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Introduction: Intracranial EEG (iEEG) data is a powerful way to map brain

function, characterized by high temporal and spatial resolution, allowing the

study of interactions among neuronal populations that orchestrate cognitive

processing. However, the statistical inference and analysis of brain networks

using iEEG data faces many challenges related to its sparse brain coverage,

and its inhomogeneity across patients.

Methods: We review these challenges and develop a methodological

pipeline for estimation of network structure not obtainable from any single

patient, illustrated on the inference of the interaction among visual streams

using a dataset of 27 human iEEG recordings from a visual experiment

employing visual scene stimuli. 100 ms sliding window and multiple band-

pass filtered signals are used to provide temporal and spectral resolution. For

the connectivity analysis we showcase two connectivity measures reflecting

di�erent types of interaction between regions of interest (ROI): Phase Locking

Value as a symmetric measure of synchrony, and Directed Transfer Function—

asymmetric measure describing causal interaction. For each two channels,

initial uncorrected significance testing at p < 0.05 for every time-frequency

point is carried out by comparison of the data-derived connectivity to a

baseline surrogate-based null distribution, providing a binary time-frequency

connectivity map. For each ROI pair, a connectivity density map is obtained by

averaging across all pairs of channels spanning them, e�ectively agglomerating

data across relevant channels and subjects. Finally, the di�erence of the mean

map value after and before the stimulation is compared to the same statistic in

surrogate data to assess link significance.

Results: The analysis confirmed the function of the parieto-medial temporal

pathway, mediating visuospatial information between dorsal and ventral visual

streams during visual scene analysis. Moreover, we observed the anterior

hippocampal connectivity with more posterior areas in the medial temporal

lobe, and found the reciprocal information flow between early processing

areas and medial place area.

Discussion: To summarize, we developed an approach for estimating network

connectivity, dealing with the challenge of sparse individual coverage of

intracranial EEG electrodes. Its application provided new insights into the

interaction between the dorsal and ventral visual streams, one of the iconic

dualities in human cognition.

KEYWORDS

connectivity analysis, Phase Locking Value, Directed Transfer Function, intracranial
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1. Introduction

Brain network dynamics give rise to the unique ability of

(human) brain to carry out complex processing of external

inputs and control complex behavioral outputs. To better

understand the structure and dynamics of these networks, the

tools of network neuroscience (Bullmore and Sporns, 2009) are

being extensively developed and applied, ranging from efficient

data acquisition and preprocessing to estimation and further

analysis of brain connectivity networks. Multiple methods are

available for neuroscientists to gain various types of insight into

brain connectivity. Structural imaging, in particular diffusion

weighted magnetic resonance imaging allows the estimation

of the structural connectivity of the human brain using the

methods of tractography, while various methods of functional

brain imaging, including in particular the functional magnetic

resonance imaging (fMRI) and electroencephalography (EEG),

enable the estimation of the patterns of statistical dependencies

between remote neurophysiological events, known as the

functional connectivity (Friston et al., 1993). While the

functional connectivity provides in principle only information

that the activity of some brain areas is related, a whole

plethora of advanced methods for the estimation of the

directed, cause-effect relationships between brain areas has been

developed, commonly summarized under the term effective

connectivity (Friston, 1994).

Inferring the effective connectivity can be seen as providing

the ultimate answer to the question of information flows in

the brain, however effective connectivity estimation is hindered

by a range of technical challenges. Successfully tackling these

challenges would provide an appropriate causal description of

the brain network, that would lend itself to further processing

using the tools of complex network theory.

In this work, we discuss a range of such challenges and

possible solutions, presenting an analysis of a particularly

problematic dataset using a pipeline implementing a specific

combination of solutions. Note that a combinatorial explosion

of the number of possible pipelines makes a comparison of

all alternatives not feasible—thus the presentation serves as an

example rather than a comparison of all tools available. The

challenging task that we select for the demonstration is the

estimation of causal network from intracranial EEG (iEEG).

Intracranial EEG recording as such is a powerful tool for

the discovery of brain function. This type of measurement is

characterized by both high temporal and spatial resolution,

a combination which is impossible for other, non-invasive,

neuroimaging techniques. However, the analysis of the iEEG

data faces a set of challenges mainly because of in-homogeneous

and spatially sparse data acquisition - the measurement sites,

corresponding to the implanted electrodes, are few and far

between, thus not covering all the areas of interest in any one

particular subject. Moreover, the positioning of the implantation

differs widely between subjects, thus complicating a group-level

analysis. In our paper, we develop the methodological pipeline

for estimation of such group network structure, that can’t be

estimated from any single patient. As an example, we show the

connectivity analysis of the visual processing streams.

1.1. Visual streams conundrum

Large body of evidence suggests that visual information

is processed in the brain in two separate streams originating

from the visual cortex: the dorsal and ventral streams in

parietal and temporal lobes respectively. These streams were

originally characterized in terms of the “where” and “what”

distinction (Ungerleider andMishkin, 1982), suggesting the role

of the dorsal stream in spatial position and motion coding and

of the ventral stream in object identity coding. Examination of

patients suffering visual agnosia after bilateral ventral lesions,

like D.F., in combination with their unimpaired spatial-motoric

abilities lead to an alternativemodel (Goodale andMilner, 1992).

In this model, characterized as “how” and “what” model, the

dorsal and ventral streams are distinguished not by the type

of information processed, but by the results of their visual

processing, which is motoric action or conscious perception.

According to this view, the dorsal stream processes the visual

information to enable movements in space like grasping an

object, while the ventral stream processes the same information

for perception of objects, their identity and also their spatial

relationship. Several brain areas in the ventral stream are

specialized for recognition of various classes of visual percepts.

For instance, damage to an area in lingual gyrus leads to

landmark agnosia (Aguirre and D’Esposito, 1999) and a more

anterior parahippocampal place area (PPA) in the posterior

parahippocampal/anterior lingual region is one of the brain

regions specifically responding to spatial scenes (Epstein and

Kanwisher, 1998).

In contrast to the well established role of ventral stream,

there are still controversies regarding the dorsal stream function

and its connections with the ventral stream. The dorsal stream

actually seems to divide into three parallel pathways serving

different functions. Themost ventral of them, the parieto-medial

temporal pathway, has been associated with spatial information

transfer from dorsal to ventral stream. The existence of this

pathway was suggested based on monkey and human brain

anatomy (Kravitz et al., 2011) and is also supported by human

resting-state functional connectivity (Boccia et al., 2017). Its

functional properties have been suggested based on the role of

the included structures like retrosplenial cortex (Byrne et al.,

2007). Besides this pathway, the dorsal and ventral streams

seem to be interconnected several times, with the dorsal stream

providing attention focus and spatial information (Cloutman,

2013). On the other hand, the occipito-temporal cortex in the

ventral stream seems to provide object identity information to

the dorsal stream as was only indirectly suggested from a human
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fMRI experiment (Kristensen et al., 2016). Direct evidence

about these connections and their functional role is however

still scarce.

2. Causal network inference

Many challenges of causal network inference are generic and

relevant irrespective of themethod used to obtain the time series.

For instance, in principle, any estimation method is negatively

affected by the presence of measurement noise and estimation

from only short observations, issues present to various extent

in all neuroimaging methods. Indeed, standard methods such as

the common linear implementation of Granger causal analysis,

that rely on assumptions concerning the underlying process

(namely, that it is a stationary linear autoregressive process),

may provide relative advantage in sensitivity for short time

series. This advantage against nonlinear methods with less or no

assumptions may be practically relevant even for systems that,

in principle, have nonlinear character—such as the brain or the

Earth’s climate (Hlinka et al., 2013).

However, the character of neuroimaging data poses

additional challenges beyond its nonlinearity, ranging from

some very general to those quite specific to iEEG data. A

first commonly faced challenge is the multivariate, rather than

bivariate, character of the data. Indeed, in principle one can

estimate the causal interactions separately for each pair of

variables. The downside of such straightforward approach is the

computational demands, but more importantly, the fact that the

estimated interaction between any pair of variables might be

confounded by not accounting for the effect of other variables

in the role of mediators or common drivers. If one believes

that the other variables observed may play such a role, it is

advantageous to fit a joint multivariate model that takes (all)

these variables into account. Of course, such a model has a large

number of parameters, and might thus call for even longer time

series samples, and pose additional computational problems,

particularly when nonparametric methods, such as conditional

mutual information, are in use. Then, an alternative approach

lies in the stepwise inference of a smaller set of causally relevant

“parent” variables for each target variables—see Kořenek and

Hlinka (2020) for a systematic comparison of a set of such

state-of-art methods.

A second challenge lies in the nonlinear character of

the brain dynamics, which calls for the application of

nonlinear, potential nonparametric methods, such as the

conditional mutual information. However, a range of prior

studies have shown, that the nonlinear/nongaussian character

of neuroimaging data may be relatively weak, and thus the

use of linear methods might be justified in terms of the

trade-off between the lost information and higher speed

and general reliability of linear approaches—see a discussion

for fMRI (Hartman et al., 2011; Hlinka et al., 2011) and

electroencephalography (Blinowska and Malinowski, 1991).

Therefore, the choice of linear methods is generally suitable.

A third aspect that must be considered with brain signals,

particularly with EEG, is that the dynamics and interactions

take place across a range of time scales. In fact, specific EEG

activity frequencies have been shown to be related to specific

types of cognitive or arousal states. Therefore, the use of

frequency-specific estimates of causal interactions is common.

The downside of this approach is that the inferred object further

increases dimension—causality is resolved not only across all

pairs of observed channel signals, but also across frequencies.

We shall discuss the consequences of this aspect for overall

statistical inference later.

Albeit the multivariate character of the observed data

allows (and calls for) taking into account indirect causality

mediated/driven by any of the observed variables, the effect of

any other, directly unobserved, variables is not accounted for

in our methodology, and this omission may lead to inference

of spurious causal links. It is important to highlight that this

is a generic effect that affects most of the available methods for

causal inference. While some methods have been proposed to

suppress the effect of such unobserved (latent) variables (such

as those based on the utilization of time reversal Haufe et al.,

2012; Winkler et al., 2016), their assumptions are not universally

fulfilled, and particularly in multivariate setting can lead to

wrong conclusions (Korenek and Hlinka, 2021). Although other

methods are available that attempt to suppress the effect of

latent variables and non-neuronal interactions, such as the

volume conduction in tissue, the problem is far from ultimately

solved, and one should always interpret the results of causal

analysis with caution in terms of the potential role of any latent

intervening variables.

Another complication, which is not entirely specific, but

quite common in EEG analysis, is that the systems is deemed

to be substantially nonstationary, and thus the structure of

causal interactions may meaningfully change in time. A typical

engineering solution to such situation is to estimate the causal

structure using a (potentially overlapping) sliding window for

a sequence of time periods. Note that an alternative exists in

using variants of Kalman filtering (Kalman, 1960)—this avoids

the problem of selecting the window parameters; however still

requires selection of other intrinsic parameters.

The requirement of obtaining time resolved causality leads

to estimation from short time series; to compensate for the

loss of sample size, in the case of task-based iEEG, one may

typically utilize data across many trials for the estimation of

the parameters of the underlying vector autoregressive process.

The consequence of this is that only a single estimated causal

structure is estimated across all trials. The trial dimension

can not be thus used in straightforward way further statistical

assessment of the inferred causal links, i.e., by evaluating

the distribution across trials with respect to the posited

null hypotheses. However, alternative ways for establishing
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empirical null distribution are available, as discussed below,

that are based on the use of bootstrapping, surrogate data or

permutation testing.

Indeed, the evaluation of the statistical significance of causal

analysis results obtained by most methods of causal inference

relies on some construction of empirical null distribution of

selected test statistics. The distribution of the causal indices

under the hypothesis of no interaction is, however, in most cases

not known analytically, see e.g., the approach of surrogate testing

proposed in Kaminski et al. (2001).

Note that with task-based electrophysiology data, we might

not necessarily focus on the structure of causal interactions per

se, but on the deviation of the structure from the resting baseline.

The rationale is two-fold. First, it can be reasonably expected

that in the resting state, most parts of brain are functionally

connected and the change in the task scenario might contribute

only (potentially minor) alteration to this ongoing process of

interactions (Biswal et al., 2010). Second, due to the latent

variables as well as technical confounds and volume conduction,

the causal structure estimated in task is expected to be biased

toward detecting a range of spurious interactions. However,

the same set of spurious sources are to affect the estimate of

interactions outside the task condition of interest. Therefore,

some form of correction for these effects by subtraction or

comparison with respect to the baseline estimate of causal

structure may be warranted to identify the causal interactions

specific to the task condition of interest.

A specific problem mentioned earlier is the high

dimensionality of the estimated object. In particular, the

causal interaction is estimated between any two channels

(taking all other channels into account), for each frequency and

time window. Even with a valid statistical significance test, such

situation invites a multitude of false positive results due to the

multiple testing problem involved. Indeed, one may attempt to

apply one of the methods for multiple testing correction, that

controls the family-wise error rate (FWE), or, as a less strict

option, the false discovery rate (FDR) (see Hochberg 1988;

Benjamini and Hochberg 1995). However, the application of

these methods may decrease the overall statistical power, lead to

false negatives and also create extreme computational demand,

as p-value estimates with high precision call for the generation

of high number of permutations/surrogates to generate the

null distributions. A potential solution to this problem lies

in some dimension reduction of the test statistics prior to its

statistical evaluation.

Finally, there are challenges that are highly specific to the

iEEG data. In particular, each subject has their own set of

implanted electrode locations at different brain positions, that is

moreover extremely sparse and inhomogeneous. How can one in

such a situation reliably estimate the structure of brain network

interactions across the whole group of subjects? A reasonable

solution seems to be to (at least temporarily) sacrifice some of

the spatial resolution (that is anyway somehow artificial with

only sparse coverage), and aggregate the data within pre-defined

generic brain regions. Note that the data can, with advantage, be

aggregated (by averaging or with another approach) also later in

the processing, such as at the level of connections, rather than

already at the level of the measured signals.

Note that for task activation data, such as evoked potentials,

an alternative approach would be to merge all the channels

into one joint dataset, to obtain a single “super-subject,” while

ignoring that the channels actually come from different subjects.

However, in case of analysis of connectivity this approach is not

directly applicable, because the analysis of connectivity between

channels from different subjects might be detrimentally affected

by the lack of synchronization of processes across subjects.

Also, for some purposes, the interpretation of the brain network

calls for some coarse-graining to the level of reproducible and

interpretable brain regions, and thus rendering detailed info on

individual channels not necessary.

The collating the brain connections into generic region pairs

can in principle entail both integrating the data within subjects,

as well as across subjects. Given the heterogeneous sampling

over space and subjects, different regions pairs will have

contributions from different number of channels across different

subjects. Together with additional problem of dependence

between channels (and channels pairs) within subjects, this

poses another problem of statistical inference concerning the

connections observed at the inter-regional level. We believe

that the solution to this challenge lies in the construction of

a surrogate data that respects the within-subject channel-pair

dependence as well the contribution of particular subjects to the

particular region connections. Note that an alternative solution

has also been applied in the literature, that aimed for analysis of

only those pairs of regions, that are sampled (at least by a single

pair of channels) in some minimal number of subjects, that

allows statistical inference across subjects (of some subject-level

test statistics, typically obtained by summing/averaging within

subject) (see, for example, Burke et al., 2013, 2014; Bastin et al.,

2017).

Below, we develop a pipeline for the analysis of the

interaction of the two cortical visual processing streams, applied

to a recorded iEEG task-based dataset used by Vlcek et al. (2020).

In this analysis, we illustrate the considerations outlined above,

that need to be taken into account while analyzing the causal

structure of such complex neuroimaging datasets.

3. Data

The current study used a dataset including 27 patients,

who voluntarily participated in a visual recognition experiment,

as described by Vlcek et al. (2020). All patients had normal

or corrected to normal vision. This study was approved by

the Ethics Committee of Motol University Hospital and all

patients gave their informed consent to participate. Intracranial
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EEG was recorded in the Motol Epilepsy Center in Prague

in pharmacoresistant epilepsy patients using depth platinum

electrodes (DixiMedical), designed for local field potential (LFP)

recordings. Electrodes were 0.8 mm in diameter, with 5–18

contacts of 2 mm length, separated by insulator segments of

1.5 mm length. Up to 128 contacts were recorded based on the

medical requirements. Wideband signals (0.05–512 Hz) were

recorded with a sample rate of 512, 2, 048, or 8, 000 Hz, and

later subsampled to 512 Hz. All contacts were localized in the

standard Montreal Neurological Institute (MNI) space.

Because the implantation is decided by clinical

requirements, it naturally includes many areas not involved

in visual processing. Thus, to limit computational costs and

improve statistical power, only those channels with significant

responses to demonstrated pictures were analyzed (see Vlcek

et al., 2020 for statistical analysis details). Moreover, for the

purposes of connectivity analysis, only those subjects, who had

implanted at least two of the initially defined seven regions

of interest (ROIs) relevant for the cognitive tasks studied

(described in Section 4), were included in the analysis. This

provided a subset of 15 subjects, the data of which were included

in the final analysis (8 women, median age 30 years, range 17–48

years, education level: 1 primary school, 11 secondary school,

and 3 college-level education).

Each time series was normalized by the baseline standard

deviation. As described in Vlcek et al. (2020), from the EEG

recording of the whole experiment, bipolar derivations were

computed between adjacent electrode contacts to suppress

contributions from distant neuronal assemblies and further

assumed that the bipolar EEG signals can be considered as

originating from a cortical volume centered between the two

contacts. Thus, any two contacts adjacent spatially on the same

implanted electrode, after omission of rejected contacts, were

used to define a bipolar channel by subtracting their signals.

We refer to the bipolar contact pairs further as “channels.” To

eliminate the non-stationarity of the time series in the sense of

turning the signal to wide-sense stationary, we computed the

differences in time, i.e., from the signal yt we computed y′t =

yt − yt−1 (Barnett and Seth, 2014). The wide-sense stationarity

requires the mean and variance of the signal not to vary

with the time, which typically does not hold for iEEG signals.

The differencing has the effect of de-trending and stabilizing

the data, and the first-order differencing is often sufficiently

suppressing slow trends, although of course not guaranteeing

perfect stationarity. For the details, please see Seth (2010).

3.1. Visual experiment

During the visual recognition experiment, four categories of

pictures were demonstrated to the participants on a computer

screen: scenes, small objects of daily life, faces, and finally

a control category of edibles (fruits or vegetables). Images

of the last category were used to control for a potential

attention decrease—subjects were instructed to press a button

every time they see a picture of this category. In the case

of scenes, faces and objects no action was expected from the

participants, button presses for these categories were considered

an error.

Each of the categories of interest (scenes, objects, faces)

included 100 different pictures. Each of these was shown in

two different trials, giving the total of 200 trials per category,

in pseudo-random order. The number of different pictures of

edibles (fruits/vegetables) was 25, each being shown twice giving

rise to 50 trials in total. Stimuli were presented for 300 ms, each

followed by 800 ms of a black screen with a white cross in the

center. For the analysis, the data were cut so that every trial

had 200 ms of baseline (the black screen before the stimulus

demonstration), 300 ms of picture demonstration, and 500ms

of the following black screen. Trials with fruits/vegetables, as

well as with button presses by mistake were excluded from the

analysis. Also, trials with epileptogenic activity were excluded. A

detailed description of stimuli, the task and the procedure used

for removing the data with epileptogenic activity can be found

in Vlcek et al. (2020).

3.2. ROI definitions

A previous study on the same dataset (Vlcek et al., 2020) has

defined 7 clusters of channels that were of particular interest as

they have shown a stronger reaction to the visual stimulation

by scenes than by objects. These thus define effective regions of

interest (ROIs), the connectivity among which we shall attempt

to establish.

However, connectivity analysis on that subset of channels

might be too restrictive because of the limited coverage of the

visual pathways and consequently a relatively small amount of

edges that could be tested. Therefore, we extended the dataset

with all the channels that reacted to any type of stimuli, and

lied close to the previously defined clusters. In particular, we

constructed a 3D convex hull of every cluster; and extended

every hull to 0.5–4.5 mm such that corresponding regions

have more uniform volumes. Those increased convex hulls

then defined, which channel belong to which ROI. Number

of channels from implanted electrodes per ROI can be found

in Table 1; their position within a brain template is shown in

Figure 1. Note that we didn’t distinguish the hemispheres, i.e.,

we consider every ROI symmetric, laying in both hemispheres.

The centroids of these clusters were localized in the

following structures:

1. OPA - the posterior angular and middle occipital gyrus (MNI

[38, –76, 24], Occipital Place Area),

2. pLG - the posterior collateral sulcus at the junction with the

lingual sulcus (MNI [25, –72, –8]),
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TABLE 1 Number of available channels per ROI for analyzed subjects.

Subject ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 Total

Subject 1 - - 2 1 - 3 - 6

Subject 2 - - 2 1 - - - 3

Subject 3 - - - 2 - - 6 8

Subject 4 - 1 1 - - 2 - 4

Subject 5 - - 7 1 - - 1 9

Subject 6 - 5 - - - - 1 6

Subject 7 2 2 - - - 4 - 8

Subject 8 - - - 4 - - 4 8

Subject 9 - - - 3 - - 1 4

Subject 10 1 - - - 1 - - 2

Subject 11 - - 1 3 - 1 - 5

Subject 12 6 - - - 6 - - 12

Subject 13 - - 3 2 - - 3 8

Subject 14 4 - - - 3 - - 7

Subject 15 - - 2 - - - 1 3

Total 8 18 17 10 10 17 93

3. PPA - the lingual and fusiform gyrus along the middle

collateral sulcus (MNI [30, –45, –7]], Parahippocampal Place

Area),

4. aCOS - the parahippocampal and fusiform gyrus along the

anterior collateral sulcus (MNI [32, –26, –22]),

5. PCUN - the precuneus (MNI [15, –61, 27],

6. MPA - the superior part of the lingual gyrus and precuneus

next to the retrosplenial region (MNI [16, –53, 12], Medial

Place Area),

7. HIP - the anterior hippocampus (MNI [25, –12, –20]).

4. Hypothesis

For the purpose of our current analysis, we developed

a hypothesis about the connectivity between seven ROIs

(Figure 2), based on our previous iEEG study (Vlcek et al.,

2020) and other electrophysiological and anatomical published

results (Cavanna and Trimble, 2006; Byrne et al., 2007; Kravitz

et al., 2011; Bastin et al., 2013; Baldassano et al., 2016;

Boccia et al., 2017; Epstein and Baker, 2019; Henriksson

et al., 2019). First, the visual cortex areas project to parieto-

occipital areas such as the Occipital Place Area (OPA, ROI 1)

around the transverse occipital sulcus (Kravitz et al., 2011).

The documented responses as early as 60 ms after scene

presentation (Henriksson et al., 2019) support its position early

in the visual scene analysis network. As our data sample did

not contain any channels located in primary visual cortex, we

considered the OPA to be the entry point of the studied network

of 7 regions.

Second, the OPA is functionally connected with the

Parahippocampal Place Area (PPA, ROI 3) in the posterior

temporal cortex (mainly its posterior part Baldassano et al.,

2016). Several studies documented an early scene selectivity

in the PPA at around 150–200 ms (Bastin et al., 2013; Vlcek

et al., 2020). Based on the results of Vlcek et al. (2020), we

distinguished another early scene selective area in the lingual

gyrus (pLG, ROI 2). Because of its large selective responses to

scenes but a lack of published information about its role in scene

analysis, we located it in our hypothetical network in parallel

to the PPA area. Therefore, both PPA (ROI 3) and pLG (ROI

2) are hypothesized to receive input from ROI 1, with unclear

interaction between ROI 2 and 3.

Next, the resting state fMRI data suggest the PPA area

connects with more anterior temporal regions including the

anterior hippocampus (ROI 7) (Boccia et al., 2017). In our

previous study (Vlcek et al., 2020), we documented late anterior

hippocampal scene selectivity starting at around 300–350 ms

and even earlier responses at about 200–250 ms around anterior

collateral sulcus, which is positioned anatomically between the

PPA and hippocampus. We added this region, located between

ROI 3 and 7, as ROI 4.

Previously, we documented the scene selectivity also in

the dorsal visual stream. In the posterior precuneus, the scene

selectivity appeared around 200–250 ms (Vlcek et al., 2020),

which is in agreement with its role in visual imagery and spatial

attention (Cavanna and Trimble, 2006). Due to its location in

the parietal cortex, we added it to our hypothetical network as

ROI 5, parallel to ROIs 2 and 3.

Finally, the ROI 6 in our hypothesis corresponds to the

Medial Place Area (MPA, also known as Retrosplenial Complex),
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FIGURE 1

Channels from implanted electrodes (aggregated across all subjects) with ROIs marked by di�erent colors. Connections between ROIs, available

for testing, are shown by light blue lines.

a region with well documented scene selectivity also from fMRI

studies (along with OPA and PPA, see Epstein and Baker (2019)

for review). We previously documented scene selectivity in this

region starting at around 300–350 ms, later than in the posterior

precuneus, but similarly late to the hippocampal responses.

As this area was documented to be part of a parieto-medial

temporal pathway (Kravitz et al., 2011), translating visuo-spatial

information between the dorsal and ventral streams (Byrne et al.,

2007), we added it to our hypothetical network, potentially

mediating the information flow between the ROI 5 in the dorsal

stream and ROI 7 in the ventral stream.

5. Methods

5.1. Connectivity analysis: general
approach

For the connectivity analysis purposes, we chose two

different connectivity measures. The Phase Locking Value

(PLV, Lachaux et al., 1999, see Section 5.2) is an example a

undirected measure of synchrony between two time series, while

the Directed Transfer Function (DTF, Kaminski and Blinowska,

1991, see Section 5.3) is one of most commonly used directed

connectivity measures, i.e., it estimates directed interactions

between channels.

As discussed earlier, implantation according to the clinical

needs implies limitations on the collected data. For instance,

connectivity between two regions can be naturally computed

only for those patients, who have electrodes in both regions.

Note that in principle one may attempt assessing dependence

between signals from different regions in two different subjects

and estimate thus some shared, population-level, component of

the functional or even effective connectivity, and ultimately of

the information flows, it is not entirely straightforward what

interpretation would be suitable for such connectivity measure

in view of inter-subject variability and noise. While at least

at the level of correlations, inter-subject dependencies (even

inter-species correlation) has been used e.g., in natural viewing

data to identify homological areas across between monkey

and human (Mantini et al., 2012), due to the complicated

interpretability, we leave this as a matter of future research

and restrict ourselves to pairs of channels observed within any

single subject.

Figure 3 shows the number of implanted pairs of ROIs

and corresponding number of channel pairs. Ideally, we would

like to analyze the data with all 7 ROIs sampled in the same

patient, but we don’t have such subjects—at maximum, 3 ROIs

were measured together. Also, as shown in Figure 3, not all

links between ROIs were measured. Note that this is a typical

situation, rather than an exception, in case of human iEEG

studies. Thus, one is limited to analyzing only the observable

connections between the regions by calculating connectivity per

subject and then collected links per pair of ROIs to form the

group-level network connectivity graph.

The scheme of forming the group-level network connectivity

graph from the subject-specific graphs is described in detail

in Section 5.4. For a particular pair of channels (patient-

specific), we compute the binary map of significance of

the time- and frequency-resolved connectivity (see Figure 4).

Significance testing for every time-frequency point is carried

out using the multivariate Fourier surrogates (Prichard and

Theiler, 1994), estimated from the baseline time series segment;

the significance testing thus provides a binary time-frequency

map of connectivity between the two channels. Note that the

surrogates used are an extension of the phase-randomized
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FIGURE 2

Hypothesis about visual signal spreading via ventral/dorsal visual pathways.

Fourier-transform algorithm for generating surrogate data to

multivariate time series. These surrogates are produced from

the original multivariate data by applying a Fourier Transform,

adding a random phase shift to each frequency (the same shift

to all variables in a given surrogate realization), and applying

inverse Fourier Transform to convert the randomized signals

back to the time domain. As shown by its authors, such surrogate

data sets mimic not only the auto- correlations of each of

the variables in the original data set, but they mimic also

the cross correlations (at each frequency, i.e., in principle the

full cross-spectrum) between all pairs of the variables. Thus,

such surrogates entail a realization of a stationary process

with exactly the same (linear) properties as the original data.

Surely, for shorter segments of data, the estimates of DTF and

PLV naturally differ between the surrogates, providing thus

an efficient empirical estimate of the expected spread of these

statistics under the hypothesis of no true temporal dynamics

(nonstationarity) in the coupling structure.

Then, binary maps for all pairs of channels belonging

to a given pair of ROIs are summed up (across all relevant

channel pairs within a subject, and across all subjects) to form a

ROI-pair specific connectivity density (“heatmap,” see Figure 4).

While this heatmap gives a good qualitative overview of which

connections are active at which time and frequency, carrying out

multiple testing comparison across the many dimensions of the

problem (time, frequency, channel pairs, subjects) might lead to

severely decreasing the statistical power. To tackle this problem,

as the connectivity can be expected to be relatively smooth over

time and frequency (which is confirmed upon visual inspection),

we chose to further proceed by conservatively evaluating the

overall strength of the link between a pair of ROIs by computing

an average heatmap value from the period after the stimulation.

The average heatmap thus captures the percentage of

channel pairs, that showed significant connectivity at a given

time and frequency bin. Notably, even in the case of no true

connectivity, and in particular in the case of no difference

from the baseline resting activity, one may expect some

significant results. In theory, this percentage should correspond

to the significance level selected for the channel-pair test.

However, even though the standard approach of multivariate

Fourier surrogates is used, the baseline data may violate its

assumptions—particularly stationarity (and gaussianity), and

thus having false positive rate increased above the nominal

significance level even in the baseline segment. To further

conservatively correct for this effect, we corrected the average

heatmap value of the response period by subtracting the average

heatmap value during the baseline. To provide a statistical

inference regarding this final value of connectivity strength

between ROIs, it is finally compared to a histograms of values

of the same statistic obtained from multivariate surrogates of

baseline data.

5.2. Connectivity measure: PLV

Phase Locking Value (PLV) was defined in Lachaux et al.

(1999) and it is a time-dependent connectivity measure, that can

be used to investigate task-induced (changes in) synchronization

between time series. PLV is defined as

PLVij(t) =
1

N

∣

∣

∣

N
∑

n=1

eıθ(t,n)
∣

∣

∣
∈ [0, 1],

where N is a number of trials, θ(t, n) = φi(t, n) − φj(t, n), and

φi(t, n) and φj(t, n) are the instantaneous phases for signals si

and sj in trial n at time t. In our study, the instantaneous phase

of the signal was computed using a Hilbert transform. Higher

values of PLV, withmaximum of 1, mean higher synchronization
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FIGURE 3

Information about the number of implanted patients (black numbers) and pairs of channels (blue numbers) for each pairs of ROIs. In the (A), ij-th

element of the matrix corresponds to the number of patients, that have implanted both ROI i and j (black value) and available number of pairs of

channels spanning ROIs i and j (blue value). Color-scale corresponds to the number of patients with implanted pair of ROIs, i.e., it corresponds

to the values in black. In the (B), the graph of the hypotheses is combined with the graph of the connections that can be assessed from the data.

The hypotheses are shown as blue dashed arrows. The implanted ROI pairs are connected with a black dotted edge, the width corresponds to

the number of patients who have that pair of ROIs implanted. For example, for the connection from 3 to 4, the number of implanted subjects

and pairs of channels can be found on the (A) (5 subjects, 20 pairs of channels); corresponding hypothesis and pairs of ROIs with implanted

electrodes can be found on the (B).

between the time series (in terms of similar phase-lag between

two signals across trials), while zero PLV corresponds to

independent instantaneous phases. Before computing the PLV,

the measured signal was filtered in several frequency bands,

using a band-pass filter. Detailed pipeline is described in

Section 5.4.

5.3. Connectivity measure: DTF

Directed Transfer Function (DTF) is a connectivity measure

based on VAR(p) (Vector Autoregressive Process of the order p,

see Lütkepohl (2005) for a general overview).

Let {Xt ∈ R
n
: t = 1, . . . ,T} denote a multivariate time

series. The VAR(p) is defined by

Xt =

p
∑

k=1

AkXt−k + εt ,

where Xt ∈ R
n, for t = 1, . . . ,T, each Ak represents a coefficient

matrix of dimension n × n, εt is a zero mean Gaussian random

vector of size n (white noise), and p denotes the maximal lag

length. This model can also be rewritten in the form:

εt =

p
∑

k=0

ÃkXt−k,

where Ã0 is an identity matrix and Ãk = −Ak for k > 0. This

can be transformed into the frequency domain:

X(f ) = Ã−1( f )E( f ) = H( f )E( f ),

where H( f ) is a non-symmetric transfer matrix of the system

and E( f ) is a noise component in a frequency domain. Then,

Directed Transfer Function (see Kaminski and Blinowska, 1991;

Dauwels et al., 2010) can be defined in terms of H:

γ 2
ij ( f ) =

|Hij( f )|
2

∑m
j=1 |Hij( f )|2

∈ [0, 1],

where the frequency-dependent normalization is chosen so that

γ 2
ij ( f ) quantifies the fraction of (total) inflow to channel i that

arrives from channel j. To obtain one value per link j → i,

we averaged the γ 2
ij ( f ) values through the frequencies f =

1, . . . , 256. DTF was computed in a sliding window of 100 ms

length with 50 ms shift. Similarly to PLV, before computing the

DTF connectivity, the signal was band-pass filtered in the same

frequency bands. Model order p for VAR(p) was put to 10 for all

the patients, in order to decrease heterogeneity in the results.

5.4. Statistical analysis/detailed pipeline

The general diagram of the analysis pipeline is shown

in Figure 4, detailed description of the pipeline is below.

We denote:

• TDTF = {[-200:-100]ms, [-150:-50]ms, . . . , [700:800]ms}

is a moving window for DTF computation; baseline and
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reaction subsets for DTF are Tbsl = {[-200:-100]ms,

[-150:-50]ms, . . . , [-50:50]ms} and Treac = {[0:100]ms,

. . . , [700:800]ms},

• TPLV = [1,. . . ,510] is the time index for PLV; baseline

and reaction subsets for PLV are Tbsl = [1, . . . , 102] and

Treac = [103, . . . , 512],

• H = {[1:2]Hz, [2:4]Hz, [4:8]Hz, [8:16]Hz, [16:32]Hz,

[32:64]Hz, [64:128]Hz} is a set of frequency bands,

• Npat is the number of patients included in the analysis,

• p = 1, . . . ,Npat = 15 is a patient number,

• N(p) is a number of analyzed channels for patient p,

• i, j are channel numbers, i, j = 1, . . . ,N(p),

• n(r1, r2) is a number of connections between regions r1 and

r2,

• r(.) ∈ {1, . . . , 7} is a function of channel number, providing

the number of the ROI to which the channel belongs,

• s = s(t, i)[p] is the measured signal, set of multivariate time

series for every patient p; t = 1, . . . , 512 is time index, and

i is the index of the channel, i ∈ {1, . . . ,N(p)}.

• sf = sf (t, i)[p] - measured signal s(t, i)[p], band-pass

filtered to frequency band f ∈ H. Butterworth filter of

order 4 was used for that purpose.

For the measured data, we compute time-frequency resolved

connectivity per patient between all channels F(t, f )[i, j, p] on the

filtered signal sf

F(t, f )[i, j, p] = PLVij(t), t ∈ TPLV , f ∈ H,

or

F(t, f )[i, j, p] =

256
∑

f=1

γ 2
ij (f), t ∈ TDTF , f ∈ H,

where p is a index of patient, i, j, i 6= j are indices of channels

i, j = 1, . . . ,N(p) and f denotes the frequency band. Then, for

signal of every subject s[p] we generate 100 multivariate Fourier

surrogates from the baseline, i.e., the interval [-200:0] ms. Such

surrogate data preserve the signal smoothness and correlation

structure present in the (subject-, channel- and trial- specific)

baseline. From the described surrogates, we computed the same

time-frequency resolved connectivity Fsim(t, f , k)[i, j, p] as we

did for the data, k = 1, . . . , 100 is a surrogate index.

Based on the computed connectivity for data and surrogates,

we created the time-frequency binary map of significance

per pair of channels for data and corresponding surrogates

B(t, f )[i, j, p] and Bsim(t, f )[i, j, p]:

B(t, f )[i, j, p] = I{F(t, f )[i, j, p] > q(Fsim(t, f )[i, j, p], 0.95)},

Bsim(t, f , k)[i, j, p] =

I{Fsim(t, f , k)[i, j, p] > q(Fsim(t, f )[i, j, p], 0.95)},

where I is an indicator function, q(x, p) is a p-level quantile

of sample x.

Then, for every pair of ROIs, we created a connectivity

density (”heatmap”) for data and surrogates by averaging all the

binary maps for pair of ROIs:

S(t, f )[r1, r2] =
1

n(r1, r2)

Npat
∑

p=1

N(p)
∑

i,j=1

B(t, f )[i, j, p]

I{r(i) = r1, r(j) = r2},

Ssim(t, f , l)[r1, r2] =
1

n(r1, r2)

Npat
∑

p=1

N(p)
∑

i,j=1

Bsim(t, f , ξl,p)

[i, j, p]I{r(i) = r1, r( j) = r2},

where I is an indicator function, ξl,p is a random number

indicating which of the 100 surrogate data for patient p should

be used for the l-th simulated group heatmap, r(i) is number of

ROI including channel i, n(r1, r2) is number of heatmaps for ROI

pair r1 and r2, t ∈ TDTF or t ∈ TPLV , f ∈ H, and l = 1, . . . , 1000

is number of simulated heatmaps.

Further, we computed mean reaction value l(r1, r2) as

average heatmap in reaction window minus average heatmap in

the baseline:

l(r1, r2) =
1

|H|

∑

f∈H

(

1

|Treac|

∑

t∈Treac

S(t, f )[r1, r2]

−
1

|Tbsl|

∑

t∈Tbsl

S(t, f )[r1, r2]

)

,

lsim(r1, r2, k) =
1

|H|

∑

f∈H

(

1

|Treac|

∑

t∈Treac

Ssim(t, f , k)[r1, r2]

−
1

|Tbsl|

∑

t∈Tbsl

Ssim(t, f , k)[r1, r2]

)

,

where Tbsl and Treac are time points/windows of baseline and

reaction, respectively, r1, r2 = 1, . . . , 7 are ROI indices, and

k = 1, . . . , 1000 is number of simulations. Then, p-value for

every pair of ROIs was computed by comparing the statistics

l with the distribution lsim, obtained from surrogates as the

percentile: l = q(lsim, P(r1, r2)). In the Section 6 we discussed

graphs, obtained from the matrix P by applying the Hochberg’s

procedure (Hochberg, 1988) for controlling the family-wise

error rate (FWE) at the 0.05 error level.
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FIGURE 4

Diagram of the pipeline showing the subsequent steps starting from the time series measured from a single patient, through computation of

dynamic connectivity, binary maps, heatmaps and test statistics. DTF is used as an example of connectivity measure.

5.5. Software

The data preparation and the analysis were performed

in MATLAB 2020b (Mathworks, Inc.). DTF was computed

using MATLAB implementation (Omidvarnia et al., 2011,

Omidvarnia, 2020). Vector autoregression coefficients

were computed using the ARFIT package (Neumaier

and Schneider, 2001). PLV was computed using

MATLAB implementation (Namburi, 2011),

based on Lachaux et al. (1999). Pictures of
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FIGURE 5

Connectivity graphs between the 7 ROIs, obtained by DTF [(A,C), directed graphs, violet links] and PLV [(B,D), undirected graphs, green links].

Statistical significance was computed for the di�erence of the average heatmap value after and before the stimulus. Blue dashed lines in the

(C,D) show the hypothesis of connections between ROI; black dotted lines show links presented at least in one subject; violet/green thin lines

show significant links (uncorrected, p < 0.05); violet/green lines show significant links (FWE-corrected, p < 0.05).

brain were generated via BrainNet (Xia et al.,

2013).

6. Results

We computed two general interaction graphs between the

considered 7 ROIs: the undirected (based on PLV) and directed

(DTF-based) connectivity network. Figure 5 shows the links

between 7 ROIs with significant increase after the stimuli. The

corresponding p-values can be found in Tables 2, 3.

Using PLV, we found a statistically significant increase

in synchronization after the stimuli in all the assessed links

between ROIs. In contrast, the causal inference created a much

sparser network, with only one significant connection, when

using the strict multiple comparison correction—The ROI 6

between the dorsal and ventral streams influenced ROI 3, in

the ventral stream. More connections were revealed without

multiple comparison correction. In particular, in addition to the

link from ROI 6 to ROI 3, we found increased connectivity in

bidirectional interaction between ROIs 3 and 7, and between

ROIs 1 and 6. In addition, the analysis revealed increase in

unidirectional connectivity from ROI 6 to 4 and from ROI 4 to 7.

To reiterate, depending on the implantation scheme of each

patient, the connectivity of each ROI with other ROIs was

based on different channels from different patients. Figure 3

summarizes the number of patients and connections between

channels in one or another ROI. To know specifically, from

which brain regions the specific ROI connectivity emerged, we

investigated in detail the localization of involved channels.

The connectivity from ROI 6 to 3 was based on 9

connections between 10 channels. The six ROI 6 channels were

localized mostly on the border between retrosplenial cortex

(RSC) and either precuneus or the superior part of the lingual
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TABLE 2 P-values for testing the null hypothesis of no significant

increase of the DTF during the reaction interval.

DTF ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7

ROI 1 0.006 0.054 - - 0.128 0.029 -

ROI 2 0.955 0.135 0.000 - - 0.090 0.226

ROI 3 - 0.141 0.706 0.090 - 0.000* 0.042

ROI 4 - - 0.074 0.430 - 0.012 0.878

ROI 5 0.841 - - - 0.119 - -

ROI 6 0.047 0.563 0.750 0.673 - 0.000* -

ROI 7 - 0.937 0.015 0.006 - - 0.900

Values less than 0.05 are marked in bold, significant values after the FWE-correction are

marked with an asterisk (*). Matrix orientation is the following: from ROI in column

to ROI in row. Thus, for example, the connection from ROI 6 to ROI 4 is significant

uncorrected with the p-value 0.012.

TABLE 3 P-values for testing the null hypothesis of no significant

increase of the PLV during the reaction interval.

PLV ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7

ROI 1 0.000* 0.000* - - 0.000* 0.000* -

ROI 2 - 0.000* 0.565 - - 0.000* 0.011

ROI 3 - - 0.000* 0.000* - 0.000* 0.000*

ROI 4 - - - 0.001* - 0.000* 0.001

ROI 5 - - - - 0.000* - -

ROI 6 - - - - - 0.000* -

ROI 7 - - - - - - 0.001*

Values less than 0.05 are marked in bold, significant values after the FWE-correction

are marked with an asterisk (*). We present only the upper triangle as the matrix is

symmetric.

gyrus (sLG), while the four ROI 3 channels were all localized

around the border between the anterior and posterior part of the

parahippocampal place area (PPA), with the MNI y coordinate

between –53 and –31 (–42 being the anterior/posterior boundary

according to Baldassano et al., 2016). The interaction between

ROIs 3 and 7 is based on data from 17 channels. Of them, the

12 channels in ROI 3 were primarily localized in the fusiform

gyrus (FG) or lingual gyrus (LG), with MNI y coordinate mostly

(10 of 12) posterior to –42, which again corresponds to posterior

PPA. On the other hand, the 5 channels in ROI 7 were localized

in the anterior hippocampus (HIP), entorhinal cortex (EC) and

temporopolar gyrus, with MNI z coordinate below –19 (–9

being the anterior/posterior hippocampus boundary according

to Morgan et al. (2011). The interaction between ROIs 1 and

6 is based on data from one subject, with two channels in ROI

1, both localized between middle occipital gyrus and posterior

angular gyrus (in transverse occipital sulcus), and four channels

in ROI 6, all localized just between superior lingual gyrus (sLG)

and retrosplenial cortex (RSC). The connectivity from ROI 6

to 4 is based on data from two subjects, with four channels

in ROI 6, all on the border of RSC and precuneus or LG,

and four channels in ROI 4, all in posterior parahippocampal

gyrus (PHG), with MNI y coordinate between -27 and –33 (the

anterior/posterior border being at –20 according to Pruessner

et al. (2002). The connectivity from ROI 4 to 7 is based on data

from 27 channels. Of them, 12 channels in ROI 4 were mainly

localized in posterior part of PHG and adjacent FG, with MNI

y coordinate posterior to –24, and 15 channels in ROI 7 were

located primarily in the anterior HIP, EC and amygdala, with

MNI z coordinate below –18.

Figures 6, 7 present the heatmaps that were used for

computation of graphs in Figure 5. We divided the heatmaps

to two classes: connectivity from ROI to itself (Figure 6), and

connectivity between the different ROIs (Figure 7). Recall that

the heatmap of connectivity from ROI i to itself was estimated

from the collection of connections between different channels,

both of them laying in ROI i. Heatmap ROI i to ROI j, i 6= j was

computed from pairs of channels, for which the source channel

belonged to ROI i, and the target channel was in ROI j.

Every heatmap shows the dynamical connectivity for several

frequency bands (y-axis), with the time on the x-axis marking

the start of sliding window for DTF, and the relevant time instant

for PLV. Color of every entry corresponds to the percentage

of significant (uncorrected, channel-level) links in particular

time-frequency point between investigated pair of ROIs. Higher

values of the heatmap (color closer to yellow and white) mark

a high proportion of links showing increased connectivity

and suggest at which time and frequency an increased

communication emerges between the respective regions.

A marked increase in synchronization was often observed

at the frequency bands 2 to 4 Hz and 4 to 8 Hz. The particular

time interval of this increase is difficult to define and seems

to depend on the particular pair of ROIs. DTF increase is

not as pronounced as in PLV, but generally, it also showed

an increase at 2–4 Hz frequency. DTF to/from ROI 3 and

6 seemed to have an increase at high frequencies, unlike the

PLV, which showed a main increase at the low frequencies.

Also, both of the connectivity measures showed a stronger

increase inside the individual ROIs compared to the connectivity

between ROIs. The presented heatmaps, however, are useful only

for exploration purposes and should not be over-interpreted.

We reiterate that the presented heatmaps element-wise were

not associated with the statistical p-values (they correspond to

proportion of uncorrected channel-level connection increases),

and (corrected) statistical testing was carried out later at a

summary level, aggregating results across frequencies and time

bins. The heatmaps thus can not be considered as a result of

inductive statistics (in the sense of testing a hypothesis), but

only rather as descriptive statistics useful for exploration or

interpretation of the detected results of higher-level hypothesis

testing. Only in this sense we believe that the time-frequency

heatmaps can be useful—for neuroscientific interpretation of

those connections, that reached global statistical significance,

in guiding the interpretation in terms of timing and dominant
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FIGURE 6

Time-frequency heatmaps of number of significant links per pair of ROI that are computed for the channels with significant reaction to the

stimuli.
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FIGURE 7

Time-frequency heatmaps of number of significant links per pair of ROI that are computed for the Channels with significant reaction to the

stimuli.
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frequencies behind the effect; or as pure descriptive exploration.

For sure, such interpretation is limited—in a similar sense as

the interpretation of statistical parametric maps presented in

neuroimaging studies. We also analyzed a connectivity decrease

after the stimulation but didn’t find significant results.

7. Discussion

As stated in the introduction, the inference of brain

graph analysis from iEEG data faces an extensive set of

challenges. We have outlined these in the introduction,

proceeding from those that are shared across a large set

of inference situations, to those that are relatively specific

to the situation of iEEG—namely the partial, sparse and

heterogeneous sampling of the relevant brain network in any

single patient. Based on the discussion of the possible ways to

tackle these challenges, we have made a range of methodological

decisions in order to build up a pipeline allowing robust

statistical inference of the alterations of brain connectivity

network during processing visual stimuli. The application of

the pipeline was demonstrated on an example dataset, giving

rise to an group-level network in terms of both functional and

effective connectivity.

Note that the functional and effective connectivity

correspond to different yet related concepts—the true

underlying interactions (in principle captured by the

effective connectivity) can be considered as the cause of

the synchronization of the brain activity. However, the true

interactions that are to be estimated by effective connectivity

methods might not necessarily happen exactly between the pair

of regions for which synchrony is observed. Indeed, due to

common drivers or mediators, two regions can be synchronized

in their activity, while not interacting directly. In our particular

study, we have observed significant increased of functional

connectivity (captured by PLV) in all analyzed connections.

However, the application of effective connectivity analysis

(DTF) was confirmed the increase a sparser set of directed

connections, providing more insight into the stimulus-driven

information flows.

Note that for the sake of conserving enough channels for

subsequent analysis, we have not excluded the connectivity

estimates between pairs of bipolar channels that shared one

contact. Indeed, such channels might have biased estimates of

PLV or DTF due to sharing one of the two signals in their

construction. However, as we are not focusing on estimation

of the connectivity strength per se, but only on its change in

time, this issue is not so paramount in current analysis. To

check the robustness of this analytical choice, we have rerun the

analysis while removing the affected channels pairs. Note that

this omission affects the channel-pair count quadratically, and

leaves less than half of channels pairs in most region pairs for the

analysis. Nevertheless, the obtained heatmaps characterizing the

connectivity changes over time were qualitatively very similar to

the original analysis (controlled vs. original heatmap correlation

ranging between 0.6 and 1, on average about 0.8).

Also, while we have made a relatively common choice

of connectivity measures from each family, the results could

surely be (potentially substantially) different for other choices of

connectivity measures. In particular, the functional connectivity

measure used (i.e., PLV), is in two important aspects different

from the classical counterpart of DTF in the functional

connectivity family, that is, from the coherence. In particular,

the PLV works with phase only (unlike the DTF and coherence,

which depend on both the phase and amplitude of the signal).

Secondly, the PLV measures the synchronization across trials,

rather than synchronization across time (as would mean

phase coherence do). We have had two-fold motivation for

this choice of functional connectivity selection: firstly, PLV

is an widespread and commonly used method. Secondly, the

heterogeneity of connectivity methods used helps to illustrate

the wide applicability of the pipeline. Of course, the framework

is in principle applicable along with a range of other connectivity

methods, including the natural alternative to DTF, i.e., the partial

directed coherence (Sameshima and Baccalá, 1999; Baccalá et al.,

2001; Baccalá and Sameshima, 2021). Yet, one may surely

argue for the application of many alternative methods from the

plethora of the existing ones.

Although the specific application was not the main rationale

of this study, the utilization of the developed pipeline provided

interesting results. In the studied case of network changes

in reaction to the visual stimuli, the developed methodology

allowed us to robustly detect several interesting phenomena.

First of all, we confirmed the involvement of the parieto-

medial temporal pathway in scene perception, translating

visuospatial information between dorsal and ventral visual

streams during visual scene analysis. This pathway connects the

parietal lobe with locations in the medial temporal lobe (ROI

3 and 4), via MPA (ROI 6, also called retrosplenial complex).

The existence of this pathway was suggested based on rat

studies showing that associative parietal cortex lesions affect the

firing of place cells in the medial temporal lobe (Save et al.,

2005). The pathway is claimed to include also the retrosplenial

region (Byrne et al., 2007). Based on anatomical data, it connects

the angular gyrus (homological to caudal inferior parietal lobule

in animals) in the parietal lobe to themedial temporal lobe either

directly or indirectly, with the indirect connection leading via

the retrosplenial cortex and posterior cingulate cortex (Kravitz

et al., 2011). Both direct and indirection connections were also

demonstrated in humans using resting-state fMRI data (Boccia

et al., 2017). Our data show that this indirect pathway (from

ROI 6 to ROIs 3 and 4) is active also during static visual scenes

processing in humans. In agreement with another connectivity

study (Baldassano et al., 2016), we show the MPA connection

with the PPA (ROI 3), around the border between its anterior

and posterior parts.
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Second, we confirmed the anterior hippocampal region (ROI

7) connectivity with more posterior areas in the medial temporal

lobe: the parahippocampal place area (PPA, ROI 3) and region

around the anterior collateral sulcus (ROI 4). The hippocampus

(HIP) is a medial temporal structure associated primarily

with declarative and spatial memory, but its function and

connectivity vary along its long anterior-posterior axis (Strange

et al., 2014). While the function of the posterior portion

(pHIP) seems to be related to spatial memory, the anterior

part (aHIP) has been associated with emotional processing,

novelty detection, and semantic memory. Accordingly, there

are connectivity differences, with the aHIP being linked,

among others, to the amygdala, ventral tegmental area and

hypothalamus, while pHIP is coupled to posterior parietal areas

and retrosplenial cortex (Poppenk et al., 2013). However, there

seems to be some overlap, as the aHIP shows connection also

to more posterior areas, like anterior PPA and MPA (Boccia

et al., 2017), in one study even larger than pHIP (Baldassano

et al., 2016). Extending these studies, our current results

document a connection of aHIP (ROI 7) with even posterior

part of PPA (ROI 3). The hippocampal connections to the

parahippocampal gyrus (PHG) also differ between its anterior

to posterior part. While aHIP shows preferential connectivity

with the perirhinal cortex (anterior part of PHG), pHIP

is preferentially connected to the parahippocampal cortex

(posterior part of PHG) (Libby et al., 2012). However, this

preferential connectivity pattern does not exclude the functional

coupling of other areas. Our data show information flow from

posterior PHG (ROI 4) to aHIP (ROI 7), but our collection

of channels did not contain any channel located in pHIP.

Therefore, for both posterior PPA and parahippocampal cortex,

we could not exclude their indirect association with aHIP

via pHIP.

Third, we found the reciprocal information flow between

ROI 1 in OPA and ROI 6 in MPA. At the same time, we

hypothesized to find connectivity between ROI 1 and PPA

(ROI 3), but we found no patients with both ROIs implanted

in our dataset. Related to that, a recent resting-state fMRI

connectivity study (Baldassano et al., 2016) distinguished two

scene processing networks. The anterior one connects angular

gyrus with retrosplenial cortex, anterior portion of PPA and

anterior HIP. In contrast, the posterior one consists of OPA and

posterior portion of PPA. In agreement with this study, the two

channels in our ROI 1, showing connectivity with ROI 6 in our

data, seem to be a part of the anterior scene processing network,

which is related more to memory and navigation. In fact, these

two channels in ROI 1 were localized still in medial occipital

gyrus, but deep at the anterior end of transverse occipital sulcus,

thus on the posterior margin of angular gyrus. Therefore, our

data support the separation of anterior and posterior scene

processing networks (Baldassano et al., 2016). Finally, we have

obtained inconclusive evidence concerning the link between

ROI 1 and ROI 2: although descriptively (Figure 7) there seems

to be a clear increase in both PLV and DTF following the

stimulus at low frequencies (2–4–8 Hz), only the PLV coupling

was strong enough to reach significance, see Figure 5. This is

likely to the very low number of pairs of channels spanning these

two ROIs in the current dataset.

Albeit the methodology was tailored to the nature of the

analyzed data, the results achieved are still clearly limited by

some aspects of the data. For instance, the low spatial coverage,

in particular the lack of implantation of posterior occipital

cortex, prevented us from tracking the early development of

the visual signal processing. Low number of patients involved

not only affected the statistical power of the inference, but

indirectly also the amount of pairs of regions that we were

able to test for interactions, and together with the relative

sparseness of the implantation it generally decreased the spatial

resolution of the estimated network. Indeed, the regions were

arguably large enough so that they would be functionally

heterogeneous. On the other side, should one decide to work

with smaller regions, there might not be sufficient number

of subjects with implantation spanning any given pair of

regions, leaving thus each connection inference specific to a

single subject.

Needless to say, the results in principle might be affected

by any residual differences in the cognitive processing, and,

more importantly, brain dynamics in the epilepsy patients

compared to healthy subjects. Although the volunteering

patients all had normal vision, and any segments with detected

interictal epileptiform activity (or seizures) were removed from

the analyzed data, one can never exclude the possibility of

some systematic bias in neuronal dynamics and functional

neuroanatomy due to the chronic brain disease. Indeed,

the selection of the regions here was based on a data

driven approach used in a previously published study; an

alternative approach used in the field is to apply some standard

anatomical atlas.
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