion recognition as SER and visual emotion recognition

as FER. Note that the textual decision is not used in the

following experiments. As listed in Table 4, the first/third row

represents the SER/FER results from the CNN-Transformer-

MLP framework without SEM, where the CNN encoder

(VGGish for audio and ResNet18 for video) is for feature

extraction from raw data, Transformer is for temporal modeling,

and MLP is for classification. The second/fourth row shows the

results of SEM being inserted in the unimodal CNN encoder for

SER/FER. It can be seen that when SEM is inserted to guide the

audio/visual encoder to learn the emotional representation from

the semantics, the performances are greatly improved. For SER,

the average Acc improves from 0.752 to 0.839 on IEMOCAP

dataset with a gain of 8.7% after SEM is used to enhance the

representation learning of audio encoder. For FER, the average

Acc also achieves a gain of 4.4% in terms of Avg. WA on

CMU-MOSEI dataset.

4.4.2.3. E�ect of the number of SEMs

As described in Section 3.1.4, SEM is empirically inserted

after the second and last (fourth) convolution group for audio

encoder backbone VGGish, and the third and last (fifth)

convolution group for visual encoder backbone ResNet18,

respectively. Here, we conduct experiments on IEMOCAP

dataset to explore the effect of different numbers of SEMs in

audio/visual encoder, the results are shown in Figure 5. Taking

SER for example, the default setting is inserting two SEMs after

the second and the fourth convolutional group, respectively.

From Figure 5A, we can see that when adding another SEM

after the third convolution group of VGGish, the result is close

to that of the default setting, and further adding another SEM

after the first convolution group results in a significant drop in

performance. Similar conclusion can be drawn from Figure 5B

for visual encoder. This is probably because the feature maps

output from the earlier convolution group mainly contain low-

level information, while those from the deeper layers with high-

order features are more relevant to emotions, therefore the

semantics can better adapt the high-level audio/visual feature

maps with emotion-related information.

4.4.2.4. Performance comparison of di�erent

cross-modal encoders

To validate the effectiveness of adopting MBT as cross-

modal encoder in our proposed framework, we perform audio-

visual multi-modal emotion recognition (MER) experiments

using different cross-modal encoders. Note that all the methods

in this comparative experiment use the same audio and visual

encoders, i.e., VGGish for audio and ResNet18 for video

(without using semantic information for enhancement), and the

same attentive decision fusion as described in Section 3.3. The

results are shown in Table 5.

Concretely, three typical attention-based solutions are

compared: (1) joint attention (JointAtt), where the audio and
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TABLE 2 Binary classification results of each emotion category on IEMOCAP and CMU-MOSEI datasets.

IEMOCAP

Models Happiness Anger Sadness Excited Frustrated Neutral

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LF-LSTM† 0.672 0.376 0.712 0.494 0.782 0.540 0.793 0.572 0.682 0.515 0.665 0.470

LF-TRANS† 0.852 0.376 0.819 0.507 0.874 0.574 0.853 0.573 0.605 0.493 0.724 0.497

EmoEmbs (Dai et al., 2020)† 0.696 0.383 0.659 0.489 0.808 0.530 0.735 0.583 0.685 0.520 0.736 0.487

MulT (Tsai et al., 2019)† 0.800 0.468 0.779 0.607 0.835 0.654 0.769 0.580 0.724 0.570 0.749 0.537

BIMHA (Wu et al., 2022)†† 0.834 0.432 0.772 0.576 0.838 0.637 0.783 0.561 0.739 0.542 0.764 0.509

CMHA (Zheng et al., 2022)†† 0.890 0.458 0.886 0.611 0.883 0.616 0.879 0.605 0.751 0.563 0.765 0.512

MESM (Dai et al., 2021)† 0.895 0.473 0.882 0.628 0.886 0.622 0.883 0.612 0.749 0.584 0.770 0.520

FE2E (Dai et al., 2021)† 0.900 0.448 0.887 0.639 0.891 0.657 0.891 0.619 0.712 0.578 0.791 0.584

MER-SEM-MBT (Our full model) 0.891 0.577 0.894 0.665 0.924 0.721 0.905 0.677 0.797 0.613 0.832 0.623

MER-SEM-MBT (Ours w/o textual

decision)

0.889 0.546 0.893 0.662 0.918 0.701 0.892 0.643 0.794 0.602 0.827 0.613

CMU-MOSEI

Models
Happiness Sadness Anger Surprise Fear Disgust

WA F1 WA F1 WA F1 WA F1 WA F1 WA F1

LF-LSTM† 0.613 0.732 0.634 0.472 0.645 0.471 0.571 0.206 0.617 0.222 0.705 0.498

LF-TRANS† 0.606 0.729 0.601 0.455 0.653 0.477 0.621 0.242 0.621 0.240 0.744 0.519

EmoEmbs (Dai et al., 2020)† 0.612 0.719 0.605 0.475 0.668 0.494 0.633 0.240 0.638 0.234 0.696 0.487

MulT (Tsai et al., 2019)† 0.672 0.754 0.640 0.483 0.649 0.475 0.614 0.256 0.629 0.253 0.716 0.493

BIMHA (Wu et al., 2022)†† 0.658 0.721 0.626 0.479 0.653 0.474 0.625 0.249 0.618 0.247 0.705 0.489

CMHA (Zheng et al., 2022)†† 0.652 0.721 0.642 0.467 0.659 0.491 0.645 0.266 0.634 0.273 0.736 0.532

MESM (Dai et al., 2021)† 0.641 0.723 0.630 0.466 0.668 0.493 0.657 0.272 0.658 0.289 0.756 0.564

FE2E (Dai et al., 2021)† 0.654 0.726 0.652 0.490 0.670 0.496 0.667 0.291 0.638 0.268 0.777 0.571

MER-SEM-MBT (Our full model) 0.673 0.753 0.668 0.538 0.687 0.495 0.676 0.330 0.672 0.319 0.802 0.616

MER-SEM-MBT (Ours w/o textual

decision)

0.672 0.749 0.655 0.531 0.673 0.491 0.660 0.328 0.659 0.312 0.787 0.612

P < 0.05 for paired t-test. † denotes the results are from Dai et al. (2021), and †† means our reproduction using the same data split as other experiments. The bold values are indicated to highlight the best results.
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TABLE 3 Ablation study results on IEMOCAP and CMU-MOSEI datasets.

Models SEM MBT LF IEMOCAP CMU-MOSEI

Avg. Acc Avg. F1 Avg. WA Avg. F1

MER - - X 0.855 0.614 0.682 0.496

MER-SEM X - X 0.871 0.636 0.691 0.506

MER-MBT - X X 0.868 0.633 0.688 0.504

MER-SEM-MBT X X X 0.874 0.646 0.696 0.509

The bold values are indicated to highlight the best results.

TABLE 4 Unimodal audio/visual emotion recognition results with and without SEM.

Methods IEMOCAP CMU-MOSEI

Avg. Acc Avg. F1 Avg. WA Avg. F1

SER w/o SEM 0.752 0.463 0.628 0.424

w/ SEM 0.839 0.560 0.659 0.450

FER w/o SEM 0.796 0.512 0.631 0.429

w/ SEM 0.828 0.553 0.675 0.456

SER refers to speech emotion recognition, and FER denotes facial expression recognition. All frameworks follow the CNN-Transformer-MLP architecture, the difference is whether SEM

is used in the CNN encoder. The bold values are indicated to highlight the best results.

FIGURE 5

The e�ect of di�erent numbers of SEMs in audio and visual encoder, respectively. The results are shown in terms of Avg. F1 on IEMOCAP

dataset. (A) Audio encoder (VGGish with SEM). (B) Visual encoder (ResNet18 with SEM).

TABLE 5 Audio-visual emotion recognition results using di�erent cross-modal encoders.

Cross-modal Encoder IEMOCAP CMU-MOSEI

Avg. Acc Avg. F1 Avg. WA Avg. F1

JointAtt (Vaswani et al., 2017) 0.846 0.582 0.667 0.487

Bi-CrossAtt (Tsai et al., 2019) 0.842 0.571 0.671 0.473

MBT (Liu et al., 2022) 0.859 0.592 0.676 0.491

The bold values are indicated to highlight the best results.

visual feature sequences are temporally concatenated and then

input into a vanilla Transformer (Vaswani et al., 2017), therefore

the information within these two modalities can be fully

communicated; (2) bidirectional cross-attention (Bi-CrossAtt)

(Tsai et al., 2019), where two cross-modal Transformer branches

are employed, each serves to reinforce a target modality with

the features from the other modality via learning the attention

across the audio and visual feature sequences; (3) multimodal
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FIGURE 6

Visualization of audio and visual feature distribution on IEMOCAP. (A) SER w/o SEM, w/o MBT. (B) SER w/SEM, w/o MBT. (C) MER w/SEM, w/MBT.

(D) FER w/o SEM, w/o MBT. (E) FER w/SEM, w/o MBT. (F) MER w/SEM, w/o MBT.

bottleneck attention (MBT) (Liu et al., 2022), which introduces

bottleneck tokens as the bridge connecting two Transformer

branches, to exchange essential information from one modality

to the other through a two-stage cross-modal interaction.

It can be seen that the cross-modal interaction with MBT

achieves the highest recognition results on both datasets,

indicating that attention bottlenecks, with the advantage

of exchanging audio-visual complementary information and

reducing redundancy, further enhance the representation

learning of audio/visual modalities.

4.4.3. Visualization

We also perform t-SNE (Van der Maaten and Hinton,

2008) to visualize the learned audio and visual features, under

three different settings, from the penultimate layer of their

MLPs, respectively. Note that the textual decision is not used

in the involved models here. Figures 6A, D represents the

audio/visual features learned by the unimodal SER/FER model

without SEM and MBT, which corresponds to the results in

the first/third row of Table 4. As we can see, the learned

audio/visual features can not distinguish different emotions

well in the absence of additional information from other

modalities. When SEM is added in the audio/visual encoder

for SER/FER, the enhanced audio/visual features of different

emotion categories, as shown in Figures 6B, E, are more

discriminatively distributed, which help to improve the emotion

recognition performance as compared in Table 4. In addition,

when MBT is further added, achieving cross-modal interaction

between audio and visual representations, the dually reinforced

audio/visual features (corresponds to Figures 6C, F) are more

distinguishable, contributing to the best performance.

5. Conclusions

In this work, we proposed a multimodal interaction

enhanced representation learning method targeting video

emotion recognition. The high-level semantic information

extracted from the text modality is utilized to enhance audio

and visual feature encoding, and the bottleneck Transformer

is adopted to further reinforce audio and visual feature

sequences through exchanging complementary information

while reducing redundancy. Finally, audio, visual, and textual

unimodal decisions are fused using attention weights to output

the final emotion prediction. Experiments and visualization

show that the proposed method achieves state-of-the-art video

emotion recognition results. In the future, we are interested

to leverage self-supervised learning methods to learn better

emotional-salient representations by exploring the correlations

among audio, visual, and text modalities.
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