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To ensure that computers can accomplish specific tasks intelligently and

autonomously, it is common to introduce more knowledge into artificial

intelligence (AI) technology as prior information, by imitating the structure

and mindset of the human brain. Currently, unmanned aerial vehicle (UAV)

tracking plays an important role in military and civilian fields. However,

robust and accurate UAV tracking remains a demanding task, due to limited

computing capability, unanticipated object appearance variations, and a

volatile environment. In this paper, inspired by the memory mechanism

and cognitive process in the human brain, and considering the computing

resources of the platform, a novel tracking method based on Discriminative

Correlation Filter (DCF) based trackers and memory model is proposed,

by introducing dynamic feature-channel weight and aberrance repressed

regularization into the loss function, and by adding an additional historical

model retrieval module. Specifically, the feature-channel weight integrated

into the spatial regularization (SR) enables the filter to select features. The

aberrance repressed regularization provides potential interference information

to the tracker and is advantageous in suppressing the aberrances caused

by both background clutter and appearance changes of the target. By

optimizing the aforementioned two jointly, the proposed tracker could

restrain the potential distractors, and train a robust filter simultaneously by

focusing on more reliable features. Furthermore, the overall loss function

could be optimized with the Alternative Direction Method of Multipliers

(ADMM)method, thereby improving the calculation e�ciency of the algorithm.

Meanwhile, with the historical model retrieval module, the tracker is

encouraged to adopt some historical models of past video frames to update

the tracker, and it is also incentivized to make full use of the historical

information to construct a more reliable target appearance representation.

By evaluating the method on two challenging UAV benchmarks, the results

prove that this tracker shows superior performance compared with most other

advanced tracking algorithms.
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1. Introduction

The thinking ability endowed by the brain is fundamental.

Due to its existence, human beings are more intelligent than

animals. It is also the premise that humans have the capability

to conduct scientific research (Kuroda et al., 2022). People

rely on their brains to recognize the world, learn knowledge,

and summarize rules. Their brains also allow them to use

memory systems to store the information generated when

experiencing different events (Atkinson and Shiffrin, 1968;

Cornelio et al., 2022). In turn, the information serves as prior

knowledge, helping people in dealing with similar problems

better and adapting to new complex scenes faster. The core of

artificial intelligence (AI) is to enable the machine to complete

specific tasks independently through learning and using prior

information (Connor et al., 2022; Foksinska et al., 2022; Nofallah

et al., 2022; Pfeifer et al., 2022; Wang et al., 2022). The original

scientific research mainly adopts the following two methods.

The first is to mathematically represent the law (i.e. prior

information) that people summarize when perceiving things,

and then use mathematical expressions and logical frameworks

to construct modules and methods for computers, just like

teachers teach students what they know. The second is to build a

variety of artificial neural networks based on the neural structure

of the human brain and then use large-scale data to train and fit

the network (Deng et al., 2022; Liu et al., 2022), aiming to enable

the computer to automatically learn the characteristics of various

things from the data itself, just like the students read books and

learn by themselves. Although scientists have put a lot of effort

into the research and utilization of the human brain, it is still a

difficult task to determine how to endow computers with more

and better prior knowledge through algorithms.

This paper mainly concentrates on visual object tracking

on the UAV platform, which plays an important role in the

field of computer vision, and is widely used in many tasks,

such as collision avoidance (Baca et al., 2018), traffic monitoring

(Elloumi et al., 2018), military surveillance (Shao et al., 2019),

and aerial cinematography (Gschwindt et al., 2019). By adopting

this technology, it aims to predict the precise status of the target

in a video sequence captured by an onboard camera only with

the information given in the first frame (Han et al., 2022). Over

the past few years, a lot of effort has been put into the tracking

field. However, it is still a challenging task to design a robust

and efficient tracker, when considering the various complexUAV

tracking scenarios, e.g., occlusion, change of viewpoint, and

limited power capacity.

In the past decade, the research on visual object

tracking mainly adopted the two methods below, namely

the discriminative correlation filter (DCF)-based method

and the Siamese-based method. The Siamese-based method

(Bertinetto et al., 2016b; Li et al., 2018a; Wang et al., 2019;

Voigtlaender et al., 2020; Javed et al., 2022) aims at the offline

learning of the similarity measurement function between image

patches, by maximizing the distance between the target and the

background patches while minimizing the distance between the

different image patches belonging to the same target. Such a

method consists of two identical subchannels that are used to

process the target template and the current frame search area,

respectively. The target location is determined by computing the

partial similarity between the target template and each location

in the search area. Moreover, the Siamese-based method uses

neural network architecture and numerous training data to

obtain excellent feature extraction capability, so it needs to

occupy a large number of computing resources in the tracking

process. DCF-basedmethods are based on the correlation theory

in the field of signal processing, and it computes the correlation

between different image patches by convolution. Such a method

usually adopts the hand-crafted features carefully designed with

prior information and aims at training a correlation filter online

in the region around the target by minimizing a least squares

loss. Due to the convolution theorem, DCF-based methods can

track objects at hundreds of frames per second (FPS) with only

one CPU. Considering that the computing resources of the UAV

platform are very limited, and the speed is a key issue in addition

to the tracking performance, this paper mainly concentrates on

target tracking based on DCF methods.

The development history of the DCF-based method is the

process by which people integrated more and better prior

information into the tracking framework. As people add their

understanding of tracking tasks as regular constraints to the

loss function (Mueller et al., 2017; Han et al., 2019b), the

trained correlation filter becomes more and more discriminative

and robust. Mosse (Bolme et al., 2010), as the originator of

correlation filtering, deemed target tracking as a problem of

binary classification, and trained the filter by randomly sampling

a fixed number of background samples as negative samples.

This greatly limits its discriminative power. To effectively

increase the number of training samples, which was critical

to the performance of the trained classifier, KCF (Henriques

et al., 2014) introduced the circulant matrix into the tracking

framework and obtained a large number of virtual negative

samples by circularly shifting the target samples. The cyclic

shifting greatly increased the training samples and caused

boundary effects that seriously limited the improvement of

tracking performance simultaneously. To mitigate the boundary

effect, SRDCF (Danelljan et al., 2015) added the SR term into

the loss function, aiming at penalizing the non-zero value

near the template boundaries. BACF (Kiani Galoogahi et al.,

2017) generated lots of real background samples, by expanding

the search area and introducing a binary mask for middle

elements cropping. To solve the scale change of the target,

DSST (Danelljan et al., 2014a) introduced an independent

scale filter, in addition to the classical correlation filter used

for locating, as well as SAMF (Li and Zhu, 2014) sampled

multiscale images, thereby building image pyramids. For the

improvement of the feature representation, CN (Danelljan et al.,
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2014b) brought in color features, while ECO (Danelljan et al.,

2017) added depth features obtained from off-line training

of the neural network. STRCF (Li et al., 2018b) brought in

additional temporal constraints to the SRDCF to limit the

variation of the filter in consecutive frames. This effectively

reduced the risk of filter degradation in case of sudden large

appearance variations. SAT (Han et al., 2019a) advocated a

kurtosis-based updating scheme to guarantee a high-confidence

template updating. ASRCF (Dai et al., 2019) realized the adaptive

suppression of clutter in different regions by regarding the

SR term, introduced in SRDCF, as a variable. MUSTer (Hong

et al., 2015) built the short-term and long-term memory stores,

thereby processing the target appearance memories. Autotrack

(Li et al., 2020) reformulated the loss function by introducing

the change of response maps into temporal regularization

(TR) and SR terms, thereby realizing adaptive adjustment.

Regardless of the great progress in DCF-based trackingmethods,

there are still some issues to solve. (1) Most original trackers

treat the features of different dimensions equally. Features of

different dimensions play different roles in tracking different

scenarios and different kinds of targets. The tracker is easily

biased by similar interference due to ignorance of the feature

channel information. (2) Most original trackers have insufficient

ability to suppress potential interference. Most of the original

methods merely utilize the same and fixed bowl-shaped SR

term centered on the target, aiming at giving more weight to

the background area for suppression. Additional suppression

is not applied to the potential interference according to the

actual tracking situation, thus leading to limited anti-aberrance

capability. (3) Most original trackers do not effectively use

historical information. Most of the original methods updated

the filter with a constant update rate, thereby causing the waste

of historical information and the risk of filter degradation.

Historical information is one of the most important factors in

the tracking process and should be efficiently used to enhance

the discriminant capacity of the tracker.

The brain can perceive the interference information in

the background, independently select the optimal features to

describe the target, and use historical memory to achieve

an accurate target location in the current frame. When

considering the above, a UAV tracking algorithm with

repressed dynamic aberrance, a channel selective correlation

filter, and a historical model retrieval module is proposed to

solve the aforementioned problems. Moreover, by formulating

the dynamic feature channel weight and the aberrance

repressed regularization into the integral loss function, the

tracking algorithm is built, thereby enabling the filter to

highlight valuable features in the channel domain and

using response maps to sense and suppress background

interference in advance. Meanwhile, the model retrieval

module, by imitating brain memory realizes the adaptive

update of the tracker. This paper has the main contributions

as follows.

i) A novel tracking method, that integrates the aberrance

repressed regularization and dynamic feature channel weight

into the loss function of the DCF framework, is proposed.

For joint modeling of the two factors, the tracker obtains the

ability to screen target features based on actual background

interference and learns more differentiated target appearance

representation. Thus, the loss function could be solved in very

few iterations by employing an efficient ADMM algorithm.

ii) A model retrieval module is employed which can realize

the adaptive update of the tracker by saving the history filters.

This module can also enhance the tracker’s learning of the

appearance of the trusted targets with historical information and

reduce the pollution of unreliable samples for the tracker.

iii) By giving the experimental validation conducted on

two public UAV datasets, the effectiveness of this method is

demonstrated.

2. Proposed methodologies

2.1. Revisted autotrack

In this section, the baseline Autotrack of this tracker shall be

revised.

Most original trackers, based on the discriminative

correlation filters (DCF), attempt to add a variety of

regularization terms such as spatial regularization (SR)

and temporal regularization (TR), thereby improving

the discrimination ability to target and background. Such

regularization terms are usually predefined fixed parameters,

so flexibility and adaptability are lacking in cluttered and

challenging scenarios. To realize automatic adjustment of the

hyper-parameters of the SR and TR terms during tracking,

Autotrack constructs them with the response maps obtained

during detection. Specifically, Autotrack introduces the partial

response variation 3 to the SR parameter ũ, and the global

response variation ‖3‖2 to the reference value θ̃ of the

coefficient of the TR term. The partial response variation 3

is defined as the variation of response maps between two

continuous frames, with the Equation as below.

3 = Rt[ψ1]− Rt−1

Rt−1
(1)

Where, R refers to the response map calculated in the

detection phase. [ψ1] represents the shift operator which makes

the response peaks in response maps of two continuous frames

coincide with each other. As for Autotrack, the integral objective
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loss function is shown below:

E(Ht , θt) = 1
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∥
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s.t. ũ = P⊤δlog(3 + 1)+ u (2)

θ̃ = ζ

1+ log(ν ‖3‖2 + 1)
, ‖3‖2 ≤ φ

Where, Xt = [x1t , x
2
t , ..., x

K
t ] and Ht = [h1t , h

2
t , ..., h

K
t ]

represent the trained filter and the extracted target feature

matrix at t frame, respectively. K is the total number of feature

channels. xkt ∈ RT×T indicates the sample feature vector

with length T in frame t in k channel and y ∈ RT×T is

the desired corresponding label set in the Gaussian shape. ũ

and θt represent the coefficients of SR and TR, respectively.

θ̃ is the reference value of θt used for measuring the change

in the tracking response map between two continuous frames.

PT ∈ RT×T is a binary matrix, used in cropping the central

elements of the training sample Xt . δ is a constant that can be

used in balancing the weights of partial response variations. u

represents a fixed bowl-shaped matrix of SR which is identical

to the STRCF tracker. ⊛ and ⊙ represent the convolution

operation and the elemental multiplication, respectively. ‖‖22 is

the Euclidean norm.

SR and TR, constructed by response maps variation, enable

the trained filter in Autotrack to adjust automatically while flying

and be more adaptable to different scenarios. Although this

method has achieved outstanding performance, it does have two

limitations. a) This method uses the response map generated

by the filter in the previous frame, rather than the learned

filter in this frame, thus leading to insufficient suppression of

interference. Sudden changes in response maps give important

information regarding the similarity of the current object

and the appearance model and reveal potential aberrances.

The tracker should reduce the learning of irrelevant objects

according to the changes during the training phase. b) The

weight of each feature channel is equivalent. Different channels

describe the objects in different dimensions. There may be many

similar features between the target and the background, which

are useless or even have a negative effect on the discriminatory

ability of trackers. Thus, the filter selects partial distinctive

features based on the actual situation for training and updating.

2.2. Loss function construction

To solve the above problems and enhance the discrimination

ability and anti-interference ability of the tracker, the weight of

the feature channel and aberrance suppression are introduced

together to restrain the filter. Specifically, feature channel

weight, which is treated as an optimization variable, updates

simultaneously with the filter. Also, the variation of two

continuous response maps, as an aberrance suppression

regularization, is integrated into the training process. The loss

function is shown below.
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∥
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∥
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∥
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∥

∥
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∥
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(3)

Where υkt is the weight coefficient of feature channel k at

t frame. It should be noted that υkt is not a fixed parameter,

but a variable that changes with the target appearance during

the tracking. The constant υk0 is regarded as the reference of

υkt , which represent the advance distributions of targets in the

different feature channels. υk0 is set to 1, thereby ensuring that

each feature channel has the same weight in the initial state.

Qt−1 refers to the response map generated from the previous

frame, and is equivalent to
K
∑

k=1

xkt−1 ⊛ hkt−1. Thus, it can be

treated as a constant signal during the optimization stage. λ1,

and λ2 are parameters that control model overfitting.

Equation 3 consists of six items that can be divided into four

parts. The first part constitutes the first item, the regression term.

The second part, including the second and third items, is the SR

integrated with channel selection. The third part, consisting of

the fourth and fifth items, is the TR borrowed from Autotrack.

The fourth part, made up of the last item, is the regularization

term, aiming at restricting and counteracting the aberrances

created by the background information. For the introduction

of channel weight υkt , the feature sifting of the filter is realized

in the channel domain by mitigating the impact of features

having no relation to the targets and by excluding needless

information. By introducing aberrance repressed regularization,

which gives greater penalties for interference, the ability of

the tracker to identify the aberrance in the background, and

suppress the subsequent changes of response maps on the basis

of the baseline, is further improved. The fusion of these two

factors enables the filter to find the aberrance in time, and

utilize the best features, thereby maximizing the differentiation

between the target and background.
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2.3. Optimization

As observed from Equation 3, the optimization of the

overall loss function involves the complex correlation operation

between matrices. Therefore, to reduce computational

complexity, and reduce sufficient computing efficiency, the

Parseval theorem is used to convert complex correlation

operations into simple elemental multiplication operations and

move the loss function from the time domain to the Fourier

domain as E(Ht , Ĝt , θt ,υt). Besides, the constraint parameter

ĝkt =
√
TFPThkt is used in constituting the Augmented

Lagrangian function L(Ht , Ĝt ,υ, θt , M̂t) as follows:

L(Ht , Ĝt ,υ, θt , M̂t) = E(Ht , Ĝt , θt ,υt)

+
K

∑

k=1

(ĝkt −
√
TFPThkt )m̂

k
t
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2
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∥

∥
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2
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(4)

Where symbol ˆ represents the discrete Fourier

transformation (DFT), for example, ŷ =
√
NFy and F

called the Fourier matrix is the orthonormal N × N matrix of

complex basis vectors. m refers to the Lagrangian multiplier,

and µ represents the penalty parameter. For simplification,

Ĝt = [ĝ1t , ĝ
2
t , ĝ

3
t , ..., ĝ

K
t ] and M̂t = [m̂1

t , m̂
2
t , m̂

3
t , ..., m̂

K
t ] are

defined. By assigning ŝkt = 1
µ m̂

k
t the optimization of Equation

(4) is equivalent to solving equation (5).

L(Ht , Ĝt ,υ, θt , Ŝt) = E(Ht , Ĝt ,υ, θt)

+µ
2

K
∑

k=1

∥
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√
TFPThkt + ŝkt

∥

∥

∥

2

2
(5)

Considering the complexity of the above-mentioned

function, the alternative direction method of multipliers

(ADMM) (Lin et al., 2010) is applied to speed up the calculation.

Specifically, the function of optimization can be divided into a

few sub-problems to be solved iteratively. During the solution

of every subproblem, only one variable is contained to be

optimized, while the others are regarded as fixed constants

temporarily. In this way, each subproblem and its relevant

closed-form solution can be given in detail below.

Subproblem for Ĝt : By giving Ht , υ, θt , Ŝt , the optimal Ĝ
∗
t

could be obtained by solving the optimization problem:

Ĝ
∗
t = argmin

Ĝ
∗
t
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∥

∥

∥

∥

∥

∥

2

2

+µ
2

K
∑

k=1

∥

∥

∥
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∥
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2
} (6)

However, it is still very difficult to solve Equation 6

directly, because this subproblem containing X̂kĝk shows a

high computation complexity and needs multiple iterations

in ADMM. Fortunately, X̂k is sparse, which means that

each element of ŷ(ŷ(n), n = 1, 2, . . . ,N) is merely related

to x̂k(n) = [x̂k(n)
1, x̂k(n)

2, . . . , x̂k(n)
D] and ĝk(n) =

[conj(ĝk(n)
1), conj(ĝk(n)

2), ..., conj(ĝk(n)
D)], where conj() refers

to the complex conjugate operation. Thus, this subproblem can

be divided intoN simpler problems acrossK channels as follows.

Ŵ∗j (Ĝt) = argmin

Ŵj(Ĝt)
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∥

∥
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2
} (7)

Where, Ŵj(Ĝt) ∈ C(K × 1) indicates the vector including

all K channel value of Ĝt on pixel j(j = 1, 2, . . . ,N). By

introducing the Sherman-Morrison formula (uvH + A)−1 =
A−1 − A−1uvHA−1

vHA−1u+1
, the inverse operation in the derivation

can be further simplified and accelerated.Then, the closed-form

solution of this subproblem can be obtained as follows.

Ŵ∗j (Ĝt) =
1

µ+ θt
(I−

(1+ λ2)Ŵj(X̂t)Ŵj(X̂t)
⊤

θt + µ+ (1+ λ2)Ŵj(X̂t)
⊤
Ŵj(X̂t)

)ρ (8)

Where ρ is merely an intermediate variable for simple

representation and ρ = Ŵj(X̂t)ŷj + θtŴj(Ĝt−1) − µŴj(Ŝt) +
µŴj(

√
TFP⊤Ht)+ λ1Ŵj(X̂t)Q̂t−1

Subproblem for Ht : By fixing Ĝt ,υ,θt ,Ŝt , Ht can be solved

with the equation below:

hk∗t= argmin

hkt

{1
2

∥

∥

∥

υkt ũ⊙ hkt

∥

∥

∥

2

2
+ µ

2

∥

∥

∥

ĝkt −
√
TFPThkt + ŝkt

∥

∥

∥

2

2
}

=
µTp⊙ (skt + gkt )

λ1(υ
k
t ũ⊙ υkt ũ)+ µTp

(9)
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Where, p = [P11,P22, . . . ,PTT]
⊤ represents the column

vector, that composed of the diagonal elements of P. As observed

in Equation 9, the computational cost on hk∗t solution is very

low, because it only involves the element-wise operation and an

inverse fast Fourier transform.

Subproblem for θt : By treating Ĝt ,υ,Ht ,Ŝt as constants,

the optimal θt can be obtained by solving the problem of

optimization below:

θ∗t = argmin
θt

{ θt
2

K
∑

k=1

∥

∥

∥

ĝkt − ĝkt−1

∥

∥

∥

2

2
+ 1

2

∥

∥

∥

θt − θ̃
∥

∥

∥

2

2
}

= θ̃ −

K
∑

k=1

∥

∥

∥

ĝkt − ĝkt−1

∥

∥

∥

2

2

2
(10)

Subproblem for υt
∗ Given Ĝt ,θt ,Ht ,Ŝt , υ

k
t can be optimized

with the following equation.

υk∗t = argmin

υkt

1

2

K
∑

k=1

∥

∥

∥

υkt ũ⊙ hkt

∥

∥

∥

2

2
+ λ1

2

K
∑

k=1

∥

∥

∥

υkt − υk0
∥

∥

∥

2

2

=
λ1υ

k
0

(ũ⊙ hkt )
⊤(ũ⊙ hkt )+ λ1

(11)

Lagrangian multiplier updating:

Ŝ
i+1
t = Ŝt

i + µi(Ĝt
i+1 − Ĥt

i+1
) (12)

Where, i and i + 1 represent the previous and current

iterations. The new Ĝt Ĥ obtained from the above optimization

solution is used to update the Lagrangian multiplier. The

regularization constant observes the updating laws of µi+1 =
min(µmax,βµ

i), thereby ensuring the convergence of the

integral model according to ADMM.

2.4. Historical model retrieval module

Most original tracking methods use linear interpolation with

a constant learning rate β , like Equation 13, to update the filter.

However, such an updating method not only causes the tracker

to indiscriminately treat all the historical information but also

results in filter pollution and degradation. The tracking result is

poor when faced with complex scenes, such as partial occlusion,

and camera defocus. Too high a learning rate causes the tracker

to easily overfit and then neglect historical information, while

too low a learning rate disenables the tracker from effectively

learning the change of targets. Considering that the human

brain can recall historical memory to make the best choice when

identifying targets and HMTS tracker, the history filter, namely

the historical model retrieval module is retrieved, and the best

filter of the current frame is obtained by selecting and linear

interpolating several effective filters. Specifically, historical filters

are saved first, and a filter library is built. After the training phase

of each frame, the correlation between each template and the

current sample image is calculated. Several historical templates

with the highest scores are selected and the scores are used as

weights to linear interpolate them, thereby obtaining a tracking

template for the next frame object location. This module is

described below in detail with mathematical symbols.

ht = βh+ (1− β)ht−1 (13)

Similiar to HMTS tracker (Chen et al., 2022), this method

retains the filter for each frame as the historical model Hhist .

However, the HMTS tracker builds the filters library with all

historical filters, which causes much computing burden and

redundancy. For example, when tracking to the end of a long

video, there are numerous historical filters, and there is great

similarity in target appearance between the current filter and

the front filter. Therefore, the size is fixed to φhist and the filters

library is constructed as Hhist = {(hi, si)}φhisti=1 . si refers to the

score of each historical model.

As expressed by the regression term in the loss function

Equation 3, the convolution results of the trained filter and

sample should ideally present a Gaussian shape centered on

the target, namely the label y. The basis of correlation filtering

theory is as below: the more similar the two signals are, the

greater the correlation between them is. Thus, like the HMTS

tracker, the si is defined as the correlation between the label

y and the convolution results Ri of different historical filters

Hi, i ∈ [1,φhist] and the current frame target samples Xt . The

equation of si is as follows:

si = max(F−1(yHRi))

Ri =

∥

∥

∥

∥

∥

∥

K
∑

k=1

xkt ⊛ hki

∥

∥

∥

∥

∥

∥

2

2

(14)

Where F−1 represents the inverse Fourier transform,H

indicates the conjugate transpose, and max(·) refers to the

maximum of the vector.

After the tracker training phase in accordance with Section

2.3, Equation (14) is adopted to calculate the scores of the trained

filter in the current frame and historical filters in the filters

library. Next, the historical model with the lowest score in the

filter library is replaced by the filter trained from the current

frame, thereby ensuring no change in the number of filters in

the library. It needs to be noted that, since the first frame is the

most accurate manually labeled target information, the filter of

the first frame shall always remain in the filter library. The filter

ht used for object detection in the next frame can be obtained by

a linear weighting of the filters with the top φscores scores.

ht =
∑

i

sihi

s.t.Rank(si) ≥ φscores (15)
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Where, Rank(si) represents the index of si in the set {si}φhisti=1 ,

which is ranked in descending and i ∈ [1,φhist]. It needs to be

noted that the filter trained in the first frame always participates

in the calculation of Equation 15 and it is given the lowest weight

in φscores filters if Rank(s1) ≤ φscores.

3. Experiments

In this section, the tracking performance of the proposed

tracker is evaluated against the nine state-of-the-art trackers,

namely AutoTrack, ASRCF, ECO-HC, STRCF, SRDCF, BACF,

LADCF (Xu et al., 2019), MCCT-H (Wang et al., 2018) and

Staple (Bertinetto et al., 2016a) on two difficult UAV benchmarks

(UAV123 Mueller et al., 2016 and VisDrone2018-test-dev Zhu

et al., 2018). For the measurement of the performance of

the aforementioned trackers, the employed evaluation metric

named one-pass evaluation(OPE) contained two indicators,

namely Precision Rate and Success Rate. It needs to be noted

that the precision plot threshold is set to 10 pixels in UAV123

and to 21 pixels in VisDrone2018-test-dev, when considering the

different target sizes from different UAV datasets.

3.1. Implementation details

Our tracker was used in MATLAB-2017a with an Intel i7-

9750H CPU, and 16GB of RAM, and runs at a 25 FPS average

with hand-crafted characteristics for target representation. The

common hyper-parameters are kept to the same values as the

baseline Autotrack, namely δ = 0.2, ν = 2× 10−5, and ζ = 13.

The SR constraint coefficient λ1 and the response aberrance

regularization constraint coefficient λ2 which are unique to the

proposed tracker, are set as 0.71 and 0.001, respectively. In the

historical model retrieval module, φhist = 30 and φscores = 20

are determined. As for the ADMM algorithm, the number of

iterations is set as 4, β = 10, and µmax = 104, which also shares

the same parameters as in Autotrack.

3.2. Quantitative evaluation

UAV123 is the most commonly used dataset in UAV

object tracking, with 123 videos with more than 110K frames

composed. In these sequences, 12 of the challenging attributes

involved, such as background clutter, aspect ratio change, and

similar object, required a more accurate and stable tracking

algorithm. The quantitative comparison of different trackers

is shown in Figure 1, and it can be observed that our tracker

shows the best precision with the second success rate, slightly

lower than ECO-HC. However, the proposed method achieves a

remarkable advantage of 2.6% in precision and 1.5% in success

rate, compared with the baseline tracker Autotrack.

VisDrone2018-test-dev is a dataset that is especially

proposed for aerial object tracking competition. It consists of

35 videos captured from 14 different cities and covers various

aspects including such as shooting position, tracking scene,

target type, and object density. Different scenarios, weather

conditions, and illumination changes are primarily addressed

in this dataset. As shown in Figure 2, the proposed tracker is

superior to all other evaluated trackers, and it can achieve 81.1%

and 60.7% in the distance precision (DP) and the area under

the curve (AUC), respectively. By comparing with the baseline

tracker, Autotrack, our tracker accomplishes 2.3% and 3.4% of

performance gains in precision and success rate, respectively.

3.3. Parametric sensitivity

As presented in Section 3.1, some hyper-parameters of

the proposed tracker need to be set, namely the spatial-

channel regularization constraint coefficient λ1 and the response

aberrance regularization constraint coefficient λ2 in the loss

function. In this section, the influence of different configurations

on tracking results is investigated. When evaluating each hyper-

parameter for a fair comparison, the common parameters are

maintained at the same value as in Autotrack and all other

parameters are fixed. Considering the operation speed, φhist is

set as a constant of 30 and φscores = 20 is set as a constant of

20 to ensure the efficient use of historical information and the

effective reduction of redundancy. Table 1 exhibits the tracking

results under different λ1,λ2 in VisDrone2018-test-dev, where

φscores is fixed to 20. It can be observed that this tracker yields

the best performance with λ1 = 0.001 and λ2 = 0.71.

3.4. Ablation experiments

As described in Section 2, in our method loss function is

reconstructed by introducing the feature channel weight and

aberrance repressed regularization, and an additional historical

memory model is added to the baseline Autotrack. To prove

the effectiveness of each module, ablation experiments were

conducted. The results are shown in Table 2. AutoTrack_csar

only reconstructs the loss function, while AutoTrack_hist

only adds the historical memory model. As observed, by

adding the two modules separately, the performance of the

baseline tracker can be improved effectively. Moreover, by

joining these two modules simultaneously, our method can

achieve excellent performance against the baseline. This is

mainly because the fusion of the two enables the tracker to

effectively use historical information to prevent background

clutter during tracking while establishing a more robust target

appearance representation.
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FIGURE 1

Overall performance of ten trackers on UAV123. The legend of success plot represents the area under the curve score of each tracker. The

legend of the precision plot refers to the threshold scores at 10 pixels.

FIGURE 2

Overall performance of ten trackers on Visdrone2018-test-dev. The legend of success plot represents the area under the curve score of each

tracker. The legend of the precision plot refers to threshold scores at 21 pixels.

TABLE 1 The success rate and precision rate (percentage) related to the varying number of regularization constraint coe�cients on

VisDrone2018-test-dev.

Parameter λ1 λ2

Value 0.001 0.1 0.5 1 0.71 0.01 0.1 1

Success Rate 60.7 58.4 59.2 59.0 60.7 58.5 59.1 59.0

Precision Rate 81.1 78.4 79.5 80.2 81.1 79.1 80.1 79.5

In historical models, φscores = 20 and φhist = 30. The threshold of precision rate is set to 21 pixels.

Bold values refer to first place in the experiments.
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TABLE 2 The success rate and precision rate (percentage) of ablation experiments on UAV123.

Tracker AutoTrack Two regularization Historical memory Precision rate Success rate

AutoTrack X 52.3 47.2

AutoTrack_csar X X 53.7 47.4

AutoTrack_hist X X 54.2 47.5

Ours X X X 54.9 48.7

The precision rate threshold is set as 10 pixels.

Bold values refer to first place in the experiments.

FIGURE 3

Qualitative performance evaluation of the proposed tracker and the other nine most advanced trackers on the typical UAV videos. The number

in the upper left corner refers to the frame number. The tracking boxes in di�erent colors represent the tracking results of di�erent trackers in

the frame. (A) Person16. (B) Person12_2. (C) Group1_1. (D) Uav0000088_00000_s. (E) Uav0000093_00000_s. The photos appearing in this

figure have been reused from: ‘A benchmark and simulator for uav tracking’ and ‘Vision meets drones: a challenge’. The corresponding website

are ‘https://cemse.kaust.edu.sa/ivul/uav123’ and ‘http://aiskyeye.com’.
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3.5. Qualitative evaluation

In this subsection, the qualitative comparison is given

to the proposed method and the aforementioned 9 state-of-

the-art algorithms to better demonstrate the performance

of each tracker in Figure 3. The above image sequences

(containing person16, person12_2, group1_1 in UAV123

and Uav0000088_00000_s, and Uav0000093_00000_s in

VisDrone2018-test-dev) mainly include three challenging

attributes, namely similar object (SOB), background clutters

(BC), and occlusion (OC). It can be observed that our tracker

is effective in solving these difficult issues, and can locate the

targets accurately.

When facing a similar object and background clutter,

aberrance repressed regularization can help the tracker in

accurately perceiving and fully restraining the interference

regions in advance. Simultaneously, dynamic feature channel

weight realizes the independent filtering of different dimensional

features, thereby encouraging the filters to focus onmore reliable

and discriminative features between the target and a cluttered

background. By jointly modeling the above two constraints, the

tracker can learn the robust features of the target according

to the environment and the interference from a cluttered

background.

When there is an occlusion, the trackers can learn the

features of the block and lose the target information, thus leading

to model drift and a failure of tracking. With the introduction of

a historical model retrieval module in our method, the tracker

has a memory function similar to the human brain by saving

a history template. The method of dynamic updating of the

template encourages the tracker to reduce the learning rate when

the training sample is abnormal, thereby effectively reducing the

probability of template pollution. The memory function of the

tracker also guarantees that the method can accurately lock the

target again after the disappearance of the occlusion.

In summary, when challenging attributes occur during

tracking, the addition of the two constraints endows the tracker

with the ability to select the most distinguishing feature for

sensing and suppressing the interference around the target,

while the historical model retrieval module effectively reduces

the pollution of interference and noise to the tracker. However,

when meeting viewpoint change and rotation, the performance

of our tracker is reduced because of rapid changes in the

appearance of the target. In the future, we will explore how to

refine tracking results to solve such problems.

4. Conclusion

Based on the idea that the brain can perceive interference

information in the background, select the optimal features

independently to describe the target, and use historical memory

to achieve accurate target location in the current frame, in this

paper, we propose a UAV tracking algorithm on the basis of

repressed dynamic aberrance and a channel selective correlation

filter with a historical model retrieval module combined. By

jointly modeling feature channel weight and the aberrance

repressed regularization, our tracker could restrain the potential

distractors, and highlight the valuable features in the channel

domain, thereby constructing a robust target appearance. With

a historical model retrieval module, our tracker can make full

use of the historical information to update the tracker, while

effectively avoiding tracking drift. The experimental results

on the two public UAV benchmarks demonstrate that the

proposed method achieves better tracking results than the other

advanced algorithms.
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