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Isorhynchophylline ameliorates
stress-induced emotional
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impairment with modulation of
NMDA receptors
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and Wen-Xia Zhou1*
1State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of
Pharmacology and Toxicology, Beijing, China, 2State Key Laboratory of Phytochemistry and Plant
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Kunming, China

Introduction: Isorhynchophylline is one of the main active ingredients from

Uncaria rhynchophylla, the effects and mechanisms of isorhynchophylline on

stress-induced emotional disorders and cognitive impairment remain unclear.

Methods: Long-term potentiation (LTP) in vivo was used for synaptic plasticity

evaluation; chronic unpredictable mild stress (CUMS) model was used to

evaluate the effect of isorhynchophylline on stress induced emotional

disorders and cognitive impairment; sucrose preference test (SPT), open

field test (OFT), and elevated plus maze (EPM) were used to evaluate

emotional disorders; morris water maze (MWM) test was used to evaluate

cognitive impairment; Western blotting (WB) was used to the expression

of proteins; high performance liquid chromatography (HPLC) was used to

quantify neurotransmitters; Nissl staining was used to identify pathological

changes induced by stress.

Results: In this study, we found that isorhynchophylline improved

corticosterone-induced in vivo LTP impairment significantly, indicating

positive effects on stress. Therefore, 28-day CUMS model was adopted

to evaluate the anti-stress effects of isorhynchophylline. The results

showed that isorhynchophylline improved CUMS-induced weight loss,

anxiety- and depression-like behaviors, and spatial memory impairment.

Isorhynchophylline reduced CUMS-induced corticosterone elevation.

N-methyl-D-aspartic acid (NMDA) receptors play an important role in the

process of emotion and memory. Glutamate and the expression of GluN2B

increased in the CUMS mice, while D-serine and the expression of serine

racemase (SR) decreased significantly, and isorhynchophylline restored these

changes to normal level.
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Conclusion: These results indicated that isorhynchophylline ameliorated

stress-induced emotional disorders and cognitive impairment, modulating

NMDA receptors might be one of the underlying mechanisms.

KEYWORDS

isorhynchophylline (PubChem CID: 3037048), corticosterone, long-term
potentiation, chronic unpredictable mild stress, D-serine, NMDA receptors

1 Introduction

Stress is broadly defined as an anticipated disruption of
homeostasis or a threat to wellbeing (Kim and Diamond, 2002;
McEwen, 2007; Ulrich-Lai and Herman, 2009). A number of
stress-associated diseases have been identified in humans, such
as hypertension, diabetes, gastric-intestinal ulceration (Kim
et al., 2006). High-intensity stress could not only cause anxiety
and depression symptoms (Willner, 2017; Lupien et al., 2018),
but also increase the risk of various neurological disorders
(McEwen, 2000; Radahmadi et al., 2014). Alleviating the
symptoms like anxiety and depression is the primary treatment
in clinic, the commonly used drugs are serotonin reuptake
inhibitors, such as sertraline and fluoxetine (Giacomini et al.,
2016; Noorafshan et al., 2019; Rauch et al., 2019). Recently, the
N-methyl-D-aspartate (NMDA) receptors antagonist ketamine
or its S (+)-isomer has been used for the treatment of stress-
induced depressive disorders and post-traumatic stress disorder
(PTSD) in both humans and animals (Feder et al., 2014;
Brachman et al., 2016; McGowan et al., 2018; Wang et al.,
2022). However, the current drugs could only alleviate stress-
induced emotional disorders like anxiety and depression with
little improvement on stress-induced cognitive impairment, and
these drugs might even cause cognitive impairment in long-term
use (Luo et al., 2021).

Isorhynchophylline is one of the main active ingredients
from Uncaria rhynchophylla. Uncaria rhynchophylla, a
traditional Chinese medicine, which is mainly used to treat
cardiovascular and central nervous systems diseases, such as
lightheadedness, convulsions, numbness, and hypertension
(Shi et al., 2003). Modern pharmacological researches reveal
that isorhynchophylline has multiple neural protective effects.
Isorhynchophylline could improve cognitive impairment in
Alzheimer’s disease (Xian et al., 2014a), D-galactose (Xian
et al., 2014b), aluminum chloride (Li et al., 2018) and ischemia
(Kang et al., 2004) animal models. Isorhynchophylline
could also ameliorate neural plasticity deficits caused by
many factors, such as ischemia, D-galactose and aluminum
chloride (Kang et al., 2004; Xian et al., 2014b; Li et al., 2018).
Reducing beta-amyloid peptide (Aβ)-induced neurotoxicity,
neuronal apoptosis and tau protein hyperphosphorylation
(Xian et al., 2012, Xian et al., 2013, 2014a) contributed to
isorhynchophylline’s neural protective effects. NMDA and
5-HT2 receptors (Kang et al., 2002, 2004) were the potential

targets for isorhynchophylline. Recently, it has reported that
isorhynchophylline had antidepressant-like effects (Xian et al.,
2017, 2019). These results indicate that isorhynchophylline has
potential effects on stress-induced emotional disorders and
cognitive impairment. Thus, this study is to investigate whether
isorhynchophylline has protective effect against stress-induced
emotional disorders and cognitive impairment.

Corticosterone is both the biomarker and effector molecule
of stress in rodents. Excess corticosterone could cause cognitive
(Dominguez et al., 2019) and neural plasticity impairments
(Wang et al., 2021; Huang et al., 2022). Therefore, corticosterone
induced long-term potentiation (LTP) impairment was used
for preliminary evaluation of isorhynchophylline. Then the
28-day chronic unpredictable mild stress (CUMS) model was
adopted to confirm whether isorhynchophylline could alleviate
emotional disorders and cognitive impairment, and finally
observing the effect of isorhynchophylline on CUMS-induced
dysfunction of NMDA receptor.

2 Materials and methods

2.1 Animals and drug treatment

Two-month-old male C57BL/6J mice, which is commonly
used for CUMS model (Lu et al., 2019), were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
Mice were kept in plastic cages and allowed free access to
food and water under standard housing conditions (room
temperature 23 ± 1◦C and humidity of 55 ± 5%) with a
12-h light/12-h dark cycle. Experiments started after 7 days
acclimating to the laboratory environment. The Institute of
Animal Care and Use Committee of the National Beijing Center
for Drug Safety Evaluation and Research approved all the
experiments (No.: IACUC-DWZX-2021-590).

For in vivo electrophysiology, 50 mg/kg corticosterone
(CORT, TCIchemicals, Shanghai, China) was used to mimic
stress 60 min before high frequency stimulation (HFS). Both
intracerebroventricular and intragastric administration were
used in this study. Intracerebroventricular administration only
used for preliminary evaluation; intragastric administration,
which is like clinical routine, was used for further evaluation.
For intracerebroventricular administration, 2 µg per animal

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1071068
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1071068 December 10, 2022 Time: 15:3 # 3

Wang et al. 10.3389/fnins.2022.1071068

(isorhynchophylline) was used; For intragastric administration,
20/40/80 mg/kg isorhynchophylline was used.

For intracerebroventricular injection, the coordinates are:
−0.22 mm from Bregma, 1 mm lateral to the sagittal suture and
2.5 mm deep from the skull surface, according to Mouse Brain in
Stereotaxic Coordinates (Franklin and Paxinos, 2008). A syringe
pump, at a rate of 1 µl/min, was used to deliver the drug into the
right lateral ventricle. The needle was left in place for 1 min after
discontinuation of plunger movement to prevent backflow.

For CUMS, mice were separated into three groups,
which were Control group (Control), chronic unpredictable
mild stress group (CUMS) and chronic unpredictable mild
stress + isorhynchophylline group (Iso). Isorhynchophylline
was intragastric administered 20 mg/kg/day from the −7 to
28 d. Mice in Control and CUMS groups were given equal
volumes of 0.5% sodium carboxymethyl cellulose (Sigma-
Aldrich Corporation).

2.2 In vivo LTP recording

In vivo LTP recording was conducted as previously
described (Huang et al., 2013). Mice were anesthetized with
pentobarbital sodium,then fitted with ear cuffs and placed in
a stereotaxic frame. A stimulating electrode (stainless steel
bipolar) was placed in the perforant path (PP), the evoked
potentials were recorded with a stainless-steel electrode in the
cell body layer of dentate gyrus (DG). The WinLTP program1

was used to initiate the electrical stimulus and record the data.
After obtaining a stable stimulus–response curve baseline at
fixed current intensity, the current intensity was regulated to
evoke a 1/3–1/2 maximum population spike (PS) amplitude.
After recording the 30 min baseline, LTP was induced by high-
frequency stimulus (HFS) (250 Hz, three trains 10 s apart,
eight 0.1 ms pulses in each train), and PSs were recorded for
another 60 min. The mean PS amplitudes during 0–30 min was
normalized to 100% as baseline; the relative PS amplitudes (31–
90 min) were normalized relative to the baseline period before
HFS.

2.3 Chronic unpredictable mild stress
procedure

According to the previous description (Willner, 2017; Liu
M. Y. et al., 2018), the CUMS procedure was conducted for
28 days. CUMS-treated mice were subjected to 14 stressors with
a random schedule. These stressors include food deprivation
(24 h), water deprivation (24 h), cage tilt (24 h, 45◦), dark during
the day (12 h), lights on at night (12 h), damp bedding (24 h),

1 http://www.winltp.com

no bedding (24 h), noise stimulation (1 h, 100 dB), electric
shock (1 h, 0.8 mA, 5 s/min), tail pinch (1 min), tail suspension
(30 min), cage shake (1 h, 220 r/min), restrained in tube (2 h)
and cold water swimming (6 min, 10 ◦C), the detailed schedule
is shown in Table 1.

2.4 Behavior tests

2.4.1 Sucrose preference test (SPT)
The SPT was according to previous description (Liu M. Y.

et al., 2018). Four days before CUMS, all animals were
habituated to drink sucrose solution (1%, w/v) by replacing
normal water for 2 days (48 h). The position of the bottles
was changed several times during the period. During test,
all mice were deprived of food and water for 24 h, starting
at 10 a.m. 24 h later. Each animal was provided with 1%
sucrose solution and normal water individually for 1 h, and the
weights of sucrose solution and water consumed were recorded
accordingly.

2.4.2 Open field test
The OFT was performed as described previously (Huang

et al., 2017). The arena was partitioned into peripheral area and
central area. After 30 min acclimation in the test room, mice
were allowed to explore the open field for 5 min and then they
were returned to home age. Central area duration and visits were
recorded as indicators of anxiety and exploratory behaviors.

2.4.3 Elevated plus maze (EPM)
The elevated plus-maze apparatus was elevated 100 cm

above the floor. The maze consisted of two open arms
(50 cm × 10 cm) and two closed arms (50 cm × 10 cm × 10 cm)
joined by a central square (10 cm × 10 cm). mice were put in the
central square and allowed to explore for 5 min, then they were
returned to home age.

TABLE 1 The protocol of 28 days chronic unpredictable mild stress.

Dayweek Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Week 1 LN FD CT DB DD NB WD

RS CW TP ES TS CS NS

Week 2 NB WD DB RS DD FD DB

CW DD TS TP CW CT CS

Week 3 NB WD RS CT DD FD LN

TS NB NS ES TP CT TS

Week 4 DD WD CT DB FD LN WD

CW ES CS RS TP TS NS

FD, food deprivation (24 h); WD, water deprivation (24 h); CT, cage tilt (24 h, 45◦); DD,
dark during the day (12 h); LN, lights on at night (12 h); DB, damp bedding (24 h);
NB, no bedding (24 h); NS, noise stimulation (1 h, 100 dB); ES, electric shock (1 h,
0.8 mA, 5 s/min), TP, tail pinch (1 min), TS, tail suspension (30 min); CS, cage shake
(1 h, 220r/min); RS, restrained in tube (2 h); CW, cold water swimming (6 min, 10◦C).
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2.4.4 Morris water maze (MWM) test
The MWM test was performed as described previously

(Vorhees and Williams, 2006). The learning phase contained
four trials per day for five consecutive days and the probe trial
was carried out on the sixth day. During the learning phase,
mice were allowed to find the platform for 60 s, if the mouse
failed to find the platform on time, it was guided to the platform
and remained on the platform for 15 s. During the probe trial
phase, mice were given a 60 s exploring period in the pool
without platform, the latency and time in the target quadrant
were regarded as indicators of memory.

The order of these tests is: Sucrose Preference Test, Open
Field Test, Elevated plus Maze, Morris Water Maze Test.

2.5 Corticosterone evaluation

Plasma corticosterone was measured by an enzyme-linked
immunosorbent assay kit (Cloud-Clone Corp, USA) according
to the Instruction manual.

2.6 Western blotting (WB)

Western blotting was performed as described previously
with minor modifications (Taylor and Posch, 2014). Ten mg
hippocampal samples were homogenized in 0.1 ml lysis buffer
and then centrifuged at 15,000 g for 15 min at 4◦C. The
concentrations of protein were determined by Bradford protein
assay kit (PR102, Galen Biopharm International Co., Ltd.).
Equal amounts of protein were boiled in loading buffer (100 mM
Tris–HCl of pH 6.8, 4% sodium dodecyl sulfate, 200 mM
DTT, 0.2% bromophenol blue, and 20% glycerol) for 5 min
before loading on a SDS polyacrylamide gel. Electrophoresis was
performed at 60 V for 30 min and then 100 V for 90 min,
followed by wet transfer onto a nitrocellulose membrane at
100 V for 60 min. The membrane was blocked for 60 min
in blocking solution (5% non-fat dry milk, 0.05% Tween-20,
phosphate buffered saline) and then incubated at 4◦C overnight
with rabbit anti-SR antibody (1:1000, Sigma-Aldrich) and rabbit
anti-NR2A/B antibody (1:1,000, Sigma-Aldrich). After 30 min
washes with 0.05% Tween-20, PBS, the primary antibodies were
detected with the horseradish peroxidase-conjugated secondary
antibodies and chemiluminescent HRP substrate (Thermo
Fisher Scientific Inc., Waltham, MA, USA). Band density values
were normalized to β-actin.

2.7 High performance liquid
chromatography (HPLC)

HPLC was performed as described previously with minor
modifications (Grant et al., 2006). Hippocampal samples were

homogenized in methanol and centrifuged for 15 min at
15,000 g at 4◦C. The calculated amount of OPA was dissolved
in 5 mL of methanol in a volumetric flask and diluted to the
mark with a borate buffer solution (PH = 9.3). The sample
was derivatizated for 35 min before loading sample. The mobile
phase contains a buffered solution containing 0.1 M NaH2PO4,
20 m 0.1 mM Na2EDTA and its pH was adjusted to 5.8
with phosphoric acid. The flow rate was 0.75 ml/min, the
detector potential was + 0.75 V with respect to the calomel
reference electrode and the sensitivity was set at 50 nA full-scale
detection. Chromatographic column is an Agilent reversed-
phase chromatographic column (C-18, 4.6 mm × 250 mm,
5 µm).

2.8 Nissl staining

The mice brains were removed after anesthesia and fixed in
4% paraformaldehyde. The sections (4 µm) were stained using
0.5% cresyl violet acetate (Beyotime, China). The integrated
optical density (IOD) of Nissl bodies was quantified by using
Image J software (Version 1.48, National Institutes of Health).

2.9 Statistical analysis

The data are presented as the mean ± SEM. GraphPad
Prism 6.0 (Inc., La Jolla, CA, USA) was used to plot and analyze
the data. Student’s t-test was used to analyze two groups and
one-way analysis of variance (ANOVA) followed by Dunnett’s
multiple comparisons test was used when comparing more than
two groups. A two-way repeated measures ANOVA was adopted
to analyze the changes of body weight during CUMS and MWM
escape latency during learning phase. P < 0.05 was considered
as statistically significant.

3 Results

3.1 Effects of isorhynchophylline on
hippocampal LTP in corticosterone-treated
mice

The average values of the relative PS amplitudes in CORT-
treated mice were significantly lower than that in the control
mice, while isorhynchophylline (2 µg, i.c.v.) significantly reverse
the decreased PS amplitudes (one-way ANOVA followed
by Dunnett’s tests; F2,12 = 52.66, P < 0.001; Cort vs.
control: P < 0.001; 2 µg Iso vs. Cort: P < 0.001; n = 5;
Figures 1A, B).

Subsequently, we observed the effect of single
administration of isorhynchophylline (20/40/80 mg/kg,
i.g.) on corticosterone-induced LTP impairment. Results
showed the average values of the relative PS amplitudes in
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FIGURE 1

Effects of isorhynchophylline on hippocampal LTP in corticosterone (CORT)-treated mice. (A) The time course of average relative PS
amplitudes. (B) The average relative PS amplitudes post-HFS (31–90 min). Isorhynchophylline (2 µg, i.c.v) significantly improved CORT-induced
LTP impairment. CORT/vehicle was injected 60 min before HFS and isorhynchophylline was administrated 30 min before CORT/vehicle. (C) The
time course of average relative PS amplitudes. (D) The average relative PS amplitudes post-HFS (31–90 min). Isorhynchophylline (40/80 mg/kg,
i.g.) significantly improved CORT-induced LTP impairment. (E) The time course of average relative PS amplitudes. (F) The average relative PS
amplitudes post-HFS (31–90 min). Isorhynchophylline (20/40/80 mg/kg for seven days, i.g.) significantly improved CORT-induced LTP
impairment. The data are presented as mean ± SEM. ***P < 0.001 compared to the Control group; #P < 0.05, ###P < 0.001 compared to the
corticosterone group.

CORT-treated mice were significantly lower than that in the
control mice, while 40 and 80 kg/mg isorhynchophylline
significantly reverse the decreased PS amplitudes and 20 mg/kg
isorhynchophylline showed no effect (one-way ANOVA
followed by Dunnett’s tests; F4,20 = 6.204, P = 0.002; Cort vs.

control: P < 0.001; 20 mg/kg Iso vs. Cort: P = 0.105; 40 mg/kg
Iso vs. Cort: P = 0.013; 80 mg/kg Iso vs. Cort: P = 0.014; n = 5;
Figures 1C, D).

Then, we observed the effect of administration of
isorhynchophylline (20/40/80 mg/kg, i.g.) for 7 consecutive days
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on corticosterone-induced LTP impairment. Results showed
that 20, 40 and 80 kg/mg isorhynchophylline significantly
reverse the decreased PS amplitudes by corticosterone (one-way
ANOVA followed by Dunnett’s tests; F4,20 = 9.177, P < 0.001;
Cort vs. control: P < 0.001; 20 mg/kg Iso vs. Cort: P < 0.001;
40 mg/kg Iso vs. Cort: P = 0.026; 80 mg/kg Iso vs. Cort:
P = 0.021; n = 5; Figures 1E, F).

These results showed that both central and peripheral
administration of isorhynchophylline significantly improved
corticosterone-induced LTP impairment, indicating potential
effects on stress.

3.2 Effects of isorhynchophylline on
emotional disorder in CUMS mice

The body weight in the control group kept increasing stably;
the body weight in the CUMS group was significantly lower than
that of the control group on the 7th, 14th, 21st, and 28th day,
and isorhynchophylline improved the body weights on the 28th
day (two-way repeated measures ANOVA followed by Dunnett’s
tests; Time: P < 0.001; Treatment: P < 0.001; Day 1: CUMS vs.
control: P = 0.578; Iso vs. CUMS: P = 0.856; Day 7: CUMS vs.
control: P = 0.039; Iso vs. CUMS: P = 0.837; Day 14: CUMS vs.
control: P < 0.001; Iso vs. CUMS: P = 0.708; Day 21: CUMS vs.
control: P < 0.001; Iso vs. CUMS: P = 0.979; Day 28: CUMS vs.
control: P < 0.001; Iso vs. CUMS: P = 0.015; n = 10; Figure 2A).

For SPT test, the results showed the sucrose preference index
of mice in the CUMS group was significantly lower than that in
the control group, and isorhynchophylline improved the sucrose
preference indexes (one-way ANOVA followed by Dunnett’s
tests; F2,27 = 8.566, P = 0.001; CUMS vs. control: P = 0.003; Iso
vs. CUMS: P = 0.002; n = 10; Figure 2B).

For OFT test, the results showed that the total distance
increased in CUMS group significantly, while the central
retention time is higher than that of the CUMS group, and
isorhynchophylline improved theses changes in OFT (one-
way ANOVA followed by Dunnett’s tests; For total distance:
F2,27 = 8.784, P = 0.001; CUMS vs. control: P < 0.001; Iso vs.
CUMS: P = 0.022; For central retention time: F2,27 = 7.509,
P = 0.003; CUMS vs. control: P = 0.002; Iso vs. CUMS: P = 0.013;
n = 10; Figures 2C, D).

For EPM test, the results showed that the open arm time and
open arm entries were significantly decreased in CUMS group,
and isorhynchophylline improved theses changes in EPM (one-
way ANOVA followed by Dunnett’s tests; For open arm time:
F2,27 = 6.655, P = 0.005; CUMS vs. control: P = 0.003; Iso vs.
CUMS: P = 0.029; For open arm entries: F2,27 = 6.401, P = 0.005;
CUMS vs. control: P = 0.004; Iso vs. CUMS: P = 0.021; n = 10;
Figures 2E, F).

These results suggested that isorhynchophylline effectively
alleviated anxiety- and depression- like behaviors of
mice caused by CUMS.

3.3 Effects of isorhynchophylline on
the spatial memory in CUMS mice

During the learning phase, the escape latency of mice
in each group showed a downward trend and there was
no statistical difference among groups (Figure 3A). During
the probe phase, the escape latency in the CUMS group
was significantly longer than that in the control group, and
isorhynchophylline improved the latency significantly (one-way
ANOVA followed by Dunnett’s tests; F2,27 = 5.770, P = 0.008;
CUMS vs. control: P = 0.011; Iso vs. CUMS: P = 0.014; n = 10;
Figure 3B).The time in the target quadrant of the CUMS group
was significantly shorter than that of the control group, and
isorhynchophylline improved the time in the target quadrant
significantly (one-way ANOVA followed by Dunnett’s tests;
F2,27 = 7.769, P = 0.002; CUMS vs. control: P = 0.045; Iso vs.
CUMS: P = 0.001; n = 10; Figure 3C). There was no difference
in the swimming speed of the mice in each group during the
probe phase (Figure 3D).

The above results suggested that isorhynchophylline
effectively improved the spatial memory deficit in
mice caused by CUMS.

3.4 The mechanisms of
isorhynchophylline on CUMS mice

The plasma corticosterone in the CUMS group
was significantly increased compared with control, and
corticosterone in the isorhynchophylline group was significantly
lower than that in the CUMS group (one-way ANOVA
followed by Dunnett’s tests; F2,12 = 13.16, P < 0.001; CUMS
vs. control: P = 0.009; Iso vs. CUMS: P < 0.001; n = 5;
Figure 4A). The hippocampus glutamate in the CUMS group
increased compared with control, and the glutamate in the
isorhynchophylline group was significantly lower than that in
the CUMS group (one-way ANOVA followed by Dunnett’s
tests; F2,12 = 12.37, P = 0.001; CUMS vs. control: P = 0.011;
Iso vs. CUMS: P < 0.001; n = 5; Figure 4B). The hippocampus
D-serine, the NMDA receptors co-agonist, was significantly
reduced in the CUMS group, and the content of D-serine
in the isorhynchophylline group was higher than that of the
CUMS group (one-way ANOVA followed by Dunnett’s tests;
F2,12 = 3.215, P = 0.076; CUMS vs. control: P = 0.048; Iso vs.
CUMS: P = 0.299; n = 5; Figure 4C).

The expression of SR, a key synthetase of hippocampal
D-serine, was significantly decreased in the CUMS group, while
the expression of SR in the isorhynchophylline group was
significantly higher than that in the CUMS group (one-way
ANOVA followed by Dunnett’s tests; F2,12 = 9.771, P = 0.003;
CUMS vs. control: P = 0.003; Iso vs. CUMS: P = 0.007; n = 5;
Figure 4D). The expression of hippocampal GluN2A in the
CUMS group showed an increasing trend, and the expression of
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FIGURE 2

Effects of isorhynchophylline on body weight, sucrose preference, open field test and elevated plus maze in CUMS mice. (A) Isorhynchophylline
significantly alleviated CUMS-induced body weight loss. (B) Isorhynchophylline significantly increased sucrose preference index in CUMS mice.
(C) Isorhynchophylline significantly decreased total distance in CUMS mice. (D) Isorhynchophylline significantly increased central retention time
in CUMS mice. (E) Isorhynchophylline significantly increased open arm times in CUMS mice. (F) Isorhynchophylline significantly open arm
entries in CUMS mice. The data are presented as mean ± SEM. ∗∗P < 0.01, ∗∗∗P < 0.001 compared to the Con group; #P < 0.05, ##P < 0.01
compared to the CUMS group.

GluN2A in the hippocampus in the isorhynchophylline group
was significantly lower than that of the CUMS group (one-way
ANOVA followed by Dunnett’s tests; F2,12 = 3.664, P = 0.057;
CUMS vs. control: P = 0.171; Iso vs. CUMS: P = 0.038; n = 5;
Figure 4E). The expression of GluN2B in the CUMS group
was significantly higher than that in the control group, and
the GluN2B expression in the isorhynchophylline group was
significantly lower than that in the CUMS group (one-way
ANOVA followed by Dunnett’s tests; F2,12 = 6.32, P = 0.013;

CUMS vs. control: P = 0.016; Iso vs. CUMS: P = 0.020; n = 5;
Figure 4F).

Nissl staining results showed that the IOD of Nissl bodies
was significantly lower in the CUMS group than that in the
control group, and IOD of Nissl bodies in isorhynchophylline
group was significantly higher than that in CUMS group
(one-way ANOVA followed by Dunnett’s tests; F2,12 = 5.230,
P = 0.023; CUMS vs. control: P = 0.028; Iso vs. CUMS: P = 0.031;
n = 5; Figure 5).
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FIGURE 3

Effects of isorhynchophylline on the spatial memory in MWM test in CUMS mice. (A) The escape latency of mice in learning phase. (B) The
escape latency in probe trial was significantly decreased by isorhynchophylline in CUMS mice. (C) The time spent in the target quadrant was
significantly increased by isorhynchophylline in CUMS mice. (D) There was no difference in swimming speed in each group. The data are
presented as mean ± SEM. ∗P < 0.05 compared to the con group; #P < 0.05, ##P < 0.01 compared to the CUMS group.

4 Discussion

When endogenous or exogenous environmental stimuli
is perceived as aversive, or threatening, the systemic
neuroendocrine response is activated, this process is called
stress response (Lucassen et al., 2014). Stress can activate the
HPA axis, and glucocorticoids are one of the main biomarkers
for stress (Akirav, 2004; Mora et al., 2012). There are 2 types
of receptors for glucocorticoids, the mineralocorticoid receptor
(MR) and the glucocorticoid receptor (GR) (Reul and de Kloet,
1985). Both MR and GR expressed in hippocampus (Reul
and De Kloet, 1986), and related to stress-induced cognition
impairment and emotional disorders. Stress or glucocorticoids
have been shown to modulate cognitive function and synaptic
plasticity (McEwen and Sapolsky, 1995; Diamond et al., 1996;
Kim et al., 1996; Sandi et al., 1997; Cao et al., 2016). Long-term
stress has also been shown to induced morphological changes in
the hippocampus (Lee et al., 2009; Schoenfeld and Gould, 2012).
In addition, hippocampus also important to anxiety (Barkus
et al., 2010) and depression (Sahay and Hen, 2007). Therefor
this study focused on hippocampus.

The level of corticosterone was assessed as a biomarker
of stress in rodents, it was reported that chronic stress
could induce plasma corticosterone increasing sustainedly
(Bernatova et al., 2018). Sustained corticosterone rise is a
key factor for stress-induced memory deficits (Dominguez

et al., 2019). It was also reported that corticosterone itself
could cause hippocampal synaptic plasticity and cognitive
impairment (Pavlides et al., 1993; Howland and Wang,
2008). Therefore, corticosterone was adopted to mimic stress.
Results showed that single administration of corticosterone
via subcutaneous injection impaired hippocampal LTP in
mice in vivo significantly, both intracerebroventricular and
intragastric administrated of isorhynchophylline reversed
corticosterone-induced LTP impairment, suggesting that
isorhynchophylline may have protective effect against stress-
induced synaptic and cognitive impairment. Previous study
reported that intragastric administration of isorhynchophylline
20 mg/kg for 7 days had anti-depression effects (Xian et al.,
2017), and 20 mg/kg isorhynchophylline was sufficient to
reverse corticosterone-induced LTP impairment in this study.
So 20 mg/kg isorhynchophylline was adopted for further
observing its effect on emotional disorders and cognitive
impairment caused by chronic stress.

Chronic unpredictable mild stress is widely used to
investigate stress induced disorders, such as depression and
cognitive impairment (Shang et al., 2017; Willner, 2017;
Antoniuk et al., 2019). Therefore, CUMS was adopted
in this study. Results showed that CUMS caused weight
loss, in accord with previous study (Willner et al., 1996),
and isorhynchophylline significantly alleviated CUMS-induced
weight loss. The plasma corticosterone was assessed as a
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FIGURE 4

Effects of isorhynchophylline on plasma corticosterone, glutamate, SR, D-serine, GluN2A and GluN2B in CUMS mice. (A) Isorhynchophylline
significantly decreased the serum corticosterone level in CUMS mice. (B) Isorhynchophylline significantly decreased the hippocampal glutamate
level in CUMS mice. (C) Isorhynchophylline increased the level of D-serine in CUMS mice. (D) Isorhynchophylline significantly increased the
expression of SR in CUMS mice. (E) Isorhynchophylline significantly decreased the expression of GluN2A in CUMS mice. (F) Isorhynchophylline
significantly decreased the expression of GluN2B in CUMS mice. The data are presented as mean ± SEM. ∗P < 0.05, ∗∗P < 0.01 compared to the
Con group; #P < 0.05, ##P < 0.01, ##P < 0.001 compared to the CUMS group.

biomarker of stress, previous research showed that attenuating
corticosterone on the day of memory assessment prevented
chronic stress-induced spatial memory impairments (Wright
et al., 2006), our results also showed that isorhynchophylline
decreased elevated corticosterone in CUMS mice, indicating

that isorhynchophylline may reduce stress response. SPT
was used to evaluate depression-like behavior, results showed
that CUMS caused depression-like behavior, in accord with
previous reports (Qiao et al., 2016; Liu W. et al., 2018), and
isorhynchophylline alleviated CUMS-induced depression-like
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FIGURE 5

Effects of isorhynchophylline on Nissl staining in hippocampus.
The data are presented as mean ± SEM. *P < 0.05 compared to
the Con group; #P < 0.05 compared to the CUMS group.

behavior in line with reported results (Xian et al., 2017). For
anxiety-like behavior, OPT and EPM were adopted. The results
showed that isorhynchophylline significantly enhanced the
exploratory behavior of CUMS mice, suggesting that the anxiety
symptoms were efficiently relieved by isorhynchophylline.
MWM test is the most commonly used experiment to evaluate
spatial learning and memory (Vorhees and Williams, 2006).
CUMS-induced cognitive impairment has been widely reported
(Gu et al., 2014; Shen et al., 2018, 2019), our results also
showed that CUMS caused spatial memory deficit in mice
and isorhynchophylline reversed this impairment. These results

indicates that isorhynchophylline improved both emotional
disorder and cognitive impairment.

Synaptic structure is the biological basis of learning and
memory (Luscher and Malenka, 2012), normal synaptic
transmission requires presynaptic glutamate and D-serine
to bind to NMDA receptors to maintain synaptic plasticity
and cognitive function (Hardingham and Bading, 2010). It’s
reported that chronic stress induced glutamate elevation
(Garcia-Garcia et al., 2009; Hill et al., 2012; Willner,
2017) and NMDA receptors expression increasing (Liu
et al., 2019; Lorigooini et al., 2020) in hippocampal tissue,
indicating hyperfunction of NMDA receptors. On the
other hand, chronic stress induced D-serine deficit (Wang
et al., 2017), indicating hypofunction of NMDA receptors.
Our previous studies provide possible explanation for
this paradox. Previous data showed that acute stress or
corticosterone administration may cause hypofunction of
NMDA receptors by inhibiting D-serine release, despite
of increasing glutamate (Wang et al., 2021). Long-term
hypofunction of NMDA receptor, on the condition of
chronic stress, might cause compensatory NMDA receptor
expression, as showed in published data (Liu et al., 2019;
Lorigooini et al., 2020) and this study. Isorhynchophylline
improved LTP impairment by corticosterone via ICV
administration, indicating isorhynchophylline improved
corticosterone induced NMDA receptors hypofunction.
Additionally, isorhynchophylline restored CUMS induced
glutamate and D-serine disturbance, and modulated the
expression of serine racemase (SR) and NMDA receptors.
Altogether, these results indicate that modulating the
function of NMDA receptor may be involved in the effect of

FIGURE 6

Sketch map for the mechanisms of isorhynchophylline on CUMS induced emotional disorders and cognitive impairment.
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isorhynchophylline on alleviating cognitive deficits induced by
CUMS (Figure 6).

5 Conclusion

In conclusion, isorhynchophylline has protective effect
against stress-induced emotional disorders and cognitive
impairment simultaneously, restoring the function of NMDA
receptors to normal might be one of its mechanisms.
Nevertheless, the underlying mechanisms are more complex
than it was described above and further investigations
are needed.
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