
TYPE Original Research

PUBLISHED 28 December 2022

DOI 10.3389/fnins.2022.1070645

OPEN ACCESS

EDITED BY

Chenwei Deng,

Beijing Institute of Technology, China

REVIEWED BY

Yunkai Li,

Tianjin University, China

Ling Weng,

Hebei University of Technology, China

*CORRESPONDENCE

Huaping Liu

hpliu@tsinghua.edu.cn

SPECIALTY SECTION

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Neuroscience

RECEIVED 15 October 2022

ACCEPTED 21 November 2022

PUBLISHED 28 December 2022

CITATION

Zheng W, Liu H, Guo D and Sun F

(2022) Robust tactile object

recognition in open-set scenarios

using Gaussian prototype learning.

Front. Neurosci. 16:1070645.

doi: 10.3389/fnins.2022.1070645

COPYRIGHT

© 2022 Zheng, Liu, Guo and Sun. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Robust tactile object recognition
in open-set scenarios using
Gaussian prototype learning

Wendong Zheng1,2, Huaping Liu1,2*, Di Guo1,2 and

Fuchun Sun1,2

1Department of Computer Science and Technology, Tsinghua University, Beijing, China, 2State Key

Laboratory of Intelligent Technology and Systems, Beijing National Research Center for Information

Science and Technology, Tsinghua University, Beijing, China

Tactile object recognition is crucial for e�ective grasping and manipulation.

Recently, it has started to attract increasing attention in robotic applications.

While there are many works on tactile object recognition and they also

achieved promising performances in some applications, most of them are

usually limited to closed world scenarios, where the object instances to be

recognition in deployment are known and the same as that of during training.

Since robots usually operate in realistic open-set scenarios, they inevitably

encounter unknownobjects. If automation systems falsely recognize unknown

objects as one of the known classes based on the pre-trained model, it can

lead to potentially catastrophic consequences. It motivates us to break the

closed world assumption and to study tactile object recognition in realistic

open-set conditions. Although several open-set recognition methods have

been proposed, they focused on visual tasks and may not be suitable for

tactile recognition. It is mainly due to that these methods do not take into

account the special characteristic of tactile data in their models. To this end, we

develop a novel Gaussian Prototype Learning method for robust tactile object

recognition. Particularly, the proposed method converts feature distributions

to probabilistic representations, and exploit uncertainty for tactile recognition

in open-set scenarios. Experiments on the two tactile recognition benchmarks

demonstrate the e�ectiveness of the proposed method on open-set tasks.

KEYWORDS

tactile perception, object recognition, open-set recognition, Gaussian prototype

learning, tactile object recognition

1. Introduction

Object recognition is a prerequisite for robotic dexterous manipulations, which is the

cornerstone of many robotic applications (Li et al., 2018; Qiao et al., 2021). For example,

a robot needs to know the category of an object for selecting a suitable interaction

pattern or manipulation strategy during exploring the surroundings or performing

manipulation (He et al., 2020; Zheng et al., 2020a). Therefore, how to effectively realize

object recognition has recently attracted widespread attention in robotic research fields.

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1070645
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1070645&domain=pdf&date_stamp=2022-12-28
mailto:hpliu@tsinghua.edu.cn
https://doi.org/10.3389/fnins.2022.1070645
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1070645/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2022.1070645

Since tactile sensing is an effective way of perceiving

some physical properties of the manipulated objects through

physical interaction (Luo et al., 2017), it has been extensively

used in robotic tasks involving object recognition, material

identification (Zheng et al., 2019), texture recognition and

robotic grasp detection (Guo et al., 2021). Liu and Sun (2017)

proposed a tactile recognition method for classify material

identification. Xu et al. (2013) proposed a tactile identification

method with Bayesian exploration. Kerr et al. (2018) used

tactile data to classify the materials with the BioTAC sensor. In

addition, tactile information is used as an effective complement

of visual information for robotic tasks. In Liu et al. (2016),

a novel visual-tactile fusion method was proposed for object

recognition using joint group kernel sparse coding. Guo et al.

(2017) adopted tactile information as an important complement

of visual information for the robotic grasp detection task. These

works have shown that tactile perception plays a significant role

in robotic recognition tasks.

While there are many works on tactile recognition and

they have been demonstrated to be effective for some specific

applications (Yi et al., 2020), they have mainly focused on

constructing predictive models to classify predefined and

fixed object classes in closed-set scenarios, assuming that the

classes seen in testing must have appeared in training. In

fact, such an assumption is usually violated in actual robotic

applications (Zheng et al., 2020b). This is mainly due to

that robots are commonly deployed in realistic unconstrained

environments, where objects of unknown classes are regularly

encountered. When observing an unknown object, these closed-

set classification methods incorrectly categorize it as one of the

known classes with high confidence. As classifier prediction in

robotic applications can trigger some kind of costly robotic

action, such misclassification can be catastrophic and is often

not acceptable. Thus, it is necessary to investigate robust tactile

recognition in open-set scenarios, which is also referred to open-

set tactile recognition. The schematic is shown in Figure 1, where

robots should have the dual ability of unknown detection and

known classification.

To the best of our knowledge, tactile object recognition of

open-set scenarios is still unexplored research in the robotic

field. Similar to other open-set recognition, open-set tactile

recognition also faces the core challenge of how to not only

correctly classify samples from the known classes but also

effectively detect and flag unknown examples as the novel.

Many methods have been proposed to handle this problem

in the literature. The mainstream methods attempt to utilize

thresholding to reformulate open-set recognition as a closed-

set classifier. As feature distribution of training samples is not

explicitly considered in their learning objectives, the learned

features generally have excessive intra-class variance. The inter-

class distance can even be smaller than the intra-class distance

in the learned feature space. This makes it difficult to set an

appropriate threshold that well separates known from unknown.

In addition, another technical solution aims to collect

unknown samples for training a (K + 1)-class model, where

K is the number of known categories and all unknowns are

treated as an additional category. The strategy is simple and

intuitive, but it usually requires large-scale training data to

represent the large numbers of unknowns in open scenarios.

However, collecting sufficient tactile data is difficult for training

due to the complex collection process and constraints of

robot-object physical interactions. Hence, constructing an

effective model for open-set tactile recognition is still an

open question.

As we know, humans can effectively recognize objects in

open environments based on template or prototype matching.

Motivated by the recognition mechanism, we propose an

uncertainty estimation model for open-set tactile object

recognition in this work. The framework consists of two

main components, which are the feature extractor and the

class prototypes. The feature extractor simulates the perception

system of humans for transforming the raw sensing data into

abstract representations. Moreover, the prototypes for each

category serve as abstract memories of the corresponding

category in the brain. By matching the tactile features

(abstract representation) with prototypes (classes memories),

the proposed model performs object recognition. During

inference, if the feature of a test tactile sample can not match well

with all the prototypes of the known classes, it will be considered

as the unknown.

To this end, the learned features of each known class are

characterized by a Gaussian distribution in our framework.

As known samples follow the prior distributions, those test

samples located in low probability regions will be recognized as

unknown by the model. Meanwhile, for the test samples from

known classes, the model will compute its probabilities over

all known classes and classify it as the class with the highest

probability. To explicitly enforce training samples following

Gaussian distributions, we introduce a likelihood regularization

term to the classification discriminant function during training.

In addition, we further add a classification margin to make each

cluster more compact and further improve the generalization

of the model. The main contributions are summarized as

follows:

1. In this paper, we specifically address tactile object recognition

in open-set scenarios. To this end, a novel Gaussian Prototype

Learning method is proposed, which is suitable for both

unknown detection and known classification.

2. We introduce a likelihood regularization term to explicitly

enforce training samples following Gaussian distributions.

In addition, we further introduce a classification margin to

make each cluster more compact, which is more beneficial for

unknown detection.

3. We perform comprehensive experimental evaluations of our

proposed method on publicly available tactile datasets. The
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FIGURE 1

The schematic of open-set tactile object recognition. Some images are from https://sites.gatech.edu/hrl/mr-gan/.

experimental results demonstrate the effectiveness of the

proposed method.

Please note that our proposed open-set tactile recognition

is not just a matter of the robot filling in gaps in its knowledge

base. Instead, we aim to enable robots will be able to continually

expand the scope of the knowledge to learn new unknown

classes over time in an active learning manner. That is to say,

at any particular point in time the model needs to be able

to detect and reject unseen data belonging to unknown tasks

or classes. These unknown data could be utilized and learned

with another algorithm in some human-in-the-loop system at

a later stage. We believe that this research will aid in active

learning and continual learning in open-set conditions, which

can serve as the first step toward building lifelong robot tactile

recognition systems.

In the following, related works are briefly reviewed in

Section 2. In Section 3, we describe the problem of tactile

open-set object recognition. Section 4 details the framework

architecture and learning model of the proposed method. The

experimental results and analysis are given in Section 5.

2. Related work

In this section, the main related works are briefly reviewed

from two aspects: tactile object recognition and open-Set

Recognition.

2.1. Tactile object recognition

Object recognition is a fundamental perceptual capability

for many robot applications (Meyer et al., 2020). While vision

enables robots to have excellent visual recognition capabilities

(Deng et al., 2019; Han et al., 2019), it is not always effective for

object recognition in practical tasks (Yang et al., 2019). This is

mainly due to that objects of similar appearance can have very

different physical properties, which may not be easily obtained

visually (Deng et al., 2022). Tactile sensing is an important

perception modality, of which the interactive nature allows it

to convey rich and diverse tactile information, such as texture,

roughness, or stiffness (Li et al., 2020). It is crucial for robots

to explore and learn the mechanical properties of manipulated

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1070645
https://sites.gatech.edu/hrl/mr-gan/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2022.1070645

objects, especially when interacting with unknown objects in

practical environments.

Considering its effectiveness in perceiving environments,

tactile information has been extensively adopted in a variety

of robot recognition tasks. Liu and Sun (2017) proposed a

tactile material recognition model with semantic labels, which

improved the identification performance. Kerr et al. (2018)

utilized BioTAC sensor to collect tactile data, and then these

data are used to classify the materials. Yuan et al. (2018)

used GelSight tactile sensor to recognize 11 properties of the

clothes, which aim to help the robot understand their material

properties. Based on a hybrid touch approach, Taunyazov et al.

(2019) developed an effective tactile identification framework for

texture classification. More recently, Gu et al. (2020) proposed

an event-based tactile object recognition method with a spiking

graph neural network using electronic skins.

Although the mentioned tactile-based recognition

methods have been successfully applied in some specific

robotic tasks, most of them are deployed under a closed-set

condition. Such a closed-set scenario is practically unfeasible in

robotic applications. Robots commonly are deployed in open

environments, where they will often come across new types of

objects. Recently, Abderrahmane et al. (2018, 2019) proposed a

tactile recognition framework, which can recognize both known

as well as novel objects. Nevertheless, this framework still did

not explicitly consider the nature of open-set. In particular, the

set of novel classes that can be recognized must be known in

advance in the framework. Moreover, it relied on the hypothesis

that attributes learned from the training seen-classes are shared

by the testing unseen-classes. Obviously, they are potential

drawbacks in practice applications. Consequently, existing

methods are not suitable for open-set tactile object recognition.

2.2. Open-set recognition

Open-set tactile recognition faces the core challenge is how

to not only correctly classify samples from the known classes

but also effectively detect and flag unknown examples as the

novel. Traditional closed-set classification models may not work

in open-set problems because they often predict high confidence

for inputs that are significantly different from the training

classes (Wang et al., 2022). To tackle this challenge, a variety

of related methods have been proposed in the literature. An

intuitive method is to use closed-set classifier to solve open-

set recognition by setting rejection threshold, such as 1-vs-set

SVM (Scheirer et al., 2012), SROSR (Zhang and Patel, 2016),

NNO (Bendale and Boult, 2015), DOC (Shu et al., 2017), and

CROSR (Dhamija et al., 2018). Exploring this idea, Scheirer

et al. (2012) proposed 1-vs-Set model based on SVM to detect

unknown samples by adding an extra hyper-line. Bendale and

Boult (2015) extended Nearest Class Mean (NCM) classifier to

open-set conditions, establishing a Nearest Non-Outlier (NNO)

algorithm. Recently, Bendale and Boult (2016) proposed to use

the Openmax layer to replace the Softmax layer in deep neural

networks. This method redistributes the probability distribution

of Softmax to obtain the class probability of unknown samples.

As most of these models ignore constructing reasonable

feature distribution for different classes, the learned features

generally have excessive intra-class variance (Han et al., 2017).

The inter-class distance can even be smaller than the intra-class

distance in the learned feature space. As a consequence, it is

hard to select an appropriate threshold that well separates known

from unknowns. Moreover, feature distribution of training

samples is not explicitly considered in their learning objectives,

which will limit the performance of the model to detect

unknown samples.

Another technical route is to collect or synthesize examples

of extra classes for representing unknowns. Along this line,

G-OpenMax (Ge et al., 2017) proposed to train a generator

for synthesizing examples that represent all unknown classes

for model training. Neal et al. (2018) developed counterfactual

image generation, which aimed to generate extra class image

samples that cannot be classified into any known class. Since

the complex collection process and operation constraints, it is

difficult to acquire large amounts of tactile data for unknown.

Therefore, it is unfeasible to learn an effectivemodel with limited

training data for generating sufficient samples to represent

unknowns.

3. Problem formulation

In this work, we aim to realize robotic tactile object

recognition in open-set scenarios. The goal is to endow robots

with an effective mechanism to detect samples from unknown

classes that may be encountered during testing, which are not

available to be seen in training. To accomplish this goal, the

tactile open-set recognition model is able to (i) correctly classify

known tactile inputs (i.e., classes from the training set) and

(ii) effectively detect unknown tactile classes (i.e., classes not

exposed in the training set).

Let us formalize the problem described above. Given a

tactile training dataset Dtr = {(ti, yi)}
M
i=1, where ti ∈ Rd

denotes a training tactile sample, yi ∈ Y = {1, 2, ....,K} is

the corresponding class label and M denotes the number of

training samples. The testing dataset Dte = {(tj, yj)}
N
i=1 where

tj ∈ Rd, yj ∈ Y ′ = {1, 2, ....,K,K + 1, ...., k′} (k′ > K)

and N is the number of testing samples. Here, {k + 1, ...., k′}

denotes the set of unknown categories, which is referred to as

novelty and uniformly denoted as YK+1 in this paper. Therefore,

Y ′ = Y ∪ YK+1 and Y ∩ YK+1 = ∅. Our task is that the

tactile recognition system need to determine whether a tactile

observation tj ∈ Y ′ is from the known classes Y or the unknown

classes YK+1. If tj is from Y , the classifier should predict a class

label ŷ ∈ Y , otherwise it can be judged as the novel class YK+1.
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The primary challenge of solving this problem is how to

enable the model to classify tactile examples of seen classes

into their respective classes and meantime detect tactile data

of unseen classes. Traditional classifiers predict the class of

the input instance with the highest Softmax probability. Since

the model is impossible to know in advance unknown classes

that may be encountered in practice, it tends to predict the

lowest probability on the unknown classes. As a consequence,

directly using closed-set classifiers for open-set recognition

would classify unknown instances into known categories with

improperly high confidence, yielding poor performance in open-

set recognition. What is more, it is hard to collect sufficient

tactile data in practice. These factors make the existing open-set

methods unsuitable for tactile recognition. Therefore, it needs to

be investigated carefully.

As discussed above, the open-set tactile recognition is a

non-trivial task due to the following two major challenges:

1. Similar to other open-set recognition problems, open-set

tactile recognition also faces the core challenge is how

to not only correctly classify samples from the known

classes but also effectively detect and flag unknown examples

as the novel.

2. Different from other open-set visual recognition tasks,

collecting sufficient tactile data is difficult for training

due to the complex collection process and constraints of

robot-object physical interactions. This makes it difficult to

migrate some existing open-set recognition methods with a

complicated network to the tactile open-set recognition task.

3. Moreover, the tactile signals for object recognition are

commonly high-dimensional dynamic time-series, which

exhibit many challenges. Firstly, it is impossible to directly

use high-dimensional signals into the existing machine

learning methods without any preprocessing techniques.

Additionally, there is the nature of misalignment among

different tactile measurements. It makes tactile open-set

recognition more difficult.

4. The proposed method

In this section, we first expound the framework architecture

of the proposed method, and then we elaborate the details of the

Gaussian prototype learning model in the method. Finally, we

describe the algorithm optimization of the model.

4.1. Framework architecture

The framework of our proposed model is shown in Figure 2,

which can be structurally disentangled into two main modules:

feature extraction module f (θ , t) andGaussian prototype learning

module. The feature extraction module is used to transform

the raw tactile inputs into abstract feature representations,

where t is a tactile input and θ denotes the parameters of

the feature extraction module. Different from the traditional

softmax layer for classification on the learned features, we adopt

a prototype learning module to learn class prototypes µl
yi on the

extracted features for each class yi ∈ Y , where the superscript

l ∈ {1, 2, ..., L} is the number of prototypes in each category.

Finally, we apply these prototypes for classification by template

matching. When the extracted feature f (θ , t) of an input t can

not match well with all prototypes of all known classes, it can be

viewed as unknown. In this model, a feature extraction module

and prototype module are jointly learned from data during

training, thus forming a unified end-to-end deep framework,

which is beneficial to improve the performance of recognition.

Previous experiments demonstrated that when the number

of prototypes l in each class is large, it can not promote the

classification accuracy and on the contrary will degrade the

performance of the model. In fact, the deep neural network is

very powerful for feature representation. Although the initial

feature distribution is complex and scattered, the features of

each class can be compacted to fit a single class centroid with

some appropriate constraints after transformation. As such, we

maintain one prototype for each category in our model. For

convenience, µl
yi is denoted as µyi , of which the superscript is

omitted in the following description.

4.2. Gaussian prototype learning model

Given a tactile input tj, we firstly extract its abstract

representation through the feature extraction module f (θ , tj),

and then search the nearest prototype based on the Euclidean

distance between the extracted feature with all prototypes in the

feature space. Finally, we assign the class label of this prototype

to the tactile input. The process can be described as:

ŷ =







arg
K

max
i=1

gi(tj), if gi(tj) > δ

Unknown YK+1, if gi(tj) ≤ δ

(1)

where gi(x) is the class discriminant function that denotes the

matching score of tactile sample tj with class i, δ is a rejection

threshold.

To train the framework, we introduce the three optimization

objectives, which are discriminative classification loss, feature

distribution loss and learning to detect unknowns.

4.2.1. Discriminative classification loss

Intuitively, an ideal class prototype should effectively

discriminate and classify samples from different categories. To

achieve the goal, we propose a discriminative classification loss.

It aims to make the prototype of the corresponding class closer

to f (θ , ti) while the prototypes of other classes stay away from

f (θ , ti), ensuring tactile input is correctly classified.
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FIGURE 2

The framework of our proposed method for open-set recognition.

Essentially, the discriminative classification loss is a

novel distance-based cross-entropy loss. Similar to traditional

cross-entropy loss, it calculates cross-entropy loss with class

probabilities obtained from the distances between samples

feature and all prototypes. Specifically, given a sample ti and its

class label yi, the probability of belonging to the corresponding

prototype can be measured by the distance, and the probabilities

are normalized in a similar way of Softmax. With this definition,

the loss is defined as:

Lcls(θ ,µi) = −
1

N

N
∑

i=1

K
∑

j=1

Ŵ(ŷ = yj) log Pyj (ŷ|ti). (2)

where Ŵ(·) is symbolic function, and pyi is class-specific

probability, of which the definition can be expressed as:

Pyj (ŷ|ti) =
e
− 1

T

∥

∥

∥
f (θ ,ti)−µyj

∥

∥

∥

2

2

∑

i∈Y e−
1
T ‖f (θ ,ti)−µi‖

2
2

(3)

where T is a temperature coefficient that is used to control

the characteristics of the classifier. We set the value of T as

the variance σ 2 in the feature space, in order to normalize the

representation space and increase the stability of the system. All

classes prototypesµi with i ∈ Y and the variance σ 2 are updated

in an online manner.

By minimizing Lcls(θ ,µi), the loss aims to encourage

separating the samples from different categories in learned

feature space. In particular, this objective is to decrease the

distance between samples of the same category and the

corresponding prototype, and increase the distance between the

sample and all other incorrect prototypes. Since the objective

considers all prototypes in each updating step, it can better

guarantee the convergence of training.

4.2.2. Feature distribution loss

For open-set recognition, the learned features need not only

to be separable in different classes but also be compact in the

same class. However, the above classification loss only makes the

features of different categories separable. As a result, a feature

ti is far away from the corresponding category centroid µyi ,

but it still is correctly classified if it is relatively closer to µyi

than to the feature centroids of the other classes. To tackle this

issue, we further introduce a feature distribution loss to learn

discriminative and compact representation, making it more

applicable for our task.

The feature distribution loss is essentially the maximum

likelihood regularization term on the assumption of Gaussian

distribution. Specifically, we assume that the extracted feature

on the training set conforms the Gaussian mixture distribution,

viewing class prototype µyi as the mean of a Gaussian

component, which can be expressed as:

p(ti) =

k
∑

i=1

N(f (θ , ti),µyi , σyi )p(yi). (4)

where σyi is covariance of class yi in the feature space, and

p(yi) is the prior probability of class yi. For the convenience

of calculation, the likelihood regularization term is defined as

the negative log-likelihood. By reasonably setting constant prior

probabilities p(yi), the likelihood regularization term Llkd is

simplified to Equation (5).

Llkd(θ ,µyi ) = −

k
∑

i=1

logN(f (θ , ti),µyi , σyi ). (5)

The objective of the regularization term aims to maximize

the log-likelihood of sample ti for its corresponding class.

By minimizing Llkd, the model can effectively reduce the

within-class variance and constrain the feature distribution of
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known classes, so it can reserve more feature space for unknown

classes and improve the performance of the proposed method

for detecting unknowns.

4.2.3. Learning to detect unknowns

The threshold-based rejection is frequently used in open-

set recognition tasks. Most of the existing methods directly

adopt the predefined threshold to detect unknowns, which is not

suitable in practical applications. In order to make our model

effective on the open set tasks, we explicitly consider adopting

class-specific rejection criteria. In particular, we use an adaptive

strategy by letting the value threshold δ to be proportional to

maximal distance 1yi between samples specific class yi and

the corresponding class centroid µyi , i.e., δ = α1yi where

α is proportional coefficient. Formally, Equation (1) can be

expressed as:

ŷ =







t ∈ class arg
k

max
i=1

gi(t), if gi(t) > α1yi

Unknown, if gi(t) ≤ α1yi

, (6)

where gi(t) =
1

σ 2
yi

∥

∥f (θ , t)− µyi

∥

∥

2
2. Instead of adopting the pre-

defined threshold, we explicitly learn specific threshold of each

category by minimizing the following objective:

Lthr(θ ,µyi ) =
∑

i∈Y

max(0,m(
1

σ 2

∥

∥f (ti, θ)− µyi

∥

∥

2
− α1i)).

(7)

wherem = −1 if i = yi andm = 1 otherwise.

By minimizing Lthr , the model can obtain class-specific

rejection thresholds, instead of presetting a global threshold as

in prior works. It makes the proposed model effective to detect

unknown samples.

4.3. Algorithm optimization

With the above-mentioned analysis, the optimization

process of our proposed method is structurally divided into

two components: optimization of feature representation and

optimization of rejection threshold.

(1) In this optimization of feature representation, the

trainable parameters in the proposed method are composed

of two parts, i.e., parameters of encoder network for feature

transformation f (θ , ti) and all classes prototypes µi. To this

end, we combine discriminative classification loss and feature

distribution loss. The formally objective function is expressed as:

L(θ ,µyi ) = Lcls(θ ,µyi )+ λLlkd(θ ,µyi ) (8)

where λ ≥ 0 is weighting coefficients, which controls the

trade-off of the two loss terms to optimal performance.

Require:

(1): Training data Dtr = {(ti, yi)}
M
i=1, and the

associated class label yi ∈ Y = {1, 2, ...., k};

(2): Hyperparameter: α, λ, the learning rate η;

(3): Testing dataset Dte = {(tj, yj)}
N
i=1, and the

associated class label yj ∈ Y ′ = {1, 2, ....,K,K + 1, ...., k′}

(k′ > K).

Ensure:

Learned encoder network f (θ), class prototypes

µyi and corresponding covariance σyi.

1: for number of iterations do;

2: Update parameters θ, σyi and µyi by descending

their stochastic gradients by Equation (8).

3: θ ← θ − η · ∇θ (Lcls(θ ,µyi )+ λLlkd(θ ,µyi ))

4: µyi ← µyi − η · ∇µyi
(Lcls(θ ,µyi )+ λLlkd(θ ,µyi ))

5: end for

6: return f (θ) and {(σi,µi)}
k
i=1

gi(t) =
1

σ 2
yi

∥

∥f (θ , t)− µyi

∥

∥

2

2

gmax(t) = sort(gi(t))

7: if gmax(t) > δi

8: Predict t as known classes with label ypred

9: else do

10: detect t as unknown with label YK+1

11: end if

Algorithm 1. The program flowchart of the proposed method.

For the hybrid optimization objective function L(θ ,µyi )

in Equation (5), we can directly calculate the gradients

of ∂L
/

∂f and ∂L
/

∂µyi . According to the error back

propagation, we can calculate the gradient of ∂L
/

∂θ .

With the gradients of L over all parameters, we can jointly

optimize both feature extractor and all classes prototypes

using a gradient descent (SGD) optimization algorithm in an

end-to-end way.

(2) For optimization of rejection threshold, it aims to achieve

optimal class-specific thresholds α1i. In this process, we held-

out set of samples from the training set to learn the optimal

thresholds. Hence, we split the samples into two parts, one

part used for learning the feature extractor f (θ) and the classes

prototypes µyi and the remaining part for learning the value of

α1yi .

In summary, the optimization process of our proposed

model is elaborated in Algorithm 1.

5. Experiments

In this section, the proposed open-set tactile recognition

method is comprehensively evaluated on two publicly available

datasets. Firstly, the adopted datasets, evaluation metrics,

comparison methods, and implementation details are described.

Then experiments results and their analysis are provided.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1070645
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2022.1070645

FIGURE 3

All material images of the data set. The numbers, respectively, denote the beginning of each category. The original images are from Strese et al.

(2016). It has been reproduced with permission from IEEE, available at https://zeus.lmt.ei.tum.de/downloads/texture/.

Finally, we further analyze the sensitivity of hyperparameters in

the model.

5.1. Dataset splits

We demonstrate our proposed method on two publicly

available data sets, which are Haptic Texture Database

(LTM_108) dataset (Strese et al., 2016) and Penn Haptic

Adjective Corpus (PHAC-2) (Chu et al., 2015) dataset. They

have been used to evaluate a model’s ability to recognize objects

or textures by tactile modality (Liu and Sun, 2017). In these

two data sets, their tactile data, respectively, represent two

typical types of tactile information. Different from closed-set

recognition, open-set tactile recognition needs a special setup

and experiments. The splitting of the dataset is described as

follows:

LTM_108: The LTM_108 dataset consists of 108 different

surface material instances, which are divided into 9 categories

based on the material properties. These material images of

the dataset are shown in Figure 3. In this dataset, it provides

multimodal data for each material instance, namely visual

images, tactile acceleration traces and sound signals generated

from the surface-tool interaction. The dataset provides a training

set and a testing set. They both contain 108 material instances

and every instance has ten tactile samples. In this experiment,

we only use the tactile acceleration traces as tactile data for object

recognition.

Although this dataset has been directly used for some closed-

set tasks of tactile recognition, we use this dataset to tackle more

challenging the open-set tactile recognition task. To provide a

suitable test platform, a new dataset split is proposed based on

the original dataset. In particular, we randomly select K < 9

categories tactile samples from the train set to train our models

and use totally 9 categories of tactile samples from the test set for

test evaluation. This setting ensures that the test set appears some

TABLE 1 The details of the dataset splits on LTM_108.

Material category Training samples Testing samples

Mesh 13× 10 13× 10

Stones 9× 10 9× 10

Glossy 9× 10 9× 10

Wood 13× 10 13× 10

Rubbers 5× 10 5× 10

Fibers 15× 10 15× 10

Foams - 12× 10

Foils and paper - 15× 10

Textile and fabrics - 17× 10

Total 64× 10 108× 10

material categories that are not in the training set. The Table 1

show a case of the dataset splits when K = 6.

PHAC-2: There are 60 objects in the PHAC-2 dataset. The

visual images of the dataset are shown in Figure 4. According

to the physical properties, these objects are divided into eight

categories. In this data set, each object contains tactile signals

and visual images. The tactile signals are collected by two

SynTouch BioTacs tactile sensors, which are installed to the

grippers of a PR2 robot. In order to mimic the process of

humans exploring the tactile properties of objects, the robot used

four exploratory procedures to acquire five types of tactile data.

According to the specified procedures, ten trials are performed

on each object, resulting in totally 600 tactile samples. Although

the joint data on gripper during exploratory movements are

available, we focused on the tactile signals for classification in

this experiment. In particular, each tactile sample consists of five

components PDC , PAC , TDC , TAC and E19.

Similar to the above dataset setting, the PHAC-2 dataset also

needs to be reorganized and split. Firstly, we randomly select

an object instance from each material category as test objects
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FIGURE 4

The PHAC-2 contains 60 objects, which are organized by their primary material. The original images are from Chu et al. (2015). It has been

reproduced with permission from Elsevier, available at https://hi.is.mpg.de/research_projects/learning-haptic-adjectives-from-tactile-data.

and remain other 52 object instances. Then, we randomly select

K < 8 categories from eight categories from the remaining

object instances. When K = 5, the details of the dataset splits are

shown in Table 2. Please note that according to the above setting,

not only does the test set contains some categories that are not

in the training set, but also the training set and the testing set do

not share the same object instance even from the same category.

Different from instance-level recognition, this experiment can

be referred to as categorization-level open-set recognition. To

this need, we need the proposed model to have generalization

and robustness for unseen object instances.

5.2. Data preprocessing and network
architecture

Considering the difference between the two types of tactile

signals, we adopt two different feature extraction methods and

network architectures for classification. The specific details are

as follows.

LTM_108: In the LTM_108 dataset, the recorded tactile

signals are three-axis acceleration traces. Firstly, the three-

axis acceleration traces are conversed to a one-dimensional

signal by the DFT321 algorithm (Kuchenbecker et al., 2010).

Considering the effectiveness of short-time Fourier transform

(STFT) extracting features of time-series signals, we adopt STFT

to convert a one-dimensional DFT321 signal into a spectrogram.

These spectrograms are in the log domain, where the length of a

frame length is 500 and the increment of frame and frame is 250.

By the predefined configuration settings mentioned above, there

are 100 spectrogram samples of size 50 x 250 extracted from each

tactile acceleration trace.

As convolutional neural network (CNN) has proven to

be effective in visual classification, which has achieved good

performance on many tasks. Moreover, some CNN models

pre-trained on ImageNet (Deng et al., 2009) have shown

generalization and discrimination. In this experiment, we use

the pre-trained Resnet18 (He et al., 2016) model on ImageNet

as the network backbone of the proposed method.

PHAC-2: As in Abderrahmane et al. (2019), we firstly

normalize the five components (PDC , PAC , TDC , TAC, E19)

in each signal sample, respectively. As the sample rate of

PAC is higher than other components of a tactile sample, we

downsample it to match the other signals’ sample rate of 100

Hz. For some exploratory movements, the length of tactile

signals varies considerably from objects. In order to resolve

the length difference of signal, we downsample the signal of

each exploratory movement to a fixed length of 150. Principal

Component Analysis is used independently on the E19 data from

each exploratory movement to capture the four most principal

components across all objects. Thus, we obtain 64 tactile signals

for each object in each trial.

Recently, Ji et al. (2015) has demonstrated the effectiveness

of CNN on temporal signals with limited amounts. In this

experiment, we adopt Convolutional neural networks (CNN)

to perform tactile object recognition. The specific network

structure is the same as the Haptic CNN model in Gao et al.

(2016). Every tactile sample per object has 64 tactile signals. We

concatenate the 64 features along the channel axis, which is used

as the input of our model.
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TABLE 2 The details of the dataset splits on the PHAC-2.

Material

category

Original

samples

Training

samples

Testing

samples

Foam 16× 10 15× 10 1× 10

Organic 5× 10 4× 10 1× 10

Fabric 7× 10 6× 10 1× 10

Plastic 13× 10 12× 10 1× 10

Paper 12× 10 11× 10 1× 10

Stone 2× 10 - 1× 10

Glass 2× 10 - 1× 10

Metal 3× 10 - 1× 10

Total 60× 10 48× 10 8× 10

5.3. Evaluation metric

In this experiment, we use the three metrics to evaluate the

classification performance, including Accuracy and F-measure

and AUC.

• Accuracy: As a common metric method to evaluate

classifiers on a closed set task, recognition accuracy Acc is

defined as:

Accuracy =
TP+ TN

TN+ TP+ FP+ FN
(9)

where TP, TN, FN, and FP, respectively, denote true

positive, true negative false negative, and false positive. The

sum of the three quantities is equal to the total number of

samples.

• F-measure: F-measure is commonly evaluation metric,

which is defined as a harmonic mean of Precision P and

Recall R:

F −measure = 2×
P × R

P × R
=

2TP

2TP + FP + FN
(10)

As suggested in Bendale and Boult (2016) and Geng et al.

(2020), we use macro-averaged F1-score. It is denoted as

macro-F1.

• AUC: It denotes area under the ROC curve (AUC), which

measures the performance of detecting unknown between

known and unknown data.

5.4. Comparison methods

To validate the advantages of our proposed method,

several classical methods were also implemented for

comparison. A brief description of the methods is

as follows:

• Softmax: It used the highest probability from the softmax

layer of networks as the confidence score for classification.

• τ -Softmax (Hendrycks and Gimpel, 2016): It aims to use

a global threshold on the softmax probability to determine

whether an input sample belongs to an unknown class. We

refer to this method as τ -Softmax.

• τ -Center (Wen et al., 2016): It can be combined with cross-

entropy loss to encourage the training data to form better-

behaved class structures, which may be easier to model and

facilitate greater distinction of open-set inputs. To this end,

we also use it to detect unknown classes by a predefined

threshold, which is denoted as τ -Center loss.

• OpenMax (Bendale and Boult, 2016): It proposed replacing

the softmax layer with OpenMax, which calibrates the

confidence score with Weibull distribution. It proposed an

inference method for detecting novel classes.

We note that some advanced methods, such as Yoshihashi

et al. (2019) and Sun et al. (2020), have also been proposed to

deal with open-set visual recognition. However, we do not take

them for comparison, because the networks of thesemethods are

too complex to work on the limited training data of tactile tasks.

5.5. Implementation details

For open-set recognition, the ratio of seen and unseen is an

important factor, which quantifies the openness of the problem.

As in Zhou et al. (2021), the openness is defined as:

openness = 1−

√

Ntrain

Ntest
(11)

where Ntrain and Ntest , respectively, denote the number of

categories in training set and testing set. As we described in the

preliminaries, Ntrain = K.

In this experiment, we empirically set the likelihood

regularization parameter λ to 0.01 in experiments. For the

margin parameter α, the optimization of the objective function

becomes more difficult as the value increases. Therefore, α needs

to be smaller when the number of classes gets more. In our

experiments, we empirically set α to 0.4 and 0.3 for LTM_108

and PHAC-2, respectively.

5.6. Experimental results and analysis

Experimental results on the LTM_108 and PHAC-2 datasets

are reported in this subsection. In this experiment, we randomly

select 6 categories as known classes for LTM_108. Considering

the instance imbalance of categories in PHAC-2, the first five

categories are used as known classes. Ten trials are performed on

each experiment, and the averaged results are used as final metric
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TABLE 3 Experimental results of di�erent method.

Model
LTM_108 PHAC-2

Accuracy Macro-F1 AUC Accuracy Macro-F1 AUC

Softmax 59.1% 0.491 0.878 62.5% 0.518 0.871

τ -Softmax (Hendrycks and Gimpel, 2016) 61.7% 0.567 0.970 70.01% 0.625 0.975

τ -Center (Wen et al., 2016) 64.9% 0.613 0.975 71.3% 0.634 0.977

OpenMax (Bendale and Boult, 2016) 62.5% 0.574 0.978 58.7% 0.536 0.928

Proposed method 70.76% 0.669 0.986 75.5% 0.703 0.986

scores. In this setting, the corresponding experimental results on

different methods are shown in Table 3.

From Table 3, it can be seen that our proposed method

achieves the highest Acc, macro-F1, and AUC on the two

datasets. It indicates that the proposed model outperforms

the compared methods, which also demonstrates that the

proposed method is able to effectively improve the ability to

detect unknowns while ensuring the accuracy of the known

classification simultaneously.

As mentioned above, the open-set recognition on PHAC-2

is more challenging, as its test set and training set does not share

the same object instance. Besides, we do not perform any data

augmentation or employ some specific and complex networks in

these experiments. Even so, our proposed method still achieves

optimal performance. This further verifies the effectiveness of

the proposed method.

Additionally, it is clear that τ -Center exhibits a better

performance among all these compared methods because it

explicitly encourages stronger compactness of feature, which

is beneficial for open-set recognition. However, it mainly

aims at improving the softmax loss and feature distribution

is not explicitly modeled. Therefore, it can not achieve

optimal performances dealing with the tactile OSR problem.

Since integrating the advantages from both classification

discrimination with Gaussian Prototype Learning and likelihood

estimation of feature distribution, our proposed method

performs better in open-set conditions. It highlights the

importance of considering the likelihood of feature distribution

in the tactile OSR problem.

In particular, we can observe that as a state-of-art open-

set recognition method, Openmax shows low performance,

especially on the PHAC-2 dataset. It is mainly due to low

recall on known classes with a few training instances since

test instances from smaller classes are usually projected farther

from the mean activation vector of the corresponding class.

This demonstrates that Openmax may be also hardly infer

the class probability of unknown inputs by the probability

distribution of Softmax. Moreover, our experiments

indicate that merely thresholding the output probabilities

of softmax helps, but is still relatively weak for open set

recognition.

FIGURE 5

Macro F1 against varying openness with di�erent methods on

the LTM_108 dataset.

5.7. E�ectiveness of di�erent openness

To valid the robustness of our proposed model to different

openness, we evaluate performance over multiple openness

values in the experiments. In particular, we vary the openness

of Equation (11) by varying the number of classes in the

training sample, while the number of test classes remains the

same. We evaluate the performance by macro F1-scores. The

corresponding results are shown in Figures 5, 6.

As to be expected, when more known classes are available

during training, the performances of classifiers are better

for all methods in Figures 5, 6. We can observe that the

proposed approach remains relatively stable over a wide

range of openness, which produces better results compared to

other methods.

5.8. Parameter sensitivity analysis

In the proposed model, α and λ are important parameters,

and their values affect on the model’s performance. To

obtain optimal values for these parameters, we conduct

extensive experiments to perform grid search for α and
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FIGURE 6

Macro F1 against varying openness with di�erent methods on

the PHAC-2 dataset.

FIGURE 7

Acc and macro F1 for di�erent α on the LTM_108 dataset.

λ within the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and

{0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. The experimental results

show that the model can achieve optimal performance when α

= 0.4 and λ = 0.01 on the LTM_108 dataset. For the PHAC-2

dataset, the model shows the best performance where α = 0.3

and λ = 0.01. For the convenience of explanation, the sensitivity

analysis of these two parameters is divided into two parts

for illustration.

To analyze the effect of these parameters α on the

proposed model’s performance, we set the value of λ to

0.01 and perform grid search of the parameter α within the

set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The relationships

between Accuracy and the macro-F1 and of the value of α are

shown on the two datasets in Figures 7, 8, respectively. It can be

observed that the performance of the model is very sensitive to

the value of the parameter α, and the model performs well when

α ∈ [0.1, 0.8] on both datasets.

FIGURE 8

Acc and macro F1 for di�erent α on the PHAC-2 dataset.

FIGURE 9

The performance of proposed model in terms of λ.

Then, we conduct experiments to study the effect of

the parameter λ on the performance of the model. Fixing

parameters α = 0.4 on the LTM_108 dataset and α = 0.3

on the PHAC-2 dataset, we tune the parameter λ within the

set {0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and the corresponding

experimental results are given in Figure 9. It can be observed that

ourmodel achieves good performances in the range of λ ∈ (0, 1].

When λ > 1, the model’s performance on the contrary degrades.

This is mainly because the likelihood regularization starts to play

a role when the training accuracy is close to saturation, and a

strong regularization weakens the discrimination effect of the

model. Hence, there is a need to find the optimal balance of the

two terms in the optimization process.

6. Conclusion

In this work, we specifically address tactile object recognition

in open-set scenarios, which aims to enable robots to exploit
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tactile explorations in unstructured environments. To this end,

we proposed a novel Gaussian prototype learning model, which

incorporates classification and novel class detection into a

unified framework. In particular, a likelihood regularization

term is introduced to explicitly consider the feature distribution

of tactile data. In addition, we further develop an adaptive

classification margin to improve the performance of the model.

Experimental results validate the effectiveness of the proposed

method, which has the potential to improve the performance

of open-set tactile perception. We believe that it makes the first

step to formulate lifelong tactile recognition in the real world.

In the future, we will explore the generalization of the proposed

method to realize active continual learning in the open world.
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