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Objectives: To develop and validate a radiomic-basedmodel for di�erentiating

hemorrhage from iodinated contrast extravasation of intraparenchymal

hyperdense areas (HDA) following mechanical thrombectomy treatment in

acute ischemic stroke.

Methods: A total of 100 and four patients with intraparenchymal HDA

on initial post-operative CT were included in this study. The patients who

met criteria were divided into a primary and a validation cohort. A training

cohort was constructed using Synthetic Minority Oversampling Technique on

the primary cohort to achieve group balance. Thereafter, a radiomics score

was calculated and the radiomic model was constructed. Clinical factors

were assessed to build clinical model. Combined with the Rad-score and

independent clinical factors, a combined model was constructed. Di�erent

models were assessed using the area under the receiver operator characteristic

curves. The combined model was visualized as nomogram, and assessed with

calibration and clinical usefulness.

Results: Cardiogenic diseases, intraoperative tirofiban administration and

preoperative national institute of health stroke scale were selected as

independent predictors to construct the clinical model with area under curve

(AUC) of 0.756 and 0.693 in the training and validation cohort, respectively.

Our data demonstrated that the radiomic model showed good discrimination

in the training (AUC, 0.955) and validation cohort (AUC, 0.869). The combined

nomogram model showed optimal discrimination in the training (AUC, 0.972)

and validation cohort (AUC, 0.926). Decision curve analysis demonstrated the

combinedmodel had a higher overall net benefit in di�erentiating hemorrhage

from iodinated contrast extravasation in terms of clinical usefulness.
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Conclusions: The nomogram shows favorable e�cacy for di�erentiating

hemorrhage from iodinated contrast extravasation, which might provide an

individualized tool for precision therapy.

KEYWORDS

nomogram, non-contrast-enhanced CT, intraparenchymal hyperdense areas, acute

ischemic stroke, mechanical thrombectomy

Introduction

Achieving rapid recanalization and reperfusion has been

associated with improved clinical outcomes and reduced

complications in patients with acute ischemic stroke (AIS)

(Linfante et al., 2016). Mechanical thrombectomy (MTB) is a

standard treatment option for AIS secondary to large vessel

occlusion and has been demonstrated to significantly improve

functional outcomes (Berkhemer et al., 2015; Powers et al.,

2019). The hyperdense areas (HDA) on postprocedural non-

contrast-enhanced CT(NECT) following MTB are common

occurrences, which might be secondary to hemorrhage or

contrast extravasation (Parrilla et al., 2012; Phan et al., 2012;

Lummel et al., 2014). Previous data showed that the presence

of HDA suggested a possible association with clinical prognosis

(Nakano et al., 2001). However, it can be difficult to differentiate

HDA resulting from iodinated contrast vs. that arising from

intracranial hemorrhage. Intracerebral hemorrhage is the most

feared complication post-MTB with an incidence of 10.9

to 15% (Yoon et al., 2004). Hemorrhage may continue to

develop, leading to a marked deterioration with a mortality

of up to 83% (Yoon et al., 2004). Therefore, the early and

accurate identification of composition of HDA lesions can alter

clinical management when antithrombotic therapy is being

considered. Thus, ability to discriminate hemorrhage from

contrast extravasation in these HDA lesions on NECT is crucial

and can have significant clinical worth for AIS patients.

Radiomics can facilitate better clinical decision by

improving the process of detecting heterogeneous findings

without visible abnormalities in medical images through

high-throughput quantitative analysis of statistical features

(Gillies et al., 2016). Successful applications of radiomics in

acute stroke have been reported in prediction of the hematoma

expansion (Ma et al., 2019; Xie et al., 2020; Liu et al., 2021;

Song et al., 2021), successful recanalization (Qiu et al., 2019;

Hofmeister et al., 2020), recurrence (Tang et al., 2022) and

functional outcome (Haider et al., 2021; Quan et al., 2021;

Wang et al., 2021). The discrimination of hematomas etiologies

(Zhang et al., 2019; Nawabi et al., 2020) using radiomics analysis

had been reported as well. These studies showed that radiomics

analysis is a feasible and powerful method for guiding diagnosis

and treatment in acute stroke.

In this study, we hypothesized that quantitative radiomic

features extracted from HDA on NECT images may be used to

reflect the composition of contrast material and blood contents.

We aimed to develop a model which combines both NECT-

based radiomics and clinical risk factors for the classification

of hemorrhage and iodinated contrast extravasation following

MTB treatment.

Materials and methods

Patients

Three hundred and ninety-eight consecutive patients with

AIS who underwent MTB treatment from January 2018 to

February 2022 in our institution were screened for inclusion

into this study. This retrospective study was approved by the

institutional review board (No. 2022ky058) and the requirement

for written informed consent was waived.

The following patients were excluded: (1) without HDA in

the initial post-operative NECT scan after MTB within 24 h;

(2) severe CT images artifacts; (3) subarachnoid hyperdense;

and (4) patients underwent surgery operation after MTB before

definitive identification of HDA. The patients’ enrollment flow

chart was illustrated in Figure 1. Finally, one hundred and four

patients with intraparenchymal HDA (mean age, 70.19 years;

age range, 35–89 years) were included (Figure 1). The patients

were randomly categorized into a primary cohort (n = 74) and

a validation cohort (n = 30) at a ratio of 7:3. Demographic

and clinical information of the patients was obtained from

medical records.

The presence of HDA was defined emergence of new

hyperdensities compared to the surrounding brain tissues

exhibited on the initial post-operative NECT scan (<24 h).

Follow-up NECT were scanned consecutively on the next

days (>48 h). Contrast extravasation group was classified when

hyperdense washout or near-complete cleared within 48 h on

NECT scan. Hemorrhage group was classified when hyperdense

persisted longer than 48 h (Parrilla et al., 2012; Phan et al.,

2012). A dual energy CT(DECT) or MR image was used as the

reference standard when available. All images were evaluated

by a neuroradiologist and an interventional radiologist with

consensus review.
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FIGURE 1

The flow chart of patients’ enrollment and image analysis procedure.

Image acquisition and analysis

All initial post-operative and follow-up CT images were

obtained from three multi-slice CT scanners (SOMATOM

Force, Siemens Healthcare; uCT 710, United Imaging

Healthcare; LightSpeed VCT 64, GE Medical Healthcare).

The scanning was performed using a standard clinical protocols

with an axial technique of 5-mm section thickness and

reconstruction interval, as well as a scanning energy of 120 kVp

tube voltage and an automatic tube current.

Clinical analysis

The experienced neuroradiologist reviewed the medical

records of patients to assess the clinical factors. Univariate

analysis was used to compare the differences of clinical factors

between the two groups, and a multiple logistic regression

analysis was applied to build the clinical model by using the

significant risk factors.

Radiomics analysis

A region of interest (ROI) was manually segmented along

the intraparenchymal HDA contour on each initial post-

operative NECT image using the 3D-Slicer software (version

4.10.2, www.slicer.org) (Figure 1) by a neuroradiologist with

5 years’ experience. Another radiologist with 3 years of

experience re-segmented the lesions to evaluate the inter-

observer agreement of feature extraction. Both radiologists were

blinded to the clinical information and ultimate outcome.

Before feature extraction, raw NECT images were pre-

processed to minimize the influence of different scanners.

Images were spatially resampled to 1 × 1 × 1mm, then signal

intensity values were discretized to a bin width of 25 with

relative intensity rescaling (Hinzpeter et al., 2022). Subsequently,

1316 features were extracted from each ROI by using the 3D

Slicer-integrated pyradiomics (http://pyradiomics.readthedocs.

io) platform, including seven different categories: shape, first

order, gray-level cooccurrence matrix (GLCM), gray-level run

length matrix (GLRLM), gray-level size zone matrix (GLSZM),

Neighboring Gray Tone Difference Matrix (NGTDM) and

gray-level dependence matrix (GLDM) (https://pyradiomics.

readthedocs.io/en/latest/index.html). On each feature matrix,

additional wavelet filtering and Laplacian of Gaussian filters

were applied.

The reproducibility of the radiomics features was analyzed

by intraclass correlation coefficient (ICC). An ICC of >0.75

was considered to represent good agreement. To deal with

the imbalanced distribution of two groups (54 patients with

hemorrhage and 20 patients with contrast extravasation) and

avoid model overfitting in the primary cohort, we employed the

Synthetic Minority Oversampling Technique (SMOTE). So that
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the ratio of two groups of HDA patients was improved from 2.7:

1 to 1.5: 1 (60 patients with hemorrhage and 40 patients with

contrast extravasation) in the training cohort.

After normalization of the remaining features using z-

score standardization, the nonparametric test and least absolute

shrinkage selection operation (LASSO) algorithm were applied

for dimension reduction and feature elimination. A 10-fold

cross-validation was performed during parameter tuning (λ)

and valuable feature selection based on the training cohort.

In addition, a radiomic score (Rad-score) was calculated

using a linear combination of selected features weighted

by their respective coefficients, and then radiomic model

was constructed.

Development of combined nomogram
model and assessment of di�erent
models

A combined model was built by incorporating significant

clinical factors as well as Rad-score. To evaluate the calibration

and goodness-of-fit of the combined model, the calibration

curve andHosmer–Lemeshow test were assessed. The diagnostic

performance of the clinical model, radiomic model and

combined model for differentiating hemorrhage from contrast

extravasation were evaluated using the receiver operator

characteristic (ROC) curves on both the training and validation

cohort. The decision curve analysis (DCA) was also performed

to calculate the net benefits for a range of threshold probabilities,

in order to assess the clinical usefulness of the combined model.

The entire feature selection and model fitting process were

performed only on the training cohort and evaluated on the

validation cohort.

Statistical analysis

Statistical analysis was performed using SPSS 22.0 software

(version 22) and R software (version 3.6.2; www.R-project.org).

Continuous variables were presented as mean ± standard

deviation or median (interquartile range) as appropriate,

while categorical variables were summarized using counts

(percentage). The Mann-Whitney U-test, independent t-test,

chi-square test, and Fisher exact test were used as appropriate

for univariate analysis.

The area under the ROC curve (AUC), sensitivity, and

specificity were then determined using the Youden index. The

comparisons of ROCs were accomplished using the DeLong test

by Medcalc software (version 15.6.1). In addition, calibration

curves along with the Hosmer–Lemeshow test were used to

determine the calibration of the combined model. A two paired

p < 0.05 was considered statistically significant, and a p < 0.1

was incorporated into multiple logistic regression analysis.

Results

Patient characteristics

Demographic and clinical information of patients in the

primary cohort is presented in Table 1. Our data showed that

the rate of hemorrhage was 72.97% (54 of 74) and 73.33% (22

of 30) in the primary and validation cohort, respectively. Only

cardiogenic diseases, intraoperative tirofiban administration,

as well as average and maximum CT value of HDA showed

significant differences between patients with hemorrhage and

contrast extravasation on primary cohort (p <0.05).

Construction of clinical model

In the training cohort, cardiogenic diseases, intraoperative

tirofiban administration, preoperative intravascular

thrombolysis, preoperative National institute of Health

Stroke Scale (NIHSS), the average and maximum CT value of

HDA (p < 0.1) entered into a multivariable logistic regression

analysis. After calculating variance inflation factor (VIF) and

tolerance, there was no collinearity observed in these factors (all

VIF< 10, tolerance> 0.1). Cardiogenic diseases, intraoperative

tirofiban administration and preoperative NIHSS were selected

as independent predictors in multivariable logistic analysis

(Table 2). The clinical model was constructed based on the

independent factors in the training cohort. The models showed

AUCs of 0.756 (95% CI 0.660–0.837) and 0.693 (95% CI

0.499–0.848) in the training and validation cohort, respectively

(Figure 4, Table 2).

Construction and validation of radiomic
model

Nine robust radiomics features with nonzero coefficients

in the LASSO were selected for subsequent modeling

with λ = 0.125. The Rad-score was calculated using

the following formula: Rad-score = (−0.451) + 0.412

× original_ shape_Maximum2DDiameterColumn +

0.009 × log-sigma-2mm_ngtdm_Contrast + 0.427 ×

log-sigma-3mm_glcm_Imc2 + (−0.039) × log-sigma-

3mm_glcm_Imc1 + (−0.136) × log-sigma-3-0-mm-

3D_glrlm_GrayLevelNonUniformityNormalized + 0.089

× wavelet-LHL_firstorder_Mean + 0.016 × wavelet-

LHH_firstorder_Median + 0.224 × wavelet-

LHH_firstorder_Maximum + 0.028 × wavelet-

LLH_firstorder_Kurtosis (Figure 2). The radiomic models
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TABLE 1 Clinical factors of the primary cohort.

Clinical factors Iodinated contrast extravasation (n = 20) Hemorrhage (n = 54) P-value

Age, years 67.00± 11.75 69.63± 8.41 0.299

Gender, male (%) 12 (60.0) 32 (59.3) 1.00

Hypertension, presence (%) 9 (45.0) 33 (61.1) 0.279

Diabetes mellitus, presence (%) 3 (15.0) 19 (35.2) 0.147

Cardiogenic diseases, presence (%) 4 (20.0) 28 (51.9) 0.017

Preoperative intravascular thrombolysis, Yes (%) 1 (5.0) 15 (27.8) 0.052

Wake up stroke, Yes (%) 4 (20.0) 8 (14.8) 0.722

Smoking, presence (%) 4 (20.0) 14 (25.9) 0.762

Preoperative NIHSS 19.67± 8.423 24.70± 9.858 0.082

Preoperative ASPECT 6.71± 2.469 5.70± 2.724 0.192

Times of thrombectomy 2.85± 1.537 2.85± 1.764 0.993

Onset to recanalization time, minute 372.63± 132.501 399.23± 104.334 0.380

Intraoperative tirofiban administration, Yes (%) 15 (75.0) 52 (96.3) 0.013

mTICI, 3 (%) 13 (65.0) 25 (46.3) 0.180

Average CT value of HDA, HU 46.20± 7.231 52.49± 10.730 0.021

Maximum CT value of HDA, HU 69.11± 20.61 87.90± 34.659 0.030

NIHSS, National institute of Health Stroke Scale; ASPECT, Alberta Stroke program early CT score; mTICI, modified treatment in cerebral ischemia; HDA, hyperdense areas; HU, Housfield.

TABLE 2 The multiple logistic regression analysis of the clinical factors.

Clinical factors Coe�cient P-value Odds ratio 95% CI of Odds ratio

Cardiogenic diseases −1.820 0.014 0.162 0.038–0.688

Intraoperative tirofiban

administration

3.048 0.022 21.081 1.541–288.387

Preoperative NIHSS 0.065 0.045 1.067 1.002–1.136

Average CT value 0.047 0.492 1.049 0.916–1.201

Maximum CT value 0.029 0.359 1.029 0.968–1.094

Preoperative intravascular

thrombolysis

−0.023 0.976 0.978 0.229–4.171

Constant −6.221 0.025 0.002 /

CI, Confidence interval.

showed AUCs of 0.955 (95% CI 0.894–0.986) and 0.869

(95% CI 0.696–0.964) in the training and validation cohort,

respectively (Figure 3, Table 2). The detailed definitions and

the calculating equations of the selected radiomics features in

Supplementary Table 1.

Construction and validation of combined
model

Three clinical factors (cardiogenic diseases, intraoperative

tirofiban administration and preoperative NIHSS) and Rad-

score were incorporated into the combined model. Our results

demonstrated that the combined models showed AUCs of 0.972

(95% CI 0.917–0.994) and 0.926 (95% CI 0.769–0.989) in the

training and validation cohort, respectively (Figure 3, Table 3).

Comparison of the classification
performance among models

Comparisons of the three models are detailed in Table 3

and Figure 3. In the training cohort, the combined model

and radiomic model showed significant greater AUC than the

clinical model (AUC: 0.972, 0.955, and 0.756, respectively). In

the validation cohort, combined model showed greater AUC
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FIGURE 2

Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression algorithm. (A) Tuning parameter (λ)

selection in the LASSO used 10-fold cross-validation via minimum criteria. The dotted vertical line was drawn at the optimal values using the

minimum criteria. A log (λ) value of −2.079 was opted. (B) Boxplots for LASSO coe�cient of the selected nine radiomic features. (C) Boxplots for

the selected features between hemorrhage and contrast extravasation groups.

than radiomic model and clinical model (AUC: 0.926, 0.869,

and 0.693, respectively), but there was no significant difference

among models. The comparative analysis of each pair of the

three models in training and validation cohorts was showed in

Supplementary Tables 2, 3.

Assessment of models

A nomogram was performed to visualize the combined

model (Figure 4A) for classifying hemorrhage in HDA. The

nomogram showed that the Rad-score dominates the scoring

system compared with the clinical risk factors, which indicates

the significant role of Rad-score in the classification model.

The plotted calibration curve showed that the estimative

classification of HDA was consistent with the actual observation

in the validation cohort (Figure 4B). Similarly, the Hosmer–

Lemeshow test showed well calibration on validation cohort (p

= 0.627).

In addition, as demonstrated in the DCA curve, the

combined model had a higher overall net benefit than the

clinical or radiomic model across the range of reasonable
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FIGURE 3

Receiver operating characteristic (ROC) curve analysis of the clinical, radiomic, and combined models in the training cohort (A) and validation

cohort (B).

threshold probabilities in classifying hemorrhage and contrast

extravasation in the HDA on the validation cohort (Figure 4C).

Discussion

To our knowledge, the present study is the first to compare

the capability for differentiating hemorrhage from contrast

extravasation between radiomic and clinical features in patients

following MTB treatment suffering from AIS. Our results

showed that radiomic model outperformed clinical model,

whereas the model combined of Rad-score and clinical risk

factors could improve radiomic model’s performance. The

derived nomogram can differentiate the presence of hemorrhage

in HDA with good discrimination and calibration. In case of

emergency where dual-energy CT orMRI technique unavailable,

this tool may provide an individualized approach for classifying

early hemorrhage.

Although previous studies have analyzed various clinical risk

factors associated with higher rates of intracerebral hemorrhage

after recanalization, some findings remain controversial (Mokin

et al., 2012). In our study, cardiogenic diseases, intraoperative

tirofiban administration and preoperative NIHSS were selected

as independent predictors for hemorrhage. Tirofiban can

competitively inhibit fibrinogen binding to glycoprotein IIb/IIIa

receptor, which prevents the platelet aggregation. Previous

studies have reported varied results regarding the safety of

rescue tirofiban during MTB. Kellert et al. concluded that

tirofiban was associated with a higher risk of fatal hemorrhage

TABLE 3 Comparisons of ROC curves of classification models in the

training and validation cohort.

Model AUC 95%
CI

SEN SPE Accuracy

Training

cohort

Clinical

model

0.756 0.660–

0.837

0.825 0.600 0.690

Radiomic

model

0.955 0.894–

0.986

0.900 0.933 0.920

Combined

model

0.972 0.917–

0.994

0.900 1.000 0.960

Validation

cohort

Clinical

model

0.693 0.499–

0.848

0.723 0.750 0.743

Radiomic

model

0.869 0.696–

0.964

0.875 0.773 0.800

Combined

model

0.926 0.769–

0.989

0.909 0.875 0.884

ROC, receiver operating characteristic; AUC, area under curve; CI, confidence interval;

SEN, sensitivity; SPE, specificity.

and poorer prognosis (Kellert et al., 2013), which is consistent

with our findings. Current histopathologic studies indicated

that the structural composition, histological and biochemical

of the clot play a significant role on treatment outcome
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FIGURE 4

(A) A nomogram showing the probability of hemorrhage in hyperdense areas was developed based on the combined model, incorporating into

four variables: cardiogenic diseases, intraoperative tirofiban administration, preoperative NIHSS, and Rad-score. (B) Calibration curve of the

nomogram in the validation cohort. The dashed line was a reference line indicating an optimal nomogram. (C) Decision curve analysis for three

models in the validation cohort. The y-axis indicates the net benefit; x-axis indicates threshold probability. The blue line, red line, and green line

represent net benefit of the combined, the radiomic, and the clinical model, respectively. The combined model had the highest net benefit

compared with the other two models across the full range of threshold probabilities at which a patient would be diagnosed as hemorrhage.

(Marder et al., 2006; Sporns et al., 2017). Compared to non-

cardioembolic thrombi, cardioembolic thrombi has a higher

stiffness and resistance to thrombectomy due to a higher

proportion of platelets within fibrin-rich areas. Consequently,

the characteristic composition of cardioembolic clot aggravate

the breakdown of the blood-brain barrier, thereby promoting

the extravasation of cellular components from the vessels and

ultimately leading to hematoma formation. The correlation

of admission NIHSS scores and development of hemorrhage

had been confirmed, which higher admission NIHSS scores

indicating greater risk of hemorrhage (Tanne et al., 2002).

CT is the first-line imaging modality in evaluating

intracranial condition after MTB in clinical practice. The

presence of iodinated contrast can be defined by NECT scans, if

the attenuation markedly exceeds that expected for hemorrhage

(CT values >120 HU). However, hemorrhage cannot be

excluded in this situation when iodinated contrast mixed.

Definite identification of visualized HDA requires frequent

imaging for demonstrating eventual washout which results in

increased radiation exposure and expense (Nakano et al., 2001).

More importantly, NECT has the shortcoming of a higher false

positive rate, as the persist of gadolinium can make the HDA

appear to be a hemorrhage when it is truly iodinated contrast

extravasation (Gierada and Bae, 1999). As the gold standard for

differentiating contrast extravasation vs. iatrogenic hemorrhage,

DECT has a high sensitivity and specificity of more than 90%

(Phan et al., 2012). However, DECT is limited by potential

increase in radiation doses, more expensive, and unavailable in

certain hospitals compared to conventional CT (Yedavalli and

Sammet, 2017).

The great potential of radiomics analysis for hemorrhagic

heterogeneity has been demonstrated by many studies
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(Zhang et al., 2019; Nawabi et al., 2020). To date, only one study

applied CT-based radiomics in differentiating intracranial

contrast extravasation from hemorrhage after MTB (Chen et al.,

2022). Chen et al. constructed radiomic signature based on

initial NECT with AUCs of 0.848 and 0.826 in the training

and validation cohort. However, clinical risk factors were not

included in this study. Thus, it remains unknown whether

radiomic signature are superior to clinical risk factors, and

if additional benefit could be yield from the integration of

clinical risk factors and radiomic signature. Our results showed

that radiomic model outperforms clinical model, whereas the

combined model could improve radiomic- or clinical-only

model’s differential power and yield additional accuracy for

HDA classification.

To construct the radiomic model, nine potential

radiomic features related to HDA were strictly selected

from 1,316 candidate features. Our analysis demonstrated

that the log-sigma-2-0-mm-3D_ngtdm_Contrast, wavelet-

LHH_firstorder_Median and wavelet-LLH_firstorder_Kurtosis

are the features with the highest coefficients. Specifically,

contrast is a measure implying the spatial intensity change, and

larger range of changes and differences means higher contrast

(Amadasun and King, 1989). Kurtosis measures the distribution

of intensity values in the image. A higher kurtosis implies

that the distribution of signal intensity values tends to the

tail(s) rather than the mean, while a lower kurtosis implies the

reverse (Zhou et al., 2019). The average values of contrast and

kurtosis of hemorrhage group are more than that of contrast

extravasation group, which indicating the heterogeneity of

hemorrhage was greater than contrast extravasation.

Our study had certain limitations. Firstly, the nature of

study is retrospective, single-center, and relatively small samples,

which could have led to selection bias and overestimate

diagnostic accuracy; thus, a prospective, multi-center, study with

external validation in the future is promising. Secondly, manual

segmentation is time-consuming and complicated, especially for

the lesions with vague boundary. Further study should focus

on the advancement of the automatic segmentation technology

with satisfactory reliability and reproducibility. Thirdly, the

sample size is small and there is an imbalance between the

two groups. Although SMOTE was used to achieve group

balance, it still exists the possibility of overfitting in the model.

Finally, only intraparenchymal HDAwere included in this study,

subarachnoid hyperdense should be further analyzed.

In conclusion, our study developed a combined nomogram

model that showed more favorable differential efficacy in

distinguishing hemorrhage from contrast extravasation in HDA

followingMTB treatment compared to the clinical- or radiomic-

only model. The nomogram may provide an individualized tool

to supplement the conventional imaging modalities for selecting

more patients with hemorrhage that are most likely to benefit

from treatment.
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