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Pitch is a fundamental aspect of auditory perception that plays an important

role in our ability to understand speech, appreciate music, and attend to

one sound while ignoring others. The questions surrounding how pitch is

represented in the auditory system, and how our percept relates to the

underlying acoustic waveform, have been a topic of inquiry and debate

for well over a century. New findings and technological innovations have

led to challenges of some long-standing assumptions and have raised new

questions. This article reviews some recent developments in the study

of pitch coding and perception and focuses on the topic of how pitch

information is extracted from peripheral representations based on frequency-

to-place mapping (tonotopy), stimulus-driven auditory-nerve spike timing

(phase locking), or a combination of both. Although a definitive resolution

has proved elusive, the answers to these questions have potentially important

implications for mitigating the effects of hearing loss via devices such as

cochlear implants.
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1. Introduction

Pitch—the perceptual correlate of acoustic repetition rate or fundamental frequency
(F0)—plays a critical role in both music and speech perception (Plack et al., 2005). Pitch
is also thought to be crucial for source segregation—our ability to selectivity hear out
and attend to one sound (e.g., a singer or your conversation partner) in the presence
of other sounds (e.g., backing instruments or neighboring conversations). Experimental
approaches to understanding pitch can be traced back to Seebeck (1841), Ohm (1843),
and Helmholtz (1885/1954). Indeed, an early dispute (Turner, 1977) foreshadowed a
long-running debate that continues to this day in various forms on what aspects of sound
the auditory system extracts in order to derive pitch.
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2. A time and a place for pitch

2.1. Historical roots

The classic pitch-evoking stimulus is a harmonic complex
tone, which repeats at the fundamental frequency (F0) and
consists of pure tones with frequencies at integer multiples
of the F0 (F0, 2F0, 3F0, etc.). The components that form the
harmonic tone complex are known as harmonics. We perceive
a pitch corresponding to the F0 of a harmonic complex tone,
even when the component at F0 itself is missing (the so-called
pitch of the missing fundamental; Oxenham, 2012). Much of
the debate surrounding pitch has focused on whether pitch
is extracted via the frequency-to-place mapping that occurs
along the basilar membrane (place code; e.g., Wightman, 1973;
Terhardt, 1974; Cohen et al., 1995), via the timing of stimulus-
driving spiking activity in the auditory nerve that is phase-
locked to the periodicities present in the stimulus (temporal or
time code; Licklider, 1951; Cariani and Delgutte, 1996; Meddis
and O’Mard, 1997), or via some combination of the two (place-
time code; Shamma and Klein, 2000; Cedolin and Delgutte,
2010).

Place theories can be likened to a Fourier transform,
followed by pattern recognition or template matching to identify
the F0 based on the pattern of places along the basilar
membrane responding to different harmonics of a complex tone.
These theories or models are often referred to as rate-place
models, because they are based on the average firing rate and
the tonotopic location of auditory-nerve fibers. Time theories
have often been implemented via an autocorrelation function,
again with either a peak-picking or template-matching stage
to identify the dominant underlying periodicity. This timing
information can be extracted from the temporal fine structure
(TFS) of individual spectrally resolved harmonics, as well as
from the temporal envelope fluctuations at the F0 produced by
the interactions of spectrally unresolved harmonics (Oxenham,
2012). The contrast between the spectral representation and
the autocorrelation function goes some way toward explaining
why it has been so difficult to distinguish between the two
approaches: the power spectral density and the autocorrelation
functions are Fourier transforms of each other, meaning that
they are mathematically equivalent and any change to one
representation will invariably lead to a change in the other.

Aside from being difficult to distinguish between peripheral
rate-place and time codes, the question becomes moot by
the level of the cortex, because neurons no longer phase-
lock to frequencies higher than a few hundred hertz, meaning
that any code based on phase-locked information must have
been transformed to another code by this stage of processing
(Fishman et al., 2013). So why should we be interested in how
information is being extracted from the auditory periphery?
One strong rationale is that people with sensorineural hearing
loss and/or cochlear implants can be severely limited in their

perception of pitch. Understanding how pitch is extracted
in the normally functioning auditory periphery may provide
important insights into how best to improve pitch perception
via devices such as cochlear implants.

2.2. Rethinking arguments in favor of a
time code

A number of arguments exist in favor of a time code for
pitch. However, recent work has led to a rethinking of many of
these arguments, as listed below.

2.2.1. Pitch is still heard, even in the absence of
any place cues

Amplitude-modulated white noise can elicit a pitch (Burns
and Viemeister, 1976, 1981), as can a harmonic complex tone
that has been highpass filtered to remove any spectrally resolved
harmonics (Houtsma and Smurzynski, 1990). The pitch of
such sounds is thought to be extracted via the periodicity in
the temporal envelope of the stimulus, providing prima facie
evidence that periodic temporal information can be extracted
from auditory-nerve activity to encode pitch.

However, temporal-envelope pitch is fragile. The resulting
pitch is susceptible to interference through noise or
reverberation (Qin and Oxenham, 2005), insufficient to
convey multiple simultaneous pitches (Carlyon, 1996; Micheyl
et al., 2010; Graves and Oxenham, 2019), and produces
discrimination thresholds (just-noticeable differences in pitch)
that are several times worse than those of complex tones with
spectrally resolved harmonics (e.g., Mehta and Oxenham, 2020).
This evidence for poor human processing of temporal-envelope
pitch suggests that the timing information extracted from the
envelope is insufficient to explain the highly salient and accurate
perception of pitch we experience with everyday sounds.
Indeed, our insensitivity to temporal-envelope pitch poses a
problem for timing-based models of pitch, which generally
perform too well (relative to human listeners) in cases where
only temporal-envelope cues are present (Carlyon, 1998), and
require somewhat ad hoc assumptions to bring their predictions
into line with the perceptual data (Bernstein and Oxenham,
2005; de Cheveigné and Pressnitzer, 2006).

2.2.2. Pitch discrimination is too good to be
explained by place cues

We are exquisitely sensitive to small changes in the
frequency of pure tones and the F0 of complex tones, to
the extent that trained listeners can detect changes of less
than 1% (e.g., Micheyl et al., 2006). A place code requires
the change in frequency to produce a detectable change in
the response level at one or more places along the basilar
membrane (leading to a change in average firing rate in one
or more auditory-nerve fibers). Standard estimates of human
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frequency selectivity (Glasberg and Moore, 1990), combined
with estimates of the level change needed to be detectable,
lead to predicted thresholds for frequency discrimination and
frequency-modulation detection that are considerably higher
(worse) than observed in humans (Micheyl et al., 2013).
Moreover, computational modeling suggests that the amount
of information present in the timing of auditory-nerve fibers
can exceed the information present when considering just the
spatial distribution of average firing rates by two or more orders
of magnitude (Siebert, 1970; Heinz et al., 2001; Guest and
Oxenham, 2022).

On the other hand, place cues may be more accurate than
we thought. Early estimates of peripheral frequency selectivity
came from physiological studies in small mammals (e.g., Kiang
et al., 1967). More recent work combining otoacoustic emissions
with behavioral studies using forward masking has suggested
that human cochlear tuning is sharper than that in the most
commonly studied smaller mammals by a factor of 2–3 (Shera
et al., 2002; Sumner et al., 2018). Sharper tuning implies more
accurate place coding of small changes in frequency and pitch.
In addition, computational modeling has shown that frequency
and intensity discrimination in humans can be explained within
the same rate-place framework if the reasonable assumption
is made that there exists some non-stimulus-related (noise)
correlation between cortical neurons with similar frequency
response characteristics (Micheyl et al., 2013; Oxenham, 2018).
Finally, the ability to detect small fluctuations in the frequency
of pure tones (frequency modulation, or FM) shows a significant
correlation with estimates of cochlear tuning in people with a
wide range of hearing losses, consistent with expectations based
on place-based frequency and pitch coding (Whiteford et al.,
2020). Based on these newer results, there may no longer be a
need to postulate an additional timing-based code to account
for human frequency and pitch sensitivity.

2.2.3. Pitch perception degrades at high
frequencies

Our ability to discriminate small changes in the frequency of
pure tones degrades at frequencies beyond about 4 kHz (Moore,
1973; Moore and Ernst, 2012), as does our ability to recognize
even well-known melodies (Attneave and Olson, 1971). This
degradation is at least qualitatively consistent with the loss of
phase-locking at frequencies beyond 1–2 kHz observed in other
mammalian species, such as cat or guinea pig, and possibly
humans (Verschooten et al., 2018). In contrast, the sharpness
of cochlear filtering, on which place coding depends, actually
improves with increasing frequency (Shera et al., 2002), leading
to predictions of better, not worse, pitch discrimination.

However, changes in pitch at high frequencies may not be
due to loss of phase locking. Several recent strands of evidence
suggest that the link between poor high-frequency pitch and
degraded phase-locking may not be so clear cut. First, complex
pitch perception remains accurate even when spectrally resolved

harmonics are all above 8 kHz (and so likely beyond the range
of usable phase-locking), so long as the F0 itself remains within
the musical pitch range (Oxenham et al., 2011; Lau et al., 2017).
This suggests that phase-locked information is not necessary for
complex pitch perception. Second, the degradation of frequency
and FM sensitivity at high frequencies (and at fast FM rates),
which had been ascribed to a loss of usable phase-locked
information (Moore and Sek, 1996), is also found for tasks that
do not involve TFS but instead involve comparisons of level
fluctuations across frequency, as would be needed by a rate-
place code for frequency (Whiteford et al., 2020). It may be that
sensitivity to frequency changes and pitch at high frequencies
is poorer due to cortical, rather than peripheral, limitations
because pitch from high frequencies is less common and less
relevant to us for everyday communication (Oxenham et al.,
2011).

2.2.4. The time code is robust to changes in
sound level

Perhaps the most compelling remaining argument is that
place cues may be dependent on overall sound level, with
cochlear tuning broadening and most auditory-nerve responses
saturating at high levels, whereas timing cues are generally
less susceptible to non-linearities and saturation (Carney et al.,
2015).

However, human data show level dependencies too.
Behavioral studies show a decrease in the number of spectrally
resolved harmonics, and a concomitant decrease in pitch
discrimination ability, with increasing sound level, in line with
the predicted effects of broader cochlear tuning (Bernstein and
Oxenham, 2006a). Also, high-threshold, low-spontaneous-rate
auditory-nerve fibers remain unsaturated, even at high sound
levels (Liberman, 1978; Winter et al., 1990), leaving open the
possibility of rate-place coding over a wide range of sound
levels.

In summary, none of the primary arguments in support of
phase-locked encoding of TFS cues for pitch remains compelling
in light of recent empirical data and computational modeling.
Indeed, several aspects of the human data, such as the inability
to use timing information when it is presented to the “wrong”
place along the cochlea (Oxenham et al., 2004) and the ability to
perceive complex pitch with only high-frequency components
for which little or no timing information can be extracted
(Oxenham et al., 2011; Lau et al., 2017; Mehta and Oxenham,
2022), suggest that timing information may be neither necessary
nor sufficient for the perception of pitch.

3. Asking why as well as how:
Machine learning approaches

As noted in the previous section, it has been suggested
that poorer pitch discrimination for high-frequency pure
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tones may be a consequence of less exposure and less
ecological relevance of these high-frequency stimuli, rather
than a consequence of poorer peripheral encoding (Oxenham
et al., 2011). A more comprehensive approach to ecological
relevance was taken earlier by Schwartz and Purves (2004),
who suggested that many aspects of pitch perception could
be explained in terms of the statistics of periodic sounds in
our environment, such as voiced speech. This approach can
be thought of as asking “why” pitch perception is the way
it is, rather than “how” it is represented in the auditory
system. A similar approach has been taken more recently by
harnessing deep neural networks (DNN) and training them
on a large database of over 2 million brief segments of
periodic sounds, taken from speech and music recordings
embedded in noise (Saddler et al., 2021). Using a well-
established computational model of the auditory periphery
(cochlea and auditory nerve) as a front end (Bruce et al.,
2018), Saddler et al. (2021) found that after training the
networks to identify the F0 of these sounds, the networks were
able to reproduce a number of “classical” pitch phenomena,
supporting the idea of Schwartz and Purves (2004) that many
aspects of pitch perception can be explained in terms of the
statistics of the sounds we encounter, and extending it by
providing quantitative comparisons of the model’s predictions
and human performance.

Saddler et al.’s approach also extended beyond the “why”
and returned to “how” by testing the relative importance of
the spectral resolution and phase-locking in their front-end
model. Their simulation results suggested that the spectral
resolution of their model was not critical to their results, but
that phase-locking was. This result, taken at face value, might
suggest support for time over place models of pitch. However,
the predictions are at odds with empirical data showing that
poorer spectral resolution, either via hearing loss in humans
(Bernstein and Oxenham, 2006b) or via broader cochlear filters
in other species (Shofner and Chaney, 2013; Walker et al.,
2019), does in fact affect pitch perception. This mismatch
between model predictions and empirical data may be because
the model has complete access to all the timing information
in the simulated auditory nerve. In that sense, the conclusion
from the DNN model can be treated as a restatement of the
earlier findings from optimal-detector or ideal-observer models
(Siebert, 1970; Heinz et al., 2001) that timing information from
the auditory nerve provides much greater coding accuracy than
average firing rate (rate-place code), and so is more likely to
influence model performance. Although the DNN approach
holds great promise, the implementations so far have not been
tested on the most critical pitch conditions (e.g., on spectrally
resolved harmonics outside the range of phase locking) and have
remained limited to F0s between 100 and 300 Hz. Although
this range spans the average F0s of male (∼100 Hz) and
female (∼200 Hz) human voices, it represents less than 2 of
the more than 7-octave range of musical pitch, meaning that

the majority of our pitch range remains to be explored with
this approach.

4. Remaining questions and
clinical implications

4.1. Why is timing extracted from the
temporal envelope but not TFS?

If the auditory system can extract pitch from the temporal
envelope, why not from TFS? A speculative reason is
based on the processing that occurs in the brainstem and
midbrain. Temporal-envelope modulation produces amplitude
fluctuations that are broadly in phase across the entire
stimulated length of the basilar membrane. Many types of
neurons in the brainstem and beyond are known to integrate
information from across auditory nerve fibers with a range
of characteristic frequencies (CFs). By receiving input from
auditory-nerve fibers that are synchronized with the period of
the temporal envelope and are in phase with each other, the
responses from such neurons can be more highly synchronized
to the waveform (in terms of vector strength) than those
in the auditory nerve itself (Joris et al., 2004). In the case
of responses to the TFS of a sinusoidal component (a pure
tone or a spectrally resolved harmonic), however, the rapid
phase transition of the traveling wave around CF (Shamma
and Klein, 2000) means that even auditory-nerve fibers with
similar CFs are unlikely to be in phase with each other.
The outcome could therefore be desynchronized input to
brainstem units, and an inability to transmit the phase-locked
responses to TFS beyond the auditory nerve. Note that some
brainstem units, such as the globular and spherical bushy
cells in the cochlear nucleus, do show highly phase-locked
responses to low-frequency CF tones (Joris et al., 1994).
However, these are only more synchronized than the auditory-
nerve fibers below about 1 kHz, and drop off rapidly thereafter,
a pattern that reflects behavioral sensitivity to binaural
timing differences but not to monaural or diotic pitch. One
possibility, therefore, is that sensitivity to temporal-envelope
periodicity is based on brainstem and midbrain sensitivity
and tuning to amplitude modulation (Joris et al., 2004).
Perceptual sensitivity to amplitude modulation deteriorates
above about 150 Hz (Kohlrausch et al., 2000), also with an
upper limit of around 1 kHz (Viemeister, 1979). In contrast,
information regarding the frequency components themselves
may be based solely on place or tonotopic information.
Therefore, the difference between the strong pitch based on low-
number spectrally resolved components and high-numbered
unresolved components may reflect a difference between rate-
place coding of the former and temporal (phase-locked) coding
of the latter.
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4.2. Implications for cochlear implants

Cochlear implants are the world’s most successful
sensorineural prosthetic device, providing hearing to over one
million people worldwide (Zeng, 2022). Despite their success,
cochlear implants do not provide “normal” hearing to their
users, and one major shortcoming involves the transmission
of pitch. Pitch has been defined in multiple ways for cochlear
implants. “Place pitch” refers to the sensation reported by
cochlear-implant users as the place of stimulation is changed by
altering which electrode is activated (Nelson et al., 1995); “rate
pitch” or “temporal pitch” is the sensation reported by cochlear-
implant users when the electrical pulse rate is changed (Pijl and
Schwarz, 1995; Zeng, 2002). For pure tones in acoustic hearing,
place and rate covary, but for complex tones, they can be
dissociated and are typically referred to as pitch (corresponding
to the F0) and brightness (an aspect of timbre related to the
spectral centroid of the stimulus). The rate pitch experienced by
cochlear-implant users is most akin to the temporal-envelope
pitch experienced by normal-hearing listeners in the absence
of spectrally resolved harmonics (Carlyon et al., 2010; Kreft
et al., 2010), whereas cochlear-implant place pitch seems to
behave more like brightness in normal-hearing listeners than
pitch (Allen and Oxenham, 2014).

The type of pitch that is not available to cochlear-implant
users with current devices is the one that normal-hearing
listeners rely on: the salient pitch provided by low-numbered,
spectrally resolved harmonics. Some efforts have been made to
provide this information to cochlear-implant users via TFS cues,
but while there may be benefits to binaural hearing (Francart
et al., 2015), there is no evidence yet to suggest that pitch
salience or accuracy comparable to that in normal-hearing
listeners can be induced via temporal coding (Landsberger,
2008; Kreft et al., 2010; Magnusson, 2011). The failure to
induce accurate pitch perception via electrical pulse timing
is expected, if we accept that pitch is typically conveyed via
place cues, and that timing cues can only elicit the relatively
crude pitch normally produced by temporal-envelope cues.
Would it be possible to provide cochlear-implant users with
sufficiently accurate place cues to recreate the kind of pitch
elicited via spectrally resolved harmonics? Recent studies using
acoustic vocoder simulations suggest that this will not be
possible with current technology (Mehta and Oxenham, 2017;
Mehta et al., 2020). These studies suggest that the spectral
resolution required to transmit resolved harmonics requires the
equivalent of filter slopes that exceed 100 dB/octave. Current
cochlear implants have resolution that seems equivalent to
slopes somewhere between 6 and 12 dB/octave (Oxenham and
Kreft, 2014), perhaps extending to 24 dB/octave when using
focused stimulation techniques (DeVries and Arenberg, 2018;
Feng and Oxenham, 2018). Thus, the unfortunate conclusion

is that the limited spectral resolution of cochlear implants is
unlikely to provide the information necessary to elicit a salient
pitch. This conclusion provides an additional impetus for the
search for new technologies, based perhaps on neurotrophic
agents to decrease the distance between electrodes and neurons,
a different stimulation site, such as the auditory nerve, or a
different stimulation strategy based, for instance, on optogenetic
technology (Oxenham, 2018).
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