AUTHOR=Tyson Terence L. , Flynn-Evans Erin E. , Stone Leland S. TITLE=Differential saccade-pursuit coordination under sleep loss and low-dose alcohol JOURNAL=Frontiers in Neuroscience VOLUME=16 YEAR=2023 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1067722 DOI=10.3389/fnins.2022.1067722 ISSN=1662-453X ABSTRACT=Introduction

Ocular tracking of a moving object requires tight coordination between smooth pursuit and saccadic eye movements. Normally, pursuit drives gaze velocity to closely match target velocity, with residual position offsets corrected by catch-up saccades. However, how/if common stressors affect this coordination is largely unknown. This study seeks to elucidate the effects of acute and chronic sleep loss, and low-dose alcohol, on saccade-pursuit coordination, as well as that of caffeine.

Methods

We used an ocular tracking paradigm to assess three metrics of tracking (pursuit gain, saccade rate, saccade amplitude) and to compute “ground lost” (from reductions in steady-state pursuit gain) and “ground recouped” (from increases in steady-state saccade rate and/or amplitude). We emphasize that these are measures of relative changes in positional offsets, and not absolute offset from the fovea.

Results

Under low-dose alcohol and acute sleep loss, ground lost was similarly large. However, under the former, it was nearly completely recouped by saccades, whereas under the latter, compensation was at best partial. Under chronic sleep restriction and acute sleep loss with a caffeine countermeasure, the pursuit deficit was dramatically smaller, yet saccadic behavior remained altered from baseline. In particular, saccadic rate remained significantly elevated, despite the fact that ground lost was minimal.

Discussion

This constellation of findings demonstrates differential impacts on saccade-pursuit coordination with low-dose alcohol impacting only pursuit, likely through extrastriate cortical pathways, while acute sleep loss not only disrupts pursuit but also undermines saccadic compensation, likely through midbrain/brainstem pathways. Furthermore, while chronic sleep loss and caffeine-mitigated acute sleep loss show little residual pursuit deficit, consistent with uncompromised cortical visual processing, they nonetheless show an elevated saccade rate, suggesting residual midbrain and/or brainstem impacts.