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Edge detection networks
inspired by neural mechanisms
of selective attention in
biological visual cortex
Zhenguang Zhang, Chuan Lin*, Yakun Qiao and Yongcai Pan

School of Automation, Guangxi University of Science and Technology, Liuzhou, China

Edge detection is of great importance to the middle and high-level vision

task in computer vision, and it is useful to improve its performance. This

paper is different from previous edge detection methods designed only for

decoding networks. We propose a new edge detection network composed of

modulation coding network and decoding network. Among them, modulation

coding network is the combination of modulation enhancement network

and coding network designed by using the self-attention mechanism in

Transformer, which is inspired by the selective attention mechanism of

V1, V2, and V4 in biological vision. The modulation enhancement network

effectively enhances the feature extraction ability of the encoding network,

realizes the selective extraction of the global features of the input image, and

improves the performance of the entire model. In addition, we designed a new

decoding network based on the function of integrating feature information

in the IT layer of the biological vision system. Unlike previous decoding

networks, it combines top-down decoding and bottom-up decoding, uses

down-sampling decoding to extract more features, and then achieves better

performance by fusing up-sampling decoding features. We evaluated the

proposed method experimentally on multiple publicly available datasets

BSDS500, NYUD-V2, and barcelona images for perceptual edge detection

(BIPED). Among them, the best performance is achieved on the NYUD

and BIPED datasets, and the second result is achieved on the BSDS500.

Experimental results show that this method is highly competitive among

all methods.
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Introduction

Edge detection is one of the most fundamental tasks
in computer vision (Canny, 1986). Its main purpose is to
extract the object boundary and prominent edge containing
the main information of the target from the natural image,
ignoring other unimportant details in the image. The edge
and boundary of objects are important in other middle and
advanced computer vision tasks, which help to improve their
performance. Such as target recognition and detection (Ferrari
et al., 2007; Liu et al., 2020), image segmentation (Arbelaez et al.,
2010; Muthukrishnan and Radha, 2012), semantic segmentation
(Lin et al., 2017), and other visual tasks. Therefore, edge
detection is also a research hotspot in the field of computer
vision.

With the increasing demand for other visual tasks and the
improvement of performance requirements for basic tasks, edge
detection methods are constantly developing and improving.
Early edge detection methods such as Prewitt (1970), Duda
and Hart (2003), Canny (1986) mainly extracted edges by
calculating local gradient changes of images. Later, in order
to obtain better edge detection performance than traditional
methods. Some researchers proposed a detection method that
mimics biological vision based on the effective biological
vision mechanism for edge detection in the biological vision
system. For example, Grigorescu et al. (2003) proposed isotropic
and anisotropic methods, while other researchers proposed
CO (Color-opponent) (Yang et al., 2015b), SCO (Double-
Opponency and Spatial Sparseness Constraint) (Yang et al.,
2015a), etc., which achieved better performance than traditional
edge detection methods. In order to improve the performance
of edge detection, some experts and scholars use machine
learning to process the edge detection task as a pixel-level
binary classification task. An edge detection method based on
unsupervised learning is proposed to better integrate the whole
image and local information. For example, the Pb algorithm
proposed by Martin et al. (2004), gPb algorithm proposed by
Arbelaez et al. (2010), and oriented edge forests (OEF) algorithm
proposed by Hallman and Fowlkes (2015).

With the development of deep learning in recent years, the
performance of edge detection has been greatly improved. HED
(Holistically-nested edge detection) is the earliest edge detection
method based on CNN (Convolutional Neural Network). It
is also the first end-to-end edge detection model proposed by
Xie and Tu (2015) inspired by fully convolutional networks
(FCN) (Long et al., 2015), which achieves the most advanced
performance. Later, Liu et al. (2017) proposed RCF (Richer
convolutional features) based on HED, Wang et al. (2017)
proposed CED (Crisp edge detector), and other researchers
proposed more edge detection methods based on CNN (Deng
et al., 2018; He et al., 2019; Cao et al., 2020; Deng and Liu, 2020;
Lin et al., 2020), all of which achieved advanced performance.
On the NYUD-v2 data set (Silberman et al., 2012), the detection

performance has been boosted from 0.632 (Arbelaez et al.,
2010) to 0.765 (He et al., 2019) in optimal dataset scale (ODS)
F-measure.

As mentioned above, the edge detection method based
on CNN has achieved impressive results. But there are still
some problems worth studying. First, they ignore the important
impact that coding networks can have. Edge detection methods
based on CNN generally adopt codec network structure (Xie
and Tu, 2015; Liu et al., 2017; Wang et al., 2017). The
encoding network mainly extracts feature information and the
decoding network integrates feature information. Researchers
usually directly use deep convolutional neural network VGG16
(Simonyan and Zisserman, 2015) or ResNet (He et al., 2016)
as the encoding network and design the decoding network
with a complex structure to obtain good performance. Second,
researchers (Xie and Tu, 2015; Liu et al., 2017; Wang et al.,
2017; He et al., 2019; Lin et al., 2020) usually fuse the output
of the coding network in a top-down manner when designing
the decoding network. In the research, they pay more attention
to the method of recovering the feature map and pay less
attention to other methods that can integrate the whole feature.
So why not consider other ways to improve model performance
besides decoding networks? Why can’t bottom-up fusion be
used in decoding networks or top-down fusion be combined
with bottom-up fusion?

With the gradual deepening of the research on edge
detection, some experts and scholars have found that it is
difficult to significantly improve the overall performance of
the model only for the design of decoding network (Deng
et al., 2018; Cao et al., 2020; Deng and Liu, 2020). To
this end, they began to explore other ways to improve edge
detection performance. Deng et al. (2018) obtained finer edges
by designing new loss functions. Cao et al. (2020) improved
the overall performance of the model by designing a new
decoding network and combining the improved loss function.
Later, Deng and Liu (2020) proposed to add a super-convolution
module between the coding network and the decoding network
to deal with the output of the encoding network at a deeper
level and to combine the improved loss function to improve
the overall performance of the model. Wibisono and Hang
(2020a) proposed a fast inference network for edge detection
using expanded convolution to design backbone networks. Su
et al. (2021) proposed a new edge detection Network PiDiNet
(Pixel Difference Network) by combining difference operator
and convolution operation.

Based on the above analysis, in view of some problems
existing in the current methods, and combined with the
connection between neural network and Biological Vision
System (Fukushima et al., 1988; Hao et al., 2021). In this paper,
we proposed a new edge detection model (MEDNet, Modulation
encoding and decoding network) inspired by the selective
mechanism in biological visual pathways V1, V2, and V4
(Yoshioka et al., 1996; Luck et al., 1997; Marcus and Essen, 2002;
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Allen et al., 2018). Figure 1 shows the partial test results of
MEDNet on the BSDS500 dataset. In the new edge detection
model, we use VGG16 (Simonyan and Zisserman, 2015) as
the encoding network, which is the same as the previous
method. Inspired by the spatial selectivity mechanism in V1, V2,
and V4, we use the self-attention mechanism in Transformer
(Dosovitskiy et al., 2020; Liu et al., 2021; Wang et al., 2021)
to design a modulation enhanced network (MENet). A new
encoding network, modulation coding network (MCNet), is
formed by combining the modulation enhancement network
and encoding network, which enhances the feature extraction
ability of the encoding network. The overall performance of the
model is further improved by enhancing the feature extraction
capability of the encoding network. In addition, based on the
functional structure of the bio-visual Pathway (Okazawa et al.,
2016) and CNN, and combining the characteristics of V1, V2,
V4, and the modulation encoding network, the modulation
encoding network is reasonably corresponding to V1, V2, V4
in the bio-visual pathway. In addition, in view of the problem
that the previous decoding network only adopts the top-down
fusion method to achieve feature integration. In this paper,
based on the main function of the IT area in the biological vision
system (Bear et al., 2020) (responsible for recognizing objects
and integrating feature information), we design a new decoding
network–Double Decoding Network (DDNet). We decode the
output of the coding network from top to bottom and from
bottom to top, respectively, and the decoding fusion process
does not interfere with each other. Finally, we fuse the output of
the two decoding networks to obtain the final edge output and
achieve better performance.

In the rest of the paper, we introduce some previous work in
related fields and describe in detail the methods we propose in
this paper. In addition, for the method proposed in this paper,
detailed experimental analysis is carried out on three publicly
available data sets BSDS500 (Arbelaez et al., 2010), NYUD-V2
(Silberman et al., 2012), and barcelona images for perceptual
edge detection (BIPED) (Poma et al., 2019). By comparing
the experimental results with those of other edge detection
methods, our method has proven to be competitive. Finally, we
summarize the whole paper.

Related work

In this part, we introduce the traditional edge detection
method, the edge detection method based on biological vision,
and the edge detection method based on CNN. Among them,
this paper mainly involves the biomimetic vision method and
the method based on CNN.

Traditional edge detection method. The traditional edge
detection method mainly extracts the target edge from the
image by the local grayscale, color, texture, and background
change. Such as Prewitt (1970), Canny (1986), Duda and Hart

(2003). Although these methods can achieve the extraction of
target edges, they only focus on the change of local information
in the extraction process, which leads to the problems of
poor continuity and low accuracy of extracted edges. And
the traditional edge detection method is susceptible to the
interference of background and texture noise in the process of
image edge extraction, which also leads to the extracted edge
still containing a lot of background and texture information.
Hence, conventional edge detection methods can hardly meet
the requirements of other visual tasks.

An edge detection model for biomimetic vision. In order
to improve the performance of edge detection methods and
better meet the requirements of middle and advanced visual
tasks, some experts and scholars began to explore new edge
detection methods. Inspired by Hubel and Wiesel (1962)
discovery that primary visual cortex (V1) neurons have the
function of detecting edges and lines, some researchers began
to study the role of biological vision in image edge extraction.
Then they proposed a series of edge detection methods that
mimic biological vision. For example, the edge detection model
simulates the inhibition of simple cell and complex cell nCRF
(non-Classical Receptive Field) to CRF (Classical Receptive
Field) response in the biological vision system (Grigorescu et al.,
2003). The suppression effect of nCRF on CRF response is
simulated by using the DoG operator, and the suppression of
texture and background in the image is realized. Based on the
color antagonism mechanism from the retina to visual cortex
(V1) and spatial sparsity constraint strategy (SSC), the SCO
edge detection model was proposed by Yang et al. (2015a).
Later, Tang et al. (2019) combined the modulation of CRF by
nCRF in biological vision with deep learning, and proposed a
learnable edge detection model inspired by biological vision,
which achieved the best performance in the edge detection
method of biological vision.

Edge detection method based on CNN. In recent years,
CNN has made impressive achievements in the field of edge
detection. Xie and Tu (2015) proposed the first end to end
edge detection model HED based on CNN, which achieved
the most advanced performance in the field of edge detection.
In HED they retained the 13 convolutional layers of VGG16
as the coding network and divided it into five parts for
output according to the modified structure. Then the final edge
is obtained by integrating ve different resolution outputs of
the coding network through the decoding network. Inspired
by FCN, Yang et al. (2016) proposed the full convolutional
codec network CEDN. CEDN uses VGG16 as the encoding
network and the input can be any size image. After feature
extraction in coding network, deconvolution and anti-pooling
layer are used to restore the size of feature map in decoding
network. Maninis et al. (2016) proposed an edge detection
algorithm COB with convolution-oriented boundary structure.
It achieves better detection performance by fusing multi-scale
contour information. Liu et al. (2017) improved on HED and
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FIGURE 1

Partial test results of our method on the BSDS500 dataset. Source photos: BSDS500 dataset - publicly available dataset.

proposed an edge detection network RCF with richer features.
In RCF, Liu et al. (2017) used the same coding network and
the same partition as HED, but the difference was that they
output the results of all 13 convolutional layers in the coding
network. In addition, Liu et al. introduced multi-scale results
into RCF, which improved the performance of the model. After
that, Wang et al. (2017) improved the decoding network and
adopted sub-pixel convolution layer by layer to sample and fuse
the output of the coding network in the decoding network,
and proposed a network CED that could obtain finer edges
and achieve good performance. Other researchers have also
proposed edge detection models based on CNN, such as BDCN
proposed by He et al. (2019), which achieved good performance
by using two-way cascaded networks. DRC proposed by Cao
et al. (2020) improved the overall performance of the model
by designing fusion modules and improving loss functions.
The DSCD (deep structure contour detection) proposed by
Deng and Liu (2020) improves the overall performance of the
model by adding hyper convolutional modules between the
encoding network and the decoding network and designing new
loss functions. Poma et al. (2019) put forward Dense Extreme
Incident Network for Edge Detection (Dexined), which can
achieve excellent performance without pre-training. It can also
be applied to multiple datasets without fine-tuning and has
great generalization performance. Deng et al. (2021) designed
the coding network combined with MobileNetV2 to extract
features, and used the new decoding network to compress
features. Finally, combined with the designed loss function, a
modern edge detection model was proposed. Su et al. (2021)
proposed a (PiDiNet) for edge detection by combining the
difference operator in traditional operators with convolution
operation, and achieved excellent performance in detection
efficiency and parameters. Wibisono and Hang (2020a) designed

a backbone network with dilated convolutions and proposed
FINED for edge detection. TIN2 (Wibisono and Hang, 2020b) is
designed in conjunction with the traditional contour detection
step, and both achieve excellent performance in terms of
detection efficiency. Recently, Transformer has attracted the
attention of a large number of researchers by demonstrating
strong performance by achieving the best results in various
computer vision tasks. Pu et al. (2022) applied it to the field of
edge detection and proposed a new edge detector EDTER based
on Transformer, which achieved the best results. EDTER first
uses a global transformer encoder to extract global contextual
information and then a local transformer encoder to extract
local features. At the same time, global information and local
features are used to obtain clearer boundaries and significant
edges, thus achieving better performance.

To sum up, it can be found that although traditional edge
detection methods can achieve the extraction of target image
edges, their accuracy is difficult to meet the requirements of
other visual tasks. Although the method of biomimetic vision
achieves the suppression of image texture and background to
a certain extent. However, most of the current edge detection
methods of biomimetic vision use mathematical formulas to
simulate some characteristics or mechanisms in the biological
vision system. There are still some limitations. The edge
detection method based on CNN has achieved the most
advanced performance, but the researchers pay more attention
to the design of the decoding network. Given the problems
existing in the current methods, inspired by the previous
biomimetic vision model and combined with the selectivity
mechanism in the biological visual pathways V1, V2, and V4.
We propose a new modulation enhancement network. The
overall performance of the model is improved by enhancing
the feature extraction capability of the coding network. At the
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same time, we designed a new decoding network to improve the
performance of the model.

Edge detection network structure
combining convolutional neural
network and biological vision

Biological visual mechanism

Selective mechanisms in biological vision. In the biological
vision system, the information transmission starts from the
retina. The visual information is processed and transformed
by the retina and transmitted to Lateral geniculate nucleus
(LGN) by ganglion cells, and then projected to primary visual
cortex V1 after LGN processing, which carries out preliminary
processing and feature extraction for LGN-processed visual
information. The transmission of visual information from the
retina to the LGN to the V1 region is known as the first visual
pathway (Mishkin et al., 1983; Bear et al., 2020). The information
processed in area V1 then travels through two parallel pathways
to different brain regions for different functions. The processing
and transmission of V1→V2→V4→IT [Inferior temporal (IT)
cortex] is called the ventral pathway, also known as the “What”
pathway (Ungerleider and Haxby, 1994). It is sensitive to
color, shape, and direction in visual information (“→” indicates
the direction of information transmission). The processing
transmission of the V1→V2→V3→MT (Middle temporal)
cortex is called the dorsal pathway, also known as the “Where”
pathway (Ungerleider and Haxby, 1994). It is more sensitive to
motor information in visual information. For the edge detection
task, feature extraction is mainly based on color, shape, and
other information in the image. Therefore, we focused on
information processing transmission in the ventral pathway.

As scientists continue to explore the brain, some researchers
have discovered the existence of selective mechanisms in
biological vision (Yoshioka et al., 1996; Luck et al., 1997; Allen
et al., 2018). Physiological studies have also shown that V1, V2,
and V4 in biological visual pathways have selective mechanisms
in information processing and extraction. That is, they have
different processes for different information, they will be more
sensitive to some important information, and ignore some
unimportant details. Based on and inspired by the existence of
this selectivity in V1, V2, V4. In this paper, we use the self-
attention mechanism (Wang et al., 2021) in Transformer to
design the MENet, which realizes the selective extraction of
feature information according to the global information of the
image. Then a new coding network, MCNet, was formed by
combining MENet with the coding network. At the same time,
based on the structure of CNN and the connection between
neural network and biological vision, the new coding network
also formed a reasonable correspondence with V1, V2, and V4
in the ventral pathway both functionally and structurally.

Inferior temporal area in biological vision. The IT area is the
terminus of the ventral pathway in the biological visual pathway.
Its main function is to integrate the received characteristic
information and identify objects (Gross et al., 1972; Tanaka,
1996; Bear et al., 2020). Neurophysiological studies have shown
that neurons in the IT region have a large receptive field and
are sensitive to receiving characteristic information such as color
and shape. When the IT zone is damaged, it will directly affect
the ability to recognize objects (Tanaka, 1996). In this paper,
we design a new decoding network–double decoding network
based on the feature integration function of IT area and its
sensitive characteristics of color, shape and other information.
Through the design of double decoding network, we realize
the feature information from the top-down fusion, from the
bottom-up fusion, fully extract the modulation coding network
output feature information, so that the overall performance of
the model has been improved. At the same time, it also forms a
reasonable correspondence with the IT area in terms of function.

Overall network structure

Figure 2 shows the overall structure of the edge detection
model proposed by us. It consists of two parts, one is the MCNet
which is composed of the MENet and the coding network. The
other part is the DDNet proposed in this paper. Modulation
enhancement network in modulation coding network is a
new network structure inspired by the selective mechanism
in biological visual pathways V1, V2, and V4. By combining
with the coding network, modulates the coding network and
enhances the feature extraction ability of the coding network.
Modulation coding network also forms a more reasonable
correspondence with V1, V2, V4 in the biological visual pathway
in terms of function and structure. DDNet is a dual decoding
network proposed by us. It uses two decoding networks
and uses different feature fusion methods to fuse the output
feature information of the encoding network, which improves
the performance of the model. In addition, according to the
function of the IT layer in the visual pathway, which is mainly
responsible for integrating feature information (Bear et al.,
2020), we have formed a correspondence between decoding
network and IT.

Encoded network structure
(modulation coding network and
modulation enhanced network)

Modulation coding network in Figure 2 shows the
modulation coding network structure diagram after we combine
the modulation enhanced network and encoding network
VGG16. The green part is the modified VGG16, same as
the previous method (Xie and Tu, 2015; Liu et al., 2017;
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FIGURE 2

Overall network structure diagram. From left to right, modulation coding network (MCNet), dual decoding network (DDNet). Among them,
MCNet also includes modulation-enhancement network (MENet) (Yellow diamond composition) and coding network (Green rectangle).
Down-sampling attention enhancement module (DAE) in MENet is a down-sampling attention-enhancing module designed by using a
self-attention mechanism. MCNet corresponds to V1, V2, and V4 in the biological visual pathway. The dual-decoding network DDNet integrates
the feature information of up-sampling and down-sampling, respectively and outputs the feature information after integration. DDNet
corresponds to the IT layer in the visual pathway. In the following sections, we describe the detailed structure of MCNet, MENet, DAE, and
DDNet. Source photos: BSDS500 dataset - publicly available dataset.

Wang et al., 2017; Deng and Liu, 2020). We modify VGG16,
delete the full connection layer and the last pooling layer, and
divide it into Stage 1, Stage 2, Stage 3, Stage 4, and Stage 5 layers
according to the pooling layer. Then we combined the different
outputs in MENet with the coding network according to the
resolution and realized the modulation of the coding network so
that more feature information was added to the coding network,
especially the global feature information processed by the self-
attention mechanism. The feature extraction capability of the
coding network is improved, and the overall performance of the
model is also improved.

Based on the structure and function of CNN and the
connection between CNN and biological vision (Fukushima
et al., 1988; Hao et al., 2021), we usually consider that the coding
network corresponds to V1, V2, and V4 in the visual pathway.
In the biological visual pathway (Bear et al., 2020), V1 mainly
receives input from LGN, carries out preliminary integrated
processing on the received information, and extracts primary
features. After that, V1 will transfer the processed information
to V2 for additional processing and feature extraction in the
V2 region, and the processed information will be transferred
to the V4 region. Finally, the extracted feature information
will be integrated and output by the IT layer. In the coding
network, the feature information extraction is the same as the
step-by-step extraction in V1, V2, and V4 (Okazawa et al.,
2016), which achieves the step-by-step extraction of feature

information through the convolutional layer and pooling layer.
In addition, considering the selective mechanism in V1, V2, and
V4, we combine the modulation enhancement network based
on the self-attention mechanism with the encoding network to
form a new encoding network, the MCNet. The MCNet has
a more reasonable correspondence with V1, V2, and V4, both
functionally and structurally.

Neurophysiological studies have shown that there are
selective mechanisms in biological visual pathways V1, V2,
and V4 (Yoshioka et al., 1996; Luck et al., 1997). Inspired
by this, in this paper, we use the self-attention mechanism
of Pyramid Vision Transformer (PVT) (Wang et al., 2021) to
design the modulation enhanced network MENet as shown
in Figure 3, which realizes the selective extraction of global
feature information in the image. Unlike most models that
utilize the mechanism of self-attention, we do not block image
processing and position coding in MENet but implement
image patch embedding by designing a DE (Down-sampling
Embedding) module. And mapping it to a vector, and realizing
the down-sampling processing of the input image. Its structure
is shown in Figure 4. The results of the DE module were
then input to the same self-attention mechanism module as
PVT (Wang et al., 2021) for re-processing, and the results were
output through Layer.

Normalization and Feedforward. Finally, we restore it to its
reduced size. In addition, in MENet, we combined the feature
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FIGURE 3

Modulation enhancement network structure diagram. Inspired by the selective mechanism in V1, V2, and V4, we design the modulation
enhanced network, which can better correspond with V1, V2, and V4 by combining with the coding network. H and W represent the size of the
image and feature graph, respectively, and 3, 128, 256, 512 represent the number of channels, respectively. The down-sampling embedding (DE)
and transformer_encoder (TE) modules are described in detail in Figure 4.

FIGURE 4

Structure Diagram of down-sampling attentional enhancement module. It consists of down-sampling embedding (DE) and
transformer_encoder (TE). DE implements down-sampling processing and patch embedding operation of the input image. The TE implements
selective feature extraction and outputs the results at last.

pyramid structure and used the down-sampling enhancement
module to output four outputs of different scales after self-
attention processing. And combine it with a coding network. By
combining with coding network, the feature extraction ability
of coding network is enhanced and a new coding network
MCNet is formed.

Down-sampling attention enhancement module
(DAE). As shown in Figure 4, the attention-enhancement
module for down-sampling is proposed. The input image
is first sampled by DE (Down-sampling embedding)
in DAE and mapped to a vector. Then the global
information of the image is extracted selectively by TE
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(Transformer_encoder), and the original size is restored by
Reshape. Refer to the design in Wang et al. (2021) for Spatial
Reduction (SPR).

Down-sampling embedding. It consists of three convolution
layers, a maximum pooling layer, a fallten layer, and the
activation function GELU. Where the size of the convolution
layer is 3 × 3. It realizes the down-sampling processing and
mapping of the input image so that the input image is mapped
into a vector that can be processed by TE. TE realizes the

selective extraction of the global features of the input image. In
addition, we do a relu activation after each convolution.

Decoded network structure (double
decoding network)

Inspired by the function of integrating feature information
in IT area of biological visual pathway, we design a new

FIGURE 5

Double decoding network structure diagram. Up-sampling decoding (Ud) and down-sampling decoding (Dd) receive output from the
modulation coding network. S1, S2, S3, S4, and S5 represent the five different outputs of the modulation coding network. Among them, Ud
utilizes the “R” module to realize top-down feature fusion, while Dd utilizes the “D” module to realize bottom-up feature fusion. Finally, the
result fusion of the two realizes full extraction and fusion of context information. TL_i (i = 1,2,3,4) represents the different stages of
top-to-bottom feature fusion. The TL_1 stage takes five different outputs of the modulation coding network as inputs and obtains four different
outputs (TL_1-TL_1-4) after processing by the “R” module. Then these four different outputs are used as the input of TL_2 in the next stage, and
three different outputs (TL_2-1-TL_2-3) are obtained. This is processed step by step to TL_4 to obtain the output of Ud. The same DL_i
(i = 1,2,3,4) symbol is similar to TL_i. It represents the different stages of top-down feature fusion. Five different outputs of the modulated
coding network are taken as inputs and processed step by step by the “D” module until DL_4. In addition, the orange rectangles in different
shades represent outputs of different resolutions. We detail the structure of “D” and “R” in Figure 6.
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decoding network – dual decoding network. Figure 5 shows
the dual decoding network structure diagram proposed by us.
It is different from the previous method which only uses up-
sampling methods to fuse coded network output. We design two
different decoding networks, which accept the same encoding
network output but fuse feature information in different ways.
In one of the decoding networks, the feature information of
adjacent outputs is fused by up-sampling. It makes use of the
“R” module (Cao et al., 2020) to up-sample the feature picture
with a smaller resolution from the two adjacent feature pictures
to the same size as the feature picture with a larger resolution
and then merges them. In this way, a fusion output with the
same size as the input is finally obtained, which is called up-
sampling decoding (Ud). The other decoding network uses a
down-sampling method to fuse the characteristic information
of adjacent output. It uses the “D” module to down-sample the
feature map with higher resolution from two adjacent feature
maps to the same size as the feature map with lower resolution,
and then fuse the feature map. Finally, a minimum resolution
output is obtained. Then, the output of the minimum resolution
is restored to the same size as the input image to obtain the final
output, which is called down-sampling decoding (Dd). Finally,
we fuse the output results of the two decoding networks to get
the final edge. Although bottom-up fusion has achieved good
results in previous methods (Liu et al., 2017; Wang et al., 2017;
Lin et al., 2020), it still has the defect of insufficient context
information fusion. We use the dual decoding network to fuse
the bottom-up information and the top-down information,

TABLE 1 Comparison of results of other models before and after
combining modulation-enhancement network (MENet) on BSDS500
data set.

Method MENet ODS OIS AP

HED (Xie and
Tu, 2015)

× SS 0.788 0.808 0.840

√
0.791 (↑0.003) 0.811 (↑0.003) 0.809

RCF (Liu et al.,
2017)

× MS 0.811 0.830 –

√
0.812 (↑0.001) 0.833 (↑0.003) 0.871

LRC (Lin et al.,
2020)

× MS 0.816 0.836 0.864

√
0.817 (↑0.001) 0.839 (↑0.003) 0.867 (↑0.003)

“×” means without MENet and “
√

” means with MENet. SS, single-scale results; MS,
multi-scale results. Except for HED (Xie and Tu, 2015), the results are on BSDS500-VOC.
“↑”indicates improved results.

respectively, and finally combine the two to realize the full fusion
of context information, and obtain good results.

Down-sampling Module. Figure 6A shows the structure
of the “D” module we used in Figure 5. The “D” module
adopts a bottom-up structure to fuse feature maps with different
resolutions. After “D” is entered for two adjacent feature images,
the feature images with high resolution will be sampled to the
same size as the feature images with low resolution. After that,
the two images will be added together to achieve bottom-up
fusion.

FIGURE 6

Structure diagram of “D” and “R” modules. Where S-i and S-j represent feature maps with adjacent resolution sizes. (A) Is the structural drawing
of module “D”. (B) Is the structure diagram of the “R” module. Each convolution is activated by relu.

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.1073484
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073484 November 22, 2022 Time: 7:35 # 10

Zhang et al. 10.3389/fnins.2022.1073484

Refine Module. As shown in Figure 6B is the structure
diagram of the “R” module used in Figure 5, referring to the
structure proposed by Cao et al. (2020). This is the opposite
of what “D” does. After input “R” for two adjacent resolution
feature images, the low-resolution feature image will be sampled
to the same size as the high-resolution feature image, and then
the two images will be added to realize the top-down fusion.

Loss function

To make a fair comparison with the different methods (Xie
and Tu, 2015; He et al., 2019), we train with the same loss
function as them. The threshold η is introduced to distinguish
positive and negative sample sets in consideration of the
problem of labels being tagged by multiple people. η is set to
0.2. In addition, we only calculated the loss of the final output.
For a true edge graph Y =

(
yi, i= 1, . . . , |Y|

)
, yi ∈ {0, 1} , we

define Y+ =
{
yi, yi > η

}
and Y− =

{
yi, yi = 0

}
. Y+ and Y−

represent the positive and negative sample sets. Therefore, l (·)is
calculated as follows:

l (P,Y) =−α
∑
i∈Y−

log
(
1−pi

)
− β

∑
i∈Y+

log
(
pi
)

(1)

α = λ ·
|Y+|

|Y+|+|Y−|
(2)

β =
|Y|

|Y+|+|Y−| (3)

In Formula (1), P represents the predicted contour, and pi
represents the value processed by a sigmoid function at pixel i. α
and β are used to balance the positive and negative samples, and
λ= 1.7 is the weight that controls the coefficient.

Experiment

We evaluate the proposed approach on three public datasets:
BSDS500 (Arbelaez et al., 2010), NYUDv2 (Silberman et al.,
2012), and BIPED (Poma et al., 2019). These three datasets are
the most widely used benchmarks in the edge detection task.

Datasets

There are 500 images in the BSDS500. Among them, 200
training pictures, 100 verification pictures, and 200 test pictures
are included. Each image is tagged by multiple people and is
one of the most widely used data sets in edge detection. Using
the same strategy as (Liu et al., 2017; Wang et al., 2017; Deng
et al., 2018; Lin et al., 2020), we generate the amplified training
set through data enhancement of BSDS500 training set. The
mixed training set BSDS500-VOC was formed by mixing the
amplified training set with the PASCAL VOC Context dataset
(Mottaghi et al., 2014).

There are 1,449 images in the NYUD-v2. Among them,
381 training pictures, 414 verification pictures, and 654 test

FIGURE 7

Schematic plots of the output of Holistically-nested edge detection (HED), Richer convolutional features (RCF), LRC and modulation encoding
and decoding network (MEDNet) before and after combining with modulation-enhancement network (MENet). On the left, from top to bottom,
are the original image, the ground truth, HED-w/o-MENet and HED + MENet. The right part runs from top to bottom for LRC-w/o-MENet,
LRC + MENet, and MEDNet. Source photos: BSDS500 dataset - publicly available dataset.
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pictures are included. Like the previous method (Xie and Tu,
2015; Liu et al., 2017; He et al., 2019; Cao et al., 2020), we
conducted training tests on RGB images and HHA features,
respectively and finally averaged the outputs of RGB and HHA
as the final contour output. In addition, we also adopted the
same strategy as the previous method, by rotating the picture
and the corresponding label four different angles (0◦, 90◦, 180◦,
270◦), and flipping the rotated picture, to realize the increase of
training set.

Barcelona images for perceptual edge detection (Poma et al.,
2019) contains 250 outdoor Images 1280 × 720 in size. The
images were carefully annotated by experts in the field of
computer vision. Same as the previous method (Poma et al.,
2019), 250 images were divided into two parts, including 200
training verification images and 50 test images. In addition, we
used the same strategy to increase the number of training sets by
scaling the image, rotating it 15 different angles, and flipping it.

Implementation details

We have implemented our model in PyTorch. three datasets,
BSDS500 (Arbelaez et al., 2010), NYUDv2 (Silberman et al.,
2012), and BIPED (Poma et al., 2019), were used to train and
test the model. In the training, we use the method of transfer
learning to initialize the coding network with the parameters
of VGG16 trained on ImageNet (Deng et al., 2009). Other
networks are initialized using a Gaussian distribution with a

TABLE 2 Comparison of results of modulation encoding and
decoding network (MEDNet) under different conditions.

Method ODS OIS AP

MEDNet SS 0.811 0.831 0.849

MEDNet-w/o-
MENet

SS 0.807 (↓0.004) 0.828 (↓0.003) 0.842 (↓0.007)

MEDNet MS 0.825 0.845 0.872

MEDNet-w/o-
MENet

MS 0.822 (↓0.003) 0.844 (↓0.001) 0.857 (↓0.015)

MEDNet-w/o-
VOC

SS 0.797 0.820 0.812

MEDNet-w/o-
MENet-w/o-
VOC

SS 0.796 (↓0.001) 0.820 0.822 (↑0.010)

MEDNet-w/o-
VOC

MS 0.811 0.833 0.831

MEDNet-w/o-
MENet-w/o-
VOC

MS 0.809 (↓0.002) 0.832 (↓0.001) 0.836 (↑0.005)

Comparison of the results of different decoding networks

MCNet + DDNet MS 0.825 0.845 0.872

MCNet + Dd MS 0.823 0.844 0.865

MCNet + Ud MS 0.821 0.844 0.870

MEDNet-w/o-MENet means no MENet, and MEDNet-w/o-VOC means no mixed data
set. “↓” Indicates a decrease in the result.

mean of 0 and a standard deviation of 0.01. In addition, we use
the same super-parameter settings for different data sets to keep
the model consistent. We used the SGD optimizer to update
the parameters, setting the global learning rate to 1 × 10−6,
momentum and weight decay to 0.9 and 2× 10−4, respectively.

In order to provide a fair comparison with the previous
methods, the same strategy is used to evaluate the test results
as the previous methods (Xie and Tu, 2015; Liu et al., 2017;
Wang et al., 2017; Deng et al., 2018). First, we apply non-
maximum suppression to the test results. In the process of
non-maximum suppression to the test results of BSDS500,
NYUD-V2, and BIPED datasets, we set the maximum allowable
errors of prediction and real annotation to 0.0075, 0.011, and
0.0075, respectively. Then, we use three widely used criteria in

TABLE 3 Quantitative comparison results between the proposed
method and other methods on the BSDS500 test set.

Method ODS OIS AP P(M) FLOPs
(G)

Human (Martin et al., 2004) 0.803 0.803 – – –

Canny (Canny, 1986) 0.611 0.676 0.520 – –

SCO (Yang et al., 2015a) 0.670 0.710 0.710 – –

SED (Akbarinia and Parraga, 2018) 0.710 0.740 0.740 – –

gPb (Arbelaez et al., 2010) 0.729 0.755 0.745 – –

OEF (Hallman and Fowlkes, 2015) 0.746 0.770 0.815 – –

SE (Dollár and Zitnick, 2014) 0.743 0.764 0.800 – –

DeepContour (Shen et al., 2015) 0.757 0.776 0.790 – –

DeepEdge (Bertasius et al., 2015) 0.753 0.772 0.787 – –

COB (Maninis et al., 2016) 0.793 0.819 0.849 28.8† –

HED (Xie and Tu, 2015) 0.788 0.808 0.840 14.7‡ 93.2‡

RCF-SS-VOC (Liu et al., 2017) 0.806 0.823 0.839 14.8‡ 79.7‡

RCF-MS-VOC (Liu et al., 2017) 0.811 0.830 0.846

CED-SS (Wang et al., 2017) 0.803 0.820 0.871 21.4† 138.8†

CED-MS-VOC (Wang et al., 2017) 0.815 0.833 0.889

LPCB-SS-VOC (Deng et al., 2018) 0.808 0.824 – 15.7† 121.5†

LPCB-MS-VOC (Deng et al., 2018) 0.815 0.834 0.827

DRC-SS-VOC (Cao et al., 2020) 0.802 0.818 0.800 17.7‡ 124.2‡

DRC -MS-VOC (Cao et al., 2020) 0.817 0.832 0.836

LRC-SS-VOC (Lin et al., 2020) 0.802 0.821 0.830 24.8‡ 174.4‡

LRC-MS-VOC (Lin et al., 2020) 0.816 0.836 0.864

DSCD-SS-VOC (Deng and Liu, 2020) 0.813 0.836 0.847 34.07† 135.3†

DSCD-MS-VOC (Deng and Liu,
2020)

0.822 0.859 0.863

BDCN-SS-VOC (He et al., 2019) 0.820 0.838 0.888 16.3‡ 95.1‡

BDCN-MS-VOC (He et al., 2019) 0.828 0.844 0.890

PiDiNet-SS-VOC (Su et al., 2021) 0.807 0.823 – 0.71‡ 16.6‡

EDTER-SS-VOC (Pu et al., 2022) 0.832 0.847 0.886 – 332.0†

EDTER-MS-VOC (Pu et al., 2022) 0.848 0.865 0.903 –

MEDNet-SS-VOC 0.811 0.831 0.849 55.2‡ 179.5‡

MEDNet-MS-VOC 0.825 0.845 0.872

VOC, mixed data set BSDS500-VOC; SS, single-scale results; MS, multi-scale results.
The best two results are marked with red and blue, respectively. ‡Stands for the result
of our test. †Indicates the result of the reference. FLOPs are calculated based on a
320× 320 image.
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the field of edge detection to evaluate the result of suppression.
Three commonly used evaluation criteria are optimal data set
scale (ODS), optimal image scale (OIS), and average precision
(AP). The F-value of each image in the dataset is calculated
at a fixed threshold and its average value is computed. Then
calculate the maximum value of all average values under
different thresholds, which is the best data set scale ODS.
Calculate the best F value of each image under different
thresholds, and then calculate the average of all F values, which
is the best image scale OIS. AP is the average accuracy within
a given threshold range of (0–1.0) (Martin et al., 2004). In
addition, under different threshold conditions, the accuracy P
and regression R of the whole dataset can be described as
PR curves.

P is calculated as follows:

P=
TP

(TP+ FP)
(4)

TP and FP represent the correct number and false number
of contour pixels.

R is calculated as follows:

R=
TP

(TP+ FN)
(5)

TP and FN represent the correct number and missed
number of contour pixels.

F value is calculated as follows:

F =
(P × R)

[(1−α) P+αR]
(6)

α is the weight, generally 0.5. P and R stand for accuracy and
regression, respectively.

Ablation study

In order to further illustrate the effectiveness of our
proposed method in this paper, we conducted a detailed
experimental analysis and evaluation of the proposed MENet on
the BSDS500 dataset. First, without changing other conditions,
we combined MENet with some of the previous methods, such
as combining MENet with HED (Xie and Tu, 2015), RCF (Liu
et al., 2017), and LRC (Lin et al., 2020), respectively. Then we
compared the results of these models before and after combining
MENet. The experimental comparison results are shown in
Table 1. Among them, HED’s experiments used enhanced
BSDS500 data sets and only tested single-scale results. The
results of the other models all used a mixed dataset BSDS500-
VOC and tested multi-scale results. As you can see from the
results in Table 1, the MENet we propose in this paper improves
the ODS of HED by 0.3%, which is 0.1% higher than the
enhanced data set for HED. The ODS of RCF increased by 0.1%
and the OIS by 0.3%. LRC’s results also improved by 0.1%. In
addition, it can be seen from the results in the table that the OIS
of the model combined with MENet also improved to varying
degrees. This also proves the effectiveness of MENet proposed
by us, which can effectively improve the feature extraction ability
of the coding network and improve the overall performance of
the model. In addition, Figure 7 shows the results of different
models and MEDNet before and after combining MENet. From
figure, we can also see that combining MENet reduces the
extracted texture and useless information, and increases the
required detailed information.

FIGURE 8

PR curves of the proposed method and other methods on BSDS500 (A) and NYUD-v2 (B) data sets.
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In order to further verify the consistency of MENet under
different conditions. In addition to the above methods to
verify the effectiveness of MENet, we also tested the results of
MENet on BSDS500-VOC and BSDS500 by self-separation test.
The experimental results are shown in Table 2. Experimental
results show that MENet improves the performance of the
model in both cases, which proves that MENet has consistent
performance in different cases.

We then validate the proposed dual decoding network
on the BSDS500 hybrid dataset. We combine the dual
decoding network DDNet, the up-sampling decoding network

TABLE 4 Quantitative comparison results between the proposed
method and other methods on nyud-v2 test set.

Method Input ODS OIS AP

gPb-UCM (Arbelaez
et al., 2010)

RGB 0.631 0.661 0.562

SE (Dollár and Zitnick,
2014)

0.695 0.708 0.719

gPb + NG (Gupta et al.,
2013)

0.687 0.716 0.629

SE + NG + (Gupta et al.,
2014)

0.706 0.734 0.549

OEF (Hallman and
Fowlkes, 2015)

0.651 0.667 0.653

HED (Xie and Tu, 2015) RGB 0.717 0.732 0.704

HHA 0.681 0.695 0.674

RGB-HHA 0.741 0.757 0.749

RCF (Liu et al., 2017) RGB 0.729 0.742 0.693

HHA 0.705 0.715 0.650

RGB-HHA 0.757 0.771 0.749

LPCB (Deng et al., 2018) RGB 0.739 0.754 –

HHA 0.707 0.719 –

RGB-HHA 0.762 0.778 –

DRC (Cao et al., 2020) RGB 0.749 0.762 0.718

HHA 0.711 0.722 0.677

RGB-HHA 0.769 0.782 0.771

LRC (Lin et al., 2020) RGB 0.737 0.750 0.686

HHA 0.697 0.708 0.642

RGB-HHA 0.759 0.771 0.748

BDCN (He et al., 2019) RGB 0.748 0.763 0.770

HHA 0.707 0.719 0.731

RGB-HHA 0.765 0.781 0.813

AMH-Net-ResNet50 (Xu
et al., 2018)

RGB 0.744 0.758 0.765

HHA 0.716 0.729 0.734

RGB-HHA 0.771 0.786 0.802

PiDiNet (Su et al., 2021) RGB-HHA 0.756 0.773 –

EDTER (Pu et al., 2022) RGB 0.774 0.789 0.797

MEDNet RGB 0.752 0.766 0.723

HHA 0.711 0.723 0.681

RGB-HHA 0.772 0.787 0.776

The best two results are marked with red and blue, respectively.

Ud, and the down-sampling decoding network Dd with the
modulation coding network MCNet, respectively. Denoted as
MCNet + DDNet, MCNet + Dd, MCNet + Ud. We test their
experimental results, and the results are shown in Table 2.
Under other conditions being the same, the multi-scale ODS
of the dual decoding network DDNet is 0.4% and 0.2% higher
than the up-sampling decoding Ud and the down-sampling
decoding Dd, respectively. In addition, it is worth noting that
the down-sampling decoding Dd is 0.2% higher than the up-
sampling decoding Ud, which further proves the effectiveness
of our proposed down-sampling decoding and dual decoding
networks in this paper.

Comparison with other works

BSDS500. We trained our model on the BSDS500-VOC
hybrid training set and conducted a detailed experimental
analysis and evaluation of the test results. We compare the
final results with the previous edge detection methods. They
include traditional edge detection methods, biomimetic vision
edge detection methods, edge detection methods based on
unsupervised learning, and edge detection method based on
CNN. Such as Canny (1986), SCO (Yang et al., 2015a),
SED (Akbarinia and Parraga, 2018), gPb (Arbelaez et al.,
2010), OEF (Hallman and Fowlkes, 2015), SE (Dollár and
Zitnick, 2014), DeepContour (Shen et al., 2015), DeepEdge
(Bertasius et al., 2015), COB (Maninis et al., 2016), HED
(Xie and Tu, 2015), RCF (Liu et al., 2017), CED (Wang
et al., 2017), LPCB (Deng et al., 2018), DRC (Cao et al.,
2020), LRC (Lin et al., 2020), DSCD (Deng and Liu,
2020), BDCN (He et al., 2019), PIDiNet (Su et al., 2021),
EDTER (Pu et al., 2022). Table 3 shows the quantitative
comparison results between the proposed method and other
methods.

As can be seen from Table 3, the Transformer based
method achieves the best results among all methods. However,
EDTER also has the highest floating-point operations per
second (FLOPs). EDTER (Pu et al., 2022) brings 332.0G FLOPs
in Stage I and 470.25G FLOPs in Stage II, which is much
higher than other methods. Among all CNN based methods, our
method achieves the top three results. Multi-scale ODS = 0.825,
single-scale ODS = 0.811. Our multiscale results are 0.3% lower
than the best BDCN, but our OIS exceeds BDCN by 0.1%.
Compared with other methods, the ODS of our method is 0.3%
higher than that of DSCD multi-scale ODS. It is 0.8% higher
than DRC multi-scale ODS and 0.9% higher than DRC single-
scale ODS. Moreover, the single-scale ODS of our method is the
same as the multi-scale ODS of RCF, which further proves that
our model has strong competitiveness. Figure 8A shows the PR
curve of our method and other methods.

NYUD-V2. We performed an experimental evaluation of
our model on the NYUD-V2 dataset. As before, we trained our
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FIGURE 9

Partial test results of the proposed method on NYUD-V2 data set are presented. Source photos: BSDS500 dataset - publicly available dataset.

model on RGB image and HHA feature map, and then tested
them separately. Finally, we got three outputs: RGB, HHA, RGB-
HHA. Where RGB-HHA is the average output of RGB and
HHA. We compare the three output results with those from
other methods. Such as gPb-UCM (Arbelaez et al., 2010), SE
(Dollár and Zitnick, 2014), gPb + NG (Gupta et al., 2013),
SE + NG + (Gupta et al., 2014), OEF (Hallman and Fowlkes,
2015), HED (Xie and Tu, 2015), RCF (Liu et al., 2017), LPCB
(Deng et al., 2018), DRC (Cao et al., 2020), LRC (Lin et al.,
2020), BDCN (He et al., 2019), AMH (Xu et al., 2018), PiDiNet
(Su et al., 2021), EDTER (Pu et al., 2022). Note that, AMH-Net
applies the deeper ResNet50 to construct the edge detector. The
experimental results are shown in Table 4.

As can be seen from Table 4, our method achieves the best
performance at present, ODS = 0.772. And in the edge detection
method based on VGG16, the ODS and OIS of the three outputs
of our model are better than the current best method BDCN.
Among them, RGB-HHA increased by 0.7%, RGB increased by
0.8% and HHA increased by 0.4%. Our proposed method also
achieves the best RGB-HHA, RGB, compared with AMH based
on a deeper ResNet50 model. It shows that our method shows
consistent performance in different data sets and has strong
competitiveness compared with other methods. Figure 9 is part
of the output result graph randomly selected by us. Figure 8B
shows the PR curves of the proposed method compared with
other methods.

Barcelona images for perceptual edge detection. We train
and test our proposed model on BIPED, a carefully annotated
and publicly available edge dataset presented in Poma et al.
(2019). Poma et al. (2019) tested some of the previous methods
using BIPED and recorded the results. Combined with their
records, we compared the test results with the results of other

methods on the BIPED dataset. Including SED (Akbarinia and
Parraga, 2018), HED (Xie and Tu, 2015), CED (Wang et al.,
2017), RCF (Liu et al., 2017), BDCN (He et al., 2019), DexiNed
(Poma et al., 2019). Table 5 shows the comparison results
between our method and other methods.

The results in Table 5 show that our method achieves
the best performance among the current methods, with
ODS = 0.896. That’s a 3.7% improvement over the ODS of the
current best DexiNed. It is 5.7% higher than BDCN. And our
proposed methods OIS and AP also achieved the best results.
This not only shows that our method performs consistently
on different data sets but also proves that our method is more
competitive than other methods. As shown in Figure 10, the
output of our method is compared with that of other methods.
These outputs are the result of non-maximum suppression. It
can be seen that our method has less background texture and
finer edges than other methods.

TABLE 5 Quantitative comparison results between the proposed
method and other methods on barcelona images for perceptual edge
detection (BIPED) test sets.

Method ODS OIS AP

SED (Akbarinia and Parraga, 2018) 0.717 0.731 0.756

HED (Xie and Tu, 2015) 0.829 0.847 0.869

CED (Wang et al., 2017) 0.795 0.815 0.830

RCF (Liu et al., 2017) 0.843 0.859 0.882

BDCN (He et al., 2019) 0.839 0.854 0.887

DexiNed (Poma et al., 2019) 0.859 0.867 0.905

MEDNet-SS 0.896 0.900 0.920

SS, single-scale result. The best two results are marked with red and blue, respectively.
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FIGURE 10

Comparison of results of the proposed method with other methods on barcelona images for perceptual edge detection (BIPED) datasets.
Among them, in order to make a fair comparison, the results of other methods are the same as those used in Poma et al. (2019). Source photos:
BSDS500 dataset - publicly available dataset.

Conclusion

Inspired by the selective mechanism of V1, V2, and V4

in the biological visual pathway, and combined with the

connection between CNN and biological vision, we design a

MENet using the self-attention mechanism in the transformer.

The modulation and enhancement of the coding network are

realized by combining MENet with the coding network so

that the structure and function of the modulation-enhanced

coding network MCNet and the biological visual pathway form

a more reasonable correspondence. In addition, in order to fully

fuse the context information output by the encoding network,

Frontiers in Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.1073484
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073484 November 22, 2022 Time: 7:35 # 16

Zhang et al. 10.3389/fnins.2022.1073484

we innovatively propose a dual decoding network in
this paper. One decoding network integrates bottom-up
feature information, and the other one integrates top-down
information. The two do not interfere with each other during
the fusion process. Finally, we fuse the output of the two
decoding networks to get the final output. We train and test
the new edge detection model MEDNet, which is combined
with MENet, encoding network, and DDNet, on several
data sets. The results show that our method achieves good
performance on several data sets and has strong competitiveness
compared with other methods. In addition, inspired by the
selective mechanism of V1, V2, and V4 in biological vision,
we combined them with CNN to design a new edge detection
method. It changes the current approach of using only CNN
or biological vision. This provides a new idea for future
research on edge detection. Other effective physiological
mechanisms in the biological vision for edge detection tasks
can be combined with the current CNN-based method with
good performance.
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