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Introduction: Ferroptosis-related gene (FRG) signature is important for

assessing novel therapeutic approaches and prognosis in glioma. We trained a

deep learning network for determining FRG signatures using multiparametric

magnetic resonance imaging (MRI).

Methods: FRGs of patients with glioma were acquired from public databases.

FRG-related risk score stratifying prognosis was developed from The Cancer

Genome Atlas (TCGA) and validated using the Chinese Glioma Genome

Atlas. Multiparametric MRI-derived glioma images and the corresponding

genomic information were obtained for 122 cases from TCGA and The Cancer

Imaging Archive. The deep learning network was trained using 3D-Resnet,

and threefold cross-validation was performed to evaluate the predictive

performance.

Results: The FRG-related risk score was associated with poor

clinicopathological features and had a high predictive value for glioma

prognosis. Based on the FRG-related risk score, patients with glioma were

successfully classified into two subgroups (28 and 94 in the high- and

low-risk groups, respectively). The deep learning networks TC (enhancing

tumor and non-enhancing portion of the tumor core) mask achieved an

average cross-validation accuracy of 0.842 and an average AUC of 0.781,

while the deep learning networks WT (whole tumor and peritumoral edema)

mask achieved an average cross-validation accuracy of 0.825 and an average

AUC of 0.781.

Discussion: Our findings indicate that FRG signature is a prognostic

indicator of glioma. In addition, we developed a deep learning network
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that has high classification accuracy in automatically determining

FRG signatures, which may be an important step toward the

clinical translation of novel therapeutic approaches and prognosis of

glioma.
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glioma, ferroptosis, prognosis, MRI, deep learning network

1 Introduction

Glioma, the most common primary brain tumor in adults,
is highly invasive and resistant to various combination therapies
such as surgery, radiotherapy, and chemotherapy (Zhou et al.,
2022). In particular, glioblastoma multiforme, which is the most
malignant type of central nervous system (CNS) tumor, has
a median survival <16 months, and this has not improved
substantially with modern medical advances (Ma et al., 2018).
Glioma recurrence, progression, and metastasis are the three
primary challenges that lead to treatment failure. Previous
studies have shown that glioma, as a highly complex and
heterogeneous tumor, involves multiple pathways, the immune
microenvironment, and metabolic reprogramming during its
development and progression (Gao et al., 2022). Recently,
molecular markers related to the prognosis and treatment of
gliomas have been actively explored. For example, isocitrate
dehydrogenase (IDH) and 1P/19q have been confirmed to be
associated with the prognosis of glioma. In addition, there are
new drugs targeting epidermal growth factor receptor (EGFR)
and mammalian target of rapamycin (mTOR) for the treatment
of gliomas (Deluche et al., 2019; Heinzen et al., 2019; Hu
et al., 2022). Unfortunately, there are still many gaps in the
prognostic assessment and treatment of gliomas; therefore, the
identification of new markers remains imperative.

Ferroptosis is a form of regulated cell death triggered by
lipid peroxidation that differs from other genetic, biochemical,
and morphological forms of cell death (Dixon et al., 2012).
The mechanism of ferroptosis involves several redox-inducing
compounds (e.g., erastin and RSL3) and ferroptosis inhibitors
(e.g., ferrostatin-1 and liproxstatin-1). Importantly, some cancer
cells that are resistant to compounds targeting traditional cell
death processes are susceptible to RSL3- and erastin-induced
ferroptosis, indicating that ferroptosis induction may be an
encouraging therapeutic strategy for gliomas (Hangauer et al.,
2017). Previous studies have indicated that ferroptosis-related
gene (FRG) signatures are associated with tumor immune
features and have potential for prognosis prediction and
immunotherapy assessment in gliomas (Hu et al., 2021; Wan
et al., 2021). Thus, it is crucial to accurately predict FRG-related
risk to plan an effective curative treatment.

Convolutional neural networks (CNNs) are a form of
deep learning widely applied for image processing and cover
an extensive range of disciplines, such as molecular profiles
and genomic mutations in gliomas (Liu et al., 2021). Even
though several hurdles exist for clinical implementation (Chang
K. et al., 2018; Chang P. et al., 2018), these image signal
intensity-based CNNs did not enable the incorporation of
information from the tumor 3D voxel, which may cause
data leakage problems. Moreover, the existing methodologies
require extensive manual preprocessing, presegmentation, or
multicontrast acquisitions, which limit their clinical merits. To
mitigate these limitations, in the present study, we developed a
fully automated and highly accurate deep learning 3D network
and further performed this non-invasive method to determine
the FRGs signature.

2 Materials and methods

2.1 Data collection

mRNA expression data and clinical information in glioma
from three public databases (Ceccarelli et al., 2016), The
Cancer Genome Atlas (TCGA),1 Chinese Glioma Genome Atlas
(CGGA),2 and Genotype-Tissue Expression (GTEx),3 were
used in this study. After data filtration, five available datasets,
namely CGGA_693, CGGA_325, TCGA_LGG, TCGA_GBM,
and GTEx, were chosen for further analyses. Among these
datasets, TCGA_LGG and TCGA_GBM were assigned to the
training cohort, whereas CGGA-693 and CGGA-325 were
assigned to the validation cohort. Differential gene expression
(DGE) analysis was conducted based on the GTEx dataset.

Gene transcription levels were normalized as fragments
per kilobase million (FPKM) and further transformed to log2
(FPKM+1) for downstream analysis. A batch correction per
subclass was applied using R packages “limma” and “sva.” A total
of 323 ferroptosis-related genes, including drivers, suppressors,

1 https://tcga-data.nci.nih.gov

2 http://www.cgga.org.cn/

3 http://xenabrowser.net
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and marker regulators, were obtained from the FerrDb database
(Zhou and Bao, 2020)4.

2.2 Construction of the FRG-related
risk score

DGE analysis was conducted using the R package “limma”
between tumor and normal tissue samples, and FDR < 0.05 and
| logFC| > 1 was set as the threshold. Univariate Cox regression
was used for the analysis of independent prognostic factors, and
P < 0.05 was set as the significance threshold. The intersection
of the genes, based on the results of DGE and univariate Cox
regression analyses, was mapped using the R package “Venn”
and described as FRGs for further analysis.

The defined FRGs were subjected to least absolute
shrinkage and selection operator (LASSO) Cox regression,
which is a classical dimension-reduction approach to screen for
independent prognostic factors. The FRG-related risk score was
constructed based on the LASSO weighting coefficients of the
final selected genes using the following formula:

n∑
i = 1

(
Coef i × xi

)
,

where Coefi represents the coefficients and xi is the FPKM
value of each FRG.

2.3 FRG-related risk score stratification

We used the R package “survminer” to classify the FRG-
related risk scores into low- and high-risk groups. The
survival rate differences among the stratified groups were
compared using Kaplan–Meier (KM) analysis along with log-
rank tests. Time-dependent receiver operating characteristic
(tROC) curves were used to assess the efficiency of the FRG-
related risk score in prognostic prediction.

To compare the clinicopathological and molecular
characteristics between the low- and high-risk groups,
Chi-square or Student’s t-tests were used. Statistical significance
was set at P < 0.05.

2.4 Gene ontology and Kyoto
encyclopedia of genes and genomes

A functional annotation of differentially expressed genes
was used to visualize gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) results using
the R package “ClusterProfiler,” to further explore their
functional correlation.

4 http://www.zhounan.org/ferrdb/current/

2.5 Imaging acquisition and
preprocessing

This study used multiparametric magnetic resonance (MR)
images obtained from The Cancer Imaging Archive (TCIA)
(Bakas et al., 2017).5 Preoperative MR images of each patient
with glioma were obtained from T1-weighted (T1WI), T2-
weighted (T2WI), fluid-attenuated inversion recovery (FLAIR),
and T1 contrast-enhanced (T1CE) images.

A total of 122 patient samples were analyzed, representing
all matched cases (according to shared barcodes) of glioma
in TCGA and TCIA, of which 28 and 94 were partitioned
into the high-risk and low-risk groups, respectively. The
multiparametric MR images were preprocessed using the
Cancer Imaging Phenomics Toolkit open-source software
(CaPTk v.1.9.0) (Pati et al., 2020).6 The acquired Digital Imaging
and Communications in Medicine (DICOM) images were
converted to Neuroimaging Informatics Technology Initiative
(NIfTI) images and reoriented to the right-most, anterior-
most, inferior-most (RAI) coordinate system. Based on the
SRI atlas, it was coregistered and resampled to a spatial
resolution of 1 mm × 1 mm × 1 mm (Rohlfing et al., 2010).
The anatomical images were bias-corrected and skull-stripped
after high-resolution reconstruction. After removing the outlier
pixels that did not fall in the 99.9% percentile of the image
histogram, the intensities of the images were converted into
a background range of 0–255. Automated segmentation was
performed using the DeepMedic module (Kamnitsas et al., 2017)
and was approved or adjusted when necessary by a board-
certified neuroradiologist (Lu) through CaPTk to determine
the tumoral subregions of the TC (enhancing tumor and non-
enhancing portion of the tumor core) and WT (whole tumor
and peritumoral edema) (Figure 1).

2.6 Network details

We used the network architecture shown in Figure 2, a
classification network trained on T1WI, T1CE, T2WI, and
FLAIR based on TC and WT mask images, respectively. It
is a CNN classifier for predicting high- and low-risk FRG-
related signatures. The network framework is derived from the
classical ResNet50, which contains an initial part (stage0), a
residual learning part (stage1–stage4), and a fully connected part
(AvgPool3d+Reshape+FC).

The residual learning part (stage1–stage4) comprises three,
four, six, and three residual blocks, respectively. The residual
blocks employed here are the Conv Block (Block1) and
Identity Block (Block2). The Conv Block has inconsistent input

5 https://wiki.cancerimagingarchive.net

6 https://www.cbica.upenn.edu/captk
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FIGURE 1

Ground truth whole-tumor masks. Red voxels represent non-enhancing tumor core; yellow voxels, enhancing tumor; and green voxels,
peritumoral edema.

and output dimensions, requiring the addition of a 1 × 1
convolution and Batch Normalization (BN) at the location of the
shortcut path to stretch the channels and make the dimensions
consistent before the summation operation. The Identity Block
(Block2) has consistent input and output dimensions, allowing
for straightforward addition. The output of the residual learning
part was transformed into data dimensions by AvgPool3d and
reshape operations and used as the input of the FC.

2.6.1 Network implementation and
cross-validation

To ensure the reliability of the network implementation,
threefold cross-validation was performed on data from 122
patients (28 high-risk and 94 low-risk groups), and the dataset
was randomly divided into threefolds. The data from these
threefolds were alternated between the two training sets and one
validation set to obtain three prediction models, and the average
performance of these three models was calculated. The input
images were T1WI, T1CE, T2WI, and FLAIR images cropped
by the TC/WT mask to obtain the data with 96× 96× 96 pixels.
During network training, we performed random flip operations
on the input images for data enhancement. The Cross Entropy
Loss was chosen as the loss function of the network. The network

learning rate was set to 10−4, the batch size was 8, and the
maximum number of epochs was 70. Our pipeline was written in
Pytorch, and all experiments were performed on a workstation
with an Intel Xeon CPU E5-2630 and NVIDIA Tesla V100 GPU.

2.7 Network assessment

The diagnostic efficiency was assessed by receiver operating
characteristic (ROC) using all predictions across folds of the
cross-validation, and the area under the curve (AUC), accuracy
(ACC), sensitivity, and specificity were calculated. Besides, we
used the precision, recall, and F1 score to assess the signature
classification performance of the FRGs. The F1 score was
calculated by combining the precision and recall.

3 Results

3.1 Landscape of FRGs

A flowchart describing our study’s analytical procedure
is presented (Supplementary Figure 1). The TCGA cohort
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FIGURE 2

The network framework for FRGs signature prediction.

containing 270 ferroptosis-related genes was obtained after
removing some of the low-expression ferroptosis-related
genes. After DGE analysis between tumor and normal
tissue samples, 99 genes were retained (Figure 3). In
addition, Cox regression analysis identified 221 genes as
independent prognostic factors. Taking the intersection of
predicted genes, 80 genes described as FRGs, including
53 up-regulated genes and 27 down-regulated genes, were
enrolled (Supplementary Figure 2). Upregulation and
downregulation of gene expression were also plotted as
heatmaps and compared with the corresponding control
(Figure 4).

Least absolute shrinkage and selection operator Cox
regression analysis was conducted on 80 FRGs and identified
23 genes associated with the prognosis of glioma: 12 driven
genes (NOX1, NCOA4, ALOX12, ALOX15B, ZEB1, HMOX1,
TGFBR1, IDH1, PEX12, MYCN, SMG9, and SLC39A7) and 12
suppressor genes (SCD, NFS1, SQSTM1, CD44, RRM2, GDF15,
PARP4, PARP14, KIF20A, ETV4, LCN2, and HMOX1), among
which HMOX1 is both a driver and a suppressor gene. The
LASSO coefficient profiles of candidate genes are shown in

Figure 5. The FRG-related risk score was calculated according
to the LASSO weighting coefficients of the final selected
genes.

3.2 FRG-related risk score in prognosis

We determined the optimal cut-off using the
“surv_cutpoint” function of the “survminer” R package
(Supplementary Figure 3). Patients with FRG-related risk
scores were further divided into high- and low-risk groups
(Supplementary Figure 4).

Kaplan–Meier survival analysis showed that the survival
probability was significantly worse in the high-risk group than
in the low-risk group in the training and validation cohorts
(P < 0.001) (Figure 6). tROC curve analysis showed that the
development of the risk score in the present study exhibited
good predictive effectiveness, which was indicated by 0.899,
0.917, and 0.930 for 1-, 2-, and 3-year AUC, respectively, in the
training cohort and 0.765, 0.834, and 0.826 for 1-, 2-, and 3-year
AUC, respectively, in the validation cohort (Figure 7).
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FIGURE 3

Volcano plot of differential gene expression analysis between tumor and normal tissues.

3.3 Association of FRG-related risk
score with clinicopathological and
molecular characteristics

There were significant differences in FRG-related risk scores
among patients in age (P < 0.001), grade (P < 0.001), IDH
status (P < 0.001), MGMT promoter (P < 0.001), and 1p/19q
codeletion (P < 0.001), but no significant differences were
observed in sex (P = 0.912) (Figure 8).

In addition, patients in the high-risk group had higher grade,
older age, wild-type IDH, 1p/19q non-codeletion, and MGMT
promoter unmethylation (P < 0.001), but had no significant
differences in sex (Table 1).

3.4 Analysis of biological properties
and pathways related to the gene
signatures

Gene ontology and KEGG analyses were used to annotate
the intersection genes after risk differential analysis, (Figure 9).
The biological processes (BPs) involved included the following:
Cellular iron ion homeostasis, iron ion homeostasis, cellular
transition metal ion homeostasis, transition metal ion
homeostasis, response to metal ion, response to iron ion,
regulation of protein serine/threonine kinase activity, cellular
response to metal ion, cellular response to chemical stress,
and cellular response to inorganic substance (Figure 9A). The
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FIGURE 4

Heatmap generated and displayed as log twofold change.
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FIGURE 5

Least absolute shrinkage and selection operator coefficient profile of the candidate genes.

FIGURE 6

Survival analysis shows survival probability curves in the training and validation cohort.

most abundant cellular component (CC) terminology included
autolysosome, secondary lysosome, basal plasma membrane,
basal part of cell, secretory granule membrane, and endocytic
vesicle membrane (Figure 9A). The most abundant molecule
function (MF) terms were ferric iron binding, ferrous iron

binding, iron ion binding (Figure 9A). KEGG pathway analysis
revealed that ferroptosis, Mineral absorption, HIF-1 signaling
pathway, MicroRNAs in cancer, Hepatocellular carcinoma, and
Glutathione metabolism were the most abundant pathways
(Figure 9B).
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FIGURE 7

Time-dependent receiver operating characteristic analysis showed the AUC of FRGs for 1, 2, and 3 years in the training and validation cohort.

FIGURE 8

Association between the FRGs and other clinicopathological characteristics (A, age; B, sex; C, grade; D, IDH status; E, MGMT promoter status;
and F, 1p/19q codeletion) in the training cohort.

3.5 Network performance in
determining FRG signatures

The cross-validation average ACC of 3DResCNN (network
(TC-mask)) reached 0.842 (0.900, 0.850, and 0.775 for Fold1,
Fold2, and Fold3, respectively), the average F1 score was

0.843 (0.900, 0.844, and 0.784 for Fold1, Fold2, and Fold3,
respectively), and the average AUC was 0.781 (0.827, 0.767, and
0.750 for Fold1, Fold2, and Fold3, respectively).

The cross-validation average ACC of 3DResCNN [network
(WT-mask)] reached 0.825 (0.925, 0.800 and 0.750 for Fold1,
Fold2, Fold3, respectively), the average F1 score was 0.830
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TABLE 1 Characteristics of patients in low- and high-risk groups in
the training cohort.

Characteristic High-risk
(N = 145)

Low-risk
(N = 418)

P-value

Grade: <0.001

G2 0 (0.00%) 212 (50.7%)

G3 40 (27.6%) 196 (46.9%)

G4 105 (72.4%) 10 (2.39%)

Age (year) 61.0 (53.0, 70.0) 39.0 (32.0, 51.0) <0.001

Sex: 0.912

Female 61 (42.1%) 180 (43.1%)

Male 84 (57.9%) 238 (56.9%)

IDH status: <0.001

Mutant 1 (0.69%) 369 (88.3%)

Wildtype 144 (99.3%) 49 (11.7%)

1p/19q codeletion: <0.001

Codel 0 (0.00%) 149 (35.6%)

Non-codel 145 (100%) 269 (64.4%)

MGMT promoter: <0.001

Methylated 63 (43.4%) 356 (85.2%)

Un-methylated 82 (56.6%) 62 (14.8%)

(0.923, 0.810 and 0.757 for Fold1, Fold2, Fold3, respectively),
and the average AUC was 0.781 (0.842, 0.800, and 0.700
for Fold1, Fold2, Fold3, respectively). The specific results of

3DResCNN in terms of the threefold respective and average
metrics are shown in Table 2.

The network (TC mask) showed a similar performance
to the network (WT mask), and the summary ROC curves
for the network (TC mask and WT mask) are shown in
Supplementary Figure 5.

4 Discussion

Evidence suggests that ferroptosis plays a crucial role
in tumor initiation, progression, and evolution (Dixon
et al., 2012). Several investigations have indicated that
the risk score generated by ferroptosis is associated with
the clinicopathological features of gliomas, which can
independently predict patient prognosis (Zhuo et al., 2020; Hu
et al., 2021; Wan et al., 2021). In addition, ferroptosis may affect
immune cell infiltration in the glioma microenvironment (Hu
et al., 2021; Wan et al., 2021). Bioimaging is an essential tool
for the non-invasive diagnosis of gliomas. Indeed, combined
with multiple imaging modalities, multiparametric MR imaging
enables effective expansion of the feature pool, which would
provide more information. Previous studies have indicated
that multiparametric MR-based deep learning has diagnostic
performance in the differentiation of glioma mimicking
encephalitis (Wu et al., 2021), classification of IDH mutation
status (Bangalore Yogananda et al., 2020), discrimination of
pseudoprogression and true progression (Lee et al., 2020), and
determination of molecular subtype in gliomas (Li et al., 2022).
For these reasons, we developed a deep learning 3D network

FIGURE 9

Gene ontology and KEGG analysis (A,B). Functional annotation of FRGs using GO terms and the KEGG pathway.
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TABLE 2 Network performance in determining FRG signatures.

Metrics AUC ACC F1 Sensitivity Specificity

TC-mask

Fold1 0.827 0.900 0.900 0.714 0.939

Fold2 0.767 0.850 0.844 0.600 0.933

Fold3 0.750 0.775 0.784 0.700 0.800

Average 0.781 0.842 0.843 0.671 0.891

WT-mask

Fold1 0.842 0.925 0.923 0.714 0.970

Fold2 0.800 0.800 0.810 0.800 0.800

Fold3 0.700 0.750 0.757 0.600 0.800

Average 0.781 0.825 0.830 0.705 0.857

and further applied this non-invasive method to assess FRG
signatures.

The results of GO and KEGG analysis showed the main
enrichment pathways of intersection genes in this study.
Considering the genetic diversity, 23 FRGs were finally
incorporated into prognostic signatures based on LASSO Cox
analysis. Our results indicated that the expression of FRGs
was associated with poor clinicopathological features, and the
FRG-related risk score had a high predictive value for glioma
prognosis, which is consistent with previous literature (Zhuo
et al., 2020; Hu et al., 2021; Wan et al., 2021). According to the
FRG-related risk score, patients with glioma were successfully
classified into high- and low-risk groups, which contributed to
prognosis stratification.

To our knowledge, this is the first study to demonstrate
the application of multiparametric MRI-derived deep learning
network for determining FRG signatures in gliomas. CNNs are
the cornerstone of deep learning methods, which remain more
efficient in image annotation than classical hand-engineered
selections, such as color, geometrical, and texture features
(Korfiatis and Erickson, 2019). In the present study, we used
3DRESCNN (ResNet50) to predict FRG-related risk signatures
and used multiparametric MRI imaging (T1WI, T1CE, T2WI,
and FLAIR images) as network inputs. The network (TC or
WT mask) achieved highly satisfactory prediction efficiency,
with ACCs of 84.2 and 82.5%, respectively. In reviewing these
multiparametric MRI images, there were no specific imaging
features, indicating that the deep learning network provided
additional information that could not be interpreted manually.
The TC mask represented an enhancing tumor and non-
enhancing portion of the tumor core, and the WT mask
represented the whole tumor and peritumoral edema. WT mask
and TC mask demonstrated similar performances, indicating
that peritumoral edema did not enhance the diagnostic
effectiveness for determining the FRG signatures.

Despite the satisfactory results, the present study has
several limitations. First, we developed a multiparametric MRI-
derived deep learning network, whereas diffusion-weighted
MRI images were not available. Second, training deep learning
models usually requires large amounts of data (Choy et al.,
2018), whereas the cases for training are limited. Despite the
application of data augmentation for CNNs, because of their
high complexity and the use of 3DCNN in this study, the
amount of data is too small, easily leading to poor network
training and performance. Third, owing to the relatively
large number of low-risk FRG-related signatures, this type
of quantitative imbalance has a significant negative impact
on the training of the CNN classifier, which affects both the
convergence of the training phase and analysis of the test set
results, as well as the threefold validation.

5 Conclusion

In conclusion, we developed a multiparametric MRI-
derived deep learning network with high accuracy for
automatically determining FRG signatures. This study
represents an important technological milestone using MR
imaging to evaluate genetic diversity, prognosis conditions, and
drug-targeted genes for gliomas.
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