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Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine

and immunomodulatory potential has made them a promising candidate

for central nervous system (CNS) regeneration. Numerous studies have

demonstrated that MSCs can promote immunomodulation, anti-apoptosis,

and axon re-extension, which restore functional neural circuits. The

therapeutic effects of MSCs have consequently been evaluated for application

in various CNS diseases including spinal cord injury, cerebral ischemia, and

neurodegenerative disease. In this review, we will focus on the research works

published in the field of mechanisms and therapeutic effects of MSCs in

CNS regeneration.
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Introduction

Injuries and neurodegenerative diseases often bring about loss of neurons
and axonal damage to central nervous system (CNS). Neurons fail to regenerate
spontaneously in the mature mammalian CNS. Tremendous effort has been devoted to
recognizing the mechanism of CNS regenerative failure, yet a complete understanding
is still lacking. A broad spectrum of regeneration strategies, particularly by increasing
neuronal survival and axon re-extension, have been met with mixed success
(Varadarajan et al., 2022).

Mesenchymal stem cells (MSCs) are among the most widely studied multipotent
stem cells, which reside in multiple organs and can be derived from various tissues. Their
capability of differentiation into almost any end-stage lineage cells and strong paracrine
effects make MSCs a promising candidate for endogenous regeneration. Moreover, the
MSCs can be transplanted safely and effectively by systemic and local delivery route
(Liu et al., 2020). However, the choice of MSC source, including the bone marrow
(BM), adipose tissue (AT), and umbilical cord blood (UCB), is critical in determining
the therapeutic potential of MSCs (Bortolotti et al., 2015). To date, BM-MSCs and
AT-MSCs are the most extensively studied cell sources for CNS repair, because both
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of them showed similar neuronal differentiation potential
(Chung et al., 2013). BM-MSCs can differentiate into astrocytes,
neurons and Schwann cell like cells in the peripheral
nervous system (PNS) to promote neural regeneration (Tohill
and Terenghi, 2004). Meanwhile, some studies have shown
that AT-MSCs can secrete various kinds of growth factor,
such as brain-derived neurotrophic factor (BDNF), neural
growth factor (NGF), and glia cell-line derived neurotropic
factor (GDNF), which promotes neuron survival and axonal
regeneration (Villoslada et al., 2000; Blesch and Tuszynski, 2003;
Kerschensteiner et al., 2003). Compared to BM-MSCs, AT-
MSCs produced a significantly larger amount of cytokines and
growth factors, which mediate paracrine actions that promote
cellular survival pathways and tissue-repair mechanisms (Zhou
et al., 2013).

Numerous studies demonstrate that transplantation of
MSCs can regulate neuron growth and axon re-extension,
and ameliorate nervous system function after CNS injury
or degeneration. In this review, we discuss the therapeutic
effects of MSCs in CNS regeneration and the potential
involved mechanisms.

Immunomodulation effects of
mesenchymal stem cells

The anti-inflammatory effect of MSCs is mostly executed
via secretion of various enzymes and soluble factors and
their paracrine actions on T lymphocytes, including naïve
CD4+ T-cells, Th1 cells, Th2 Cells, Th17 Cells, CD4+ FoxP3+

Regulatory T-Cells (Tregs), and CD8+ T-cells (Mattar and
Bieback, 2015). They also have multiple anti-inflammatory
effects that include affecting the chemotactic properties of B cells
(Corcione et al., 2006), suppressing interleukin-2 (IL-2) induced
natural killer (NK) cell activation (Spaggiari et al., 2006),
downregulating NK-activating receptors (Yen et al., 2009), and
affect functions of myeloid cells such as monocytes (Jiang et al.,
2005), dendritic cells (Ramasamy et al., 2007), and macrophages
(Ylöstalo et al., 2012; Figure 1). MSCs modulate immune
cells by disrupting their activation, proliferation, maturation,
cytolytic activity, cytokine production, or antibody production
(Gao et al., 2016). The CNS and its barriers are replete with
innate and adaptive immune cells, which interact with glia in
diseases. Interactions between immune cells and glia have been
shown to perform critical roles in the regenerative capacity
of CNS (Greenhalgh et al., 2020). The effects of MSCs on
immune cells may participate in the interactions between
immune cells and glia, then influence the regeneration of
CNS.

Studies on microglia offer further insight into the role
of glia and the immune cells in the CNS regeneration since
microglia can be defined as both glia and immune cells
(Greenhalgh et al., 2020). A recent study has shown that

AT-MSCs are able to reprogram microglia/macrophage from
a pro-inflammatory M1 phenotype to an anti-inflammatory
M2 phenotype (Shao et al., 2020). Zhang et al. (2013)
observed that intravenous BM-MSCs transplantation in brain
was associated with a lower density of microglia/macrophages
and reduced levels of proinflammatory cytokines. Another
study that investigated the therapeutic effects of BM-MSCs
by systemic transplantation into traumatic brain injury (TBI)
model of rats found that MSCs reduced microglia and
increased neurogenesis (Kota et al., 2016). Besides, MSCs
derived exosomes inhibit microglia inflammatory in the
damaged regions in cerebral ischemia models (Zhao et al.,
2020).

Extensive data found that MSCs could secrete a variety
of soluble molecules include hepatocyte growth factor (HGF),
transforming growth factor-β1 (TGF-β1), indoleamine-pyrrole
2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), interleukin
(IL)-13, IL-10, IL-12p70, IL-17E, and IL-27 to exert anti-
inflammatory potential (Ryan et al., 2007; Ren et al.,
2008; Sobacchi et al., 2017). Human MSCs isolated from
BM, AT, dental pulp, Wharton’s jelly (WJ) and placenta
paracrine anti-inflammatory factors, such as TGF-β, to promote
neuroprotective effects (Ryan et al., 2007; Tomic et al., 2011;
Zhou et al., 2011; Carrillo-Galvez et al., 2015; Heo et al., 2016).
And the production of TGF-β by MSCs can be increased by
proinflammatory cytokines, substrate rigidity, glucose levels
and hypoxia (de Araujo Farias et al., 2018). On the other
hand, TGF-β has also been shown to signal via SMAD2/3
phosphorylation in MSCs to regulate the biology of MSCs
themselves (Choy and Derynck, 2003). By the ability to secrete
bioactive and trophic factors, MSCs exert a significant influence
on cellular regeneration and new tissue growth (Scuteri et al.,
2011).

Although all the MSCs share basic properties, there
are subtle differences among MSC types that may affect
their immunomodulation. A recent study that compared the
immunomodulatory effects of MSCs derived from BM, AT, and
WJ of the umbilical cord on T-lymphocytes by co-culture, found
that AT-MSCs showed the strongest effect on downregulating
CD38 expression on activated T-lymphocytes, whereas BM-
MSCs had the weakest effect (Najar et al., 2010). Meanwhile,
Ribeiro et al. (2013) found that AT-MSCs emerged as the most
immunosuppressive population, as hamper T-cell proliferation
by arresting them in the non-activated compartment. However,
another research demonstrated that AT-MSCs and BM-MSCs
showed equal ability to induce Th0 differentiation into Th1
and Th2 (Xishan et al., 2013). Meanwhile, in a mouse model
study, UCB derived MSCs and BM-MSCs showed a similar
inhibition of Th17 cells (Li et al., 2013). Although the precise
mechanism of these anti-inflammatory effects remains unclear,
current clinical trials show that intravenous administration of
MSC is a safe and effective treatment for immune disease (Li
et al., 2021).
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FIGURE 1

Schematic diagram of immunoregulatory properties of mesenchymal stem cells (MSCs).

Anti-apoptotic effects of
mesenchymal stem cells

An in vitro study showed that BM-MSC could modulate
neuronal and glial response to apoptosis in amyotrophic
lateral sclerosis (ALS) (Sun et al., 2013). Other studies also
demonstrated that intracerebral (Kim K. et al., 2015; Zhou et al.,
2016), intravenous (Wang et al., 2012; Chen et al., 2015), or
intracerebroventricular (Park W. S. et al., 2016) transplantation
of MSCs could ameliorate apoptosis of endogenous neural cells.
The infiltrated inflammation-associated immune cells released
numerous reactive oxygen species that led to programmed
cell death in the injured area. MSCs may suppress oxidative
stress and increase the anti-apoptotic Bcl-2 gene expression
in brain (Gu et al., 2014). Previous studies showed that
miRNA including miR-134 (Xiao et al., 2019), miR-138-5p
(Deng et al., 2019), miR132-3p (Pan et al., 2020), miR-21-
3p (Li et al., 2019), and miR-22-3p (Zhang et al., 2021) play
important roles in these MSCs mediated anti-apoptosis effects
in brain. miR-22-3p derived from AT-MSCs prevents neuron
apoptosis by inhibiting KDM6B mediated BMP2/BMF axis
(Zhang et al., 2021). These effects were abolished by inhibition
of miR-22-3p. After intravenous transplantation, AT-MSCs
inhibit neural apoptosis by reducing the abnormally high level
of miR-21-3p in middle cerebral artery occlusion rat models
(Li et al., 2019). It is demonstrated that miR-21-3p directly

inhibits the MAT2B expression in neural cells, and miR-21-
3p inhibition in neurons attenuated hypoxia/reoxygenation
induced impairments. Meanwhile, BM-MSCs deliver anti-
apoptotic miRNAs to protect oligodendrocytes, astrocytes, and
endothelial cells from apoptosis, which facilitate axon re-
extension (Deng et al., 2019; Xiao et al., 2019; Pan et al., 2020).

Axon re-extension effects of
mesenchymal stem cells

Axon regeneration after injury is defined as axon regrowth
and the subsequent innervation of injured region, resulting
in recovery of function to the CNS. Axon re-extension is
defined as axon lengthy regrowth that carry out de novo growth
over long distances to reach their targets. It has been widely
accepted that many extrinsic factors derived from the external
environment around damaged areas limit axonal re-extension,
such as chondroitin sulfate proteoglycan (CSPG) (Shen et al.,
2009), myelin-associated glycoprotein (MAG) (Hasegawa et al.,
2004), oligodendrocyte-myelin glycoprotein (von Büdingen
et al., 2015), and Nogo-A (Schwab and Strittmatter, 2014).
Preventing these inhibitory signals has been considered as a
promising approach to promote axon re-extension.

Mesenchymal stem cells have been demonstrated to help
neurites to overcome the inhibitory effects of Nogo-A, MAG,
and CSPG. In MSC/neuronal cocultures, MSCs promote spinal
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neuronal adhesion and neurite extension over Nogo-A and
MAG (Wright et al., 2014). miR17-92 derived from MSCs
overcome the inhibitory effect of CSPGs, when cultured
together (Zhang et al., 2017). In spinal cord injury (SCI) dogs,
induced using compression method, local transplanted AT-
MSCs prevent the accumulation of CSPG and enhance axonal
extension (Park et al., 2012). In addition to inhibiting of the
extrinsic factors, MSCs provides a favorable microenvironment
for re-establishment of functional local circuits with HGF,
epidermal growth factor (EGF), neurotrophin-3 (NT-3), and
GDNF (Bai et al., 2012; Lv et al., 2021).

The potential role of mesenchymal
stem cells in central nervous
system regeneration

Mesenchymal stem cells originate from BM, AT, UCB,
and synovium are capable of differentiation along mesodermal
lineages other than that of their tissue of origin, so they were
investigated mostly in clinical (Dawn and Bolli, 2005). MSC
expression of neuronal or astrocytic marker has been observed
in vitro (Fesharaki et al., 2018) and in vivo (Ma et al., 2018).
Meanwhile it is generally accepted that MSCs can secrete
several growth factors, such as BDNF, NGF, vascular endothelial
growth factor (VEGF), GDNF and insulin-like growth factor
1 (IGF-1), which can facilitate neurogenesis, and create a
favorable microenvironment for re-extension and remyelination
during reconstruction to play a crucial role in nourishing and
protecting neurons (Zhang et al., 2004; Vercelli et al., 2008;
Uccelli et al., 2011; Muto et al., 2012). So MSCs have been
widely studied and applied in regenerative medicine in nervous
system. In this section, we summarize reports concerning the
latest preclinical and clinical trials of various MSC types for
tissue engineering in CNS. In the area of CNS regeneration,
MSC based therapy mainly focuses on damage of CNS caused
by severe trauma and continuous ischemia and CNS dysfunction
caused by neurologic disease.

Spinal cord injury

Spinal cord injury results in immediate loss of nervous tissue
followed by permanent deficits in sensory and motor functions
below the injured spinal cord segment. The common promising
experimental therapies for SCI include neurotrophic factors,
enzymes and antibodies against inhibitory molecules, activated
macrophages, bridging scaffolds and stem cell transplantation.
The therapeutic approach differs depending on the stage after
SCI. Traumatic SCI can be divided into acute phase, subacute
phase, and chronic phase. The acute phase of SCI starts after
injury and persists for hours to days. The acute phase involves
the release of excitotoxicity, the breakdown of the blood-brain

barrier, localized edema, and accelerated apoptosis (Emery
et al., 1998). The chronic phase of SCI is associated with local
inflammation, apoptosis, and ongoing demyelination (Schwab
and Bartholdi, 1996; Fleming et al., 2006). Since most SCI
patients remains in chronic phase, this phase attracts the greatest
research interest among scientists and doctors. In animal
models of SCI, stem cell-based regenerative approach has been
demonstrated to elicit anatomical repair often accompanied by
functional recovery (Ritfeld et al., 2012; Forraz et al., 2013). Stem
cell-based regenerative medicine has become a new promising
therapeutic approach for treating SCI (Lv et al., 2021; Nakazaki
et al., 2021).

Mesenchymal stem cells have the potential to create a
reparative environment, which is the main motivation for
exploring MSCs for regenerative medicine in nervous system
(Yang et al., 2008; Caplan, 2009). In vivo experiments employing
different SCI models and various routes of MSCs administration
revealed significant functional recovery. After transplantation
of human WJ-MSCs into lesion site of complete spinal cord
transection rats, the numbers of regenerated axons in the
corticospinal trace and neurofilament positive fibers around
the lesion site were increased (Yang et al., 2008). It was also
reported that intraspinal grafting of rats BM-MSCs into the
construction injured spinal cord promotes axonal regrowth and
reduces the lesion volume (Gu et al., 2010). Meanwhile, MCSs
that overexpress some molecules, such as NT-3 (Stewart et al.,
2018), IL-10 (Gao et al., 2022), IL-13 (Dooley et al., 2016), and
hemeoxygenase-1 (Khan et al., 2019), can elicit improved axon
regeneration and promote motor functional recovery in SCI
models.

Since AT-MSCs produced a significantly larger number of
cytokines and growth factors than BM-MSCs, some publications
suggest AT-MSCs to be an alternative to BM-MSCs for the
cellular therapy of SCI (Forostyak et al., 2013). However,
while AT-MSCs have been evaluated in animal SCI models,
there remains a paucity of large and longitudinal clinical
trials. The obstacles for clinical translation of MSCs are
the low engraftment and poor survival (Qin and Zhao,
2020), and whether the MSCs can really provide benefit to
patients (Staff et al., 2019). El-Kheir et al. (2014) conducted
a phase I/II controlled single-blind clinical trial, in which
SCI patients received an intrathecal injection of autologous
BM-MSC combined with physical therapy showed functional
improvements and no long-term cell therapy related side
effects over patients received physical therapy alone. Vaquero
et al. conducted a phase I, single center, non-randomized,
uncontrolled clinical trial in span (NCT02165904). This
study evaluated the effects and safety of the subarachnoid
transplantation of autologous BM-MSC in patients with chronic
SCI reported that most patients showed sensitivity improvement
using American Spinal Injury Association score, and BM-MSC
was associated with bronchitis in one patient.
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Cerebral ischemia

Ischemic stroke induces an extensive neuro-inflammatory
response, which seems to be responsible for the propagation
of brain damage. However, experimental therapies aimed
at reducing immunological reactions after ischemic stroke
using cell inhibitors or mediators have not been successful.
In this situation, new therapeutic strategies using stem cells
have emerged as a promising tool. The most frequently
used stem cells are the MSCs, because of their great trophic
capabilities (Laso-Garcia et al., 2019). The possible mechanisms
involved in potential therapeutic activity of MSCs including
neuroprotection, immunomodulation, and activation of
neurogenesis, synaptogenesis, astrogenesis, oligodendrogenesis,
and angiogenesis in stroke (Dabrowska et al., 2019). Current
research suggests that the beneficial effects exerted by MSCs
are mainly related to differentiation and immune modulatory
mechanism (Zachar et al., 2016).

Chen et al. (2001) reported that BM-MSC transplanted rats
showed significant recovery in somatosensory behavior and
neurological severity score after cerebral ischemia. Rat WJ-
MSCs were shown to have a protective action when transplanted
3 days before a cardiac arrest induced global ischemia by
an extracellular signaling mechanism (Jomura et al., 2007).
This recovery was accompanied by a decrease in inflammatory
reaction after global ischemia. When transplanted with human
UCB-MSCs, cerebral ischemia animals presented reduced lesion
size and higher extent of vascularization in ischemic areas.
Meanwhile, the expression of SDF-1, BDNF, and GNF was
higher in ischemic tissues following MSCs treatment (Ding
et al., 2007). The authors of a 2018 meta-analysis concluded,
“in preclinical studies, Median quality score 4.90/10; confidence
interval 95% and large effect size were observed, that strongly
supports the translation potential of MSCs therapy for ischemic
stroke (Sarmah et al., 2018).”

In a non-randomized small trial with BM-MSCs, the
authors found improvements in clinical outcome (European
Stroke Scale, National Institutes of Health Stroke Scale, and
Fugl-Meyer total score) with stroke patients (Steinberg et al.,
2016). Meanwhile Levy et al. (2019) reported that intravenous
transfusion of allogenetic MSCs in patients with chronic stroke
suggested behavioral gains in a randomized, placebo-controlled
study. Another phase 1 clinical trial also demonstrated the
safeness of intravenous BM-MSCs use for cerebral ischemia in
human (Vahidy et al., 2019). However, all the clinical trials were
small trials, so their results should be taken with caution.

Neurodegenerative diseases

The increasing prevalence of CNS disorders has been
attributed to neurodegenerative diseases including Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease

(HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis
(MS), and multiple system atrophy (MSA) (Przedborski
et al., 2003). A common characteristic among such disorders
is progressive neuronal death that leads to debilitating
neurologic impairments. Although our understanding
of the neurodegenerative disease pathology has been
improved these years, a precise and reliable treatment has
not been accomplished. Current common treatments just
relieve symptoms without affecting the major pathological
characteristics of these diseases. MSCs hold great potential for
cell therapy as they can differentiate toward neural fates and
secrete a broad range of factors, which are able to promote
neuroprotective or regenerative mechanisms. Moreover, upon
transplantation, MSCs possess the capability to home toward
neural lesions, implying their potential use as vehicles for
therapeutic agents administration (Volkman and Offen, 2017).

Mesenchymal stem cells transplantation often
improved survival rates, declined pathology, and rescued
cognitive function decline in multiple rodent models of
neurodegenerative diseases (Volkman and Offen, 2017).
Preclinical studies found that MSCs from BM (Babaei et al.,
2012), AT (Kim et al., 2012), UCB (Lee H. J. et al., 2012),
and the placenta (Yun et al., 2013) have the ability to regulate
amyloid pathology through neuroinflammation, which plays
a crucial role in the progression of several neurodegenerative
diseases. Bayat et al. (2021) demonstrated that intracerebral
transplantation of human olfactory ecto derived MSCs could
promote behavioral and anatomical recovery in a HD rat
model. Study on conditioned medium of human amniotic
membrane derived MSCs found that intraperitoneally injection
of this conditioned medium could significantly decrease
microglia activation in the R6/2 HD mouse model (Giampa
et al., 2019). It is also demonstrated that human UCB-
MSCs decreased secretion levels of the proinflammatory
cytokines TNF-α and IL-1β, and increased level of the anti-
inflammatory markers of IL-4, AMCase, YM-1, and Arg-1 in
an AD mouse model (Lee H. J. et al., 2012). Following work
showed that human BM-MSCs promote secretion of IL-4
from microglia cells and stimulated α-synuclein clearance
in a PD mouse model (Park H. J. et al., 2016). Fontanilla
et al. (2015) found that NGF might be responsible for the
effects of AT-MSCs in SOD1 G93A mice, defined as the
preservation of motor neurons and inflammatory pathway
inhibition. To enhance their typical trophic support, MSCs
have been genetically engineered to overexpress neurotropic
factors, such as NGF, BDNF, and GDNF, whose neuroprotective
actions are widely acknowledged (Lo Furno et al., 2018).
Meanwhile, BDNF engineered MSCs have been considered
for studies of regeneration in ALS, AD, PD, and HD, and
even in SCI, TBI, and peripheral nerve injury (Deng et al.,
2016).

Clinical studies indicated MSC-based therapy as a safe and
feasible technique for patients with AD (Kim H. J. et al., 2015),
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PD (Venkatesh and Sen, 2017), ALS (Sykova et al., 2017), and
MSA (Lee P. H. et al., 2012). Since preclinical and clinical studies
have demonstrated the effectiveness of MSCs for the treatment
of neurodegenerative disease, many researches begin to focus on
the method to enhance the effects.

Other central nervous system disease

Although the clinical application of MSCs therapy in CNS
disease currently remains infancy, MSCs research has rapidly
expanded over the past decade. Besides neurodegenerative
diseases, cerebral ischemia, and SCI, numerous animal
model studies have also demonstrated the effects of MSCs in
epilepsy (Agadi and Shetty, 2015). BM-MSCs can reduce
epileptogenesis by inhibiting neuronal cell death and
suppressing aberrant mossy fiber sprouting in a rat model
of epilepsy (Fukumura et al., 2018). UCB-MSCs might enhance
GABA neurotransmitter levels and ameliorate oxidative stress
damage in pentylenetetrazole-induced chronic epilepsy in
rats (Mohammed et al., 2014). Moreover, in a phase 1 open
label study, MSCs can be a safe and promising candidate for
cell therapy in anti-epileptic drugs resistant epilepsy patients
(Hlebokazov et al., 2017). To improve the therapeutic effect
of MSCs in a mouse model of epilepsy, genetically engineered
MSCs, such as IL-13 engineered MSCs, which showed enhanced
neuroprotective and disease-modifying effects, has been used
(Ali et al., 2017).

Approaches to enhance therapeutic
effects of mesenchymal stem cells

Although MSCs represent a promising candidate for CNS
regeneration, low therapeutic efficacy limits their clinical use.
Different culture conditions may result in altered survival,
homing, and key functional features of MSCs. Madrigal et al.
(2014) found that cell culture under hypoxic conditions has
potential effects on MSCs therapeutic property by increasing the
secretion of HGF, TGF-b, VEGF, TSG-6, which is important in
CNS regeneration. Others demonstrated that pro-inflammatory
stimuli and tri-dimensional growth stimulate trophic factors
secretion of MSCs (Vizoso et al., 2017). It is evident that
culture conditions will considerably affect the therapeutic
efficacy of MSCs. Apart from culture medium, developed
therapeutic strategies may also enhance therapeutic effects
of MSCs such as delivery route and timing. Although there
is no consensus on the optimum delivery route of MSCs,
intracerebroventricular transplantation may be the most
efficacious. By reviewing previous pre-clinical and clinical
studies, Park et al. (2018) found that intracerebroventricular
transplantation of MSCs may be associated with enhancement
of endogenous, compared to intravenous and intraparenchymal

routes for CNS regeneration. The intracerebroventricular
transplanted MSCs attenuated brain injury in a time-dependent
manner. Significant neuroprotection was demonstrated
when administered from 2 to 7 days after induction in
intraventricular hemorrhage rat models (Park H. J. et al.,
2016).

Conclusion

Mounting evidence suggests that MSCs can be a potential
therapy to promote CNS regeneration and functional
restoration. The therapeutic role of MSCs is extremely complex.
Demonstrating their exact interaction with other cells during
neuronal survival, axon re-extension, synapse re-formation,
and re-myelination may help researchers to optimize the effects
of MSCs based therapies. Optimal conditioned culture, delivery
route, and timing of MSCs may be a promising strategy to
improve therapeutic effects. In conclusion, study MSCs in CNS
provides insight into the exact mechanism of CNS regeneration
and repair, helps optimize cell based therapy.
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