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Background and objective: Alzheimer’s disease (AD) is the most common

type of dementia, with its pathology like beta-amyloid and phosphorylated

tau beginning several years before the clinical onset. The aim is to identify

genetic risk factors associated with the onset of AD.

Methods: We collected three microarray data of post-mortem brains of AD

patients and the healthy from the GEO database and screened differentially

expressed genes between AD and healthy control. GO/KEGG analysis was

applied to identify AD-related pathways. Then we distinguished differential

expressed genes between symptomatic and asymptomatic AD. Feature

importance with logistic regression analysis is adopted to identify the most

critical genes with symptomatic AD.

Results: Data was collected from three datasets, including 184 AD patients and

132 healthy controls. We found 66 genes to be differently expressed between

AD and the control. The pathway enriched in the process of exocytosis,

synapse, and metabolism and identified 19 candidate genes, four of which

(VSNL1, RTN1, FGF12, and ENC1) are vital.

Conclusion: VSNL1, RTN1, FGF12, and ENC1 may be the essential genes

that progress asymptomatic AD to symptomatic AD. Moreover, they may

serve as genetic risk factors to identify high-risk individuals showing an

earlier onset of AD.
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1 Introduction

Alzheimer’s disease (AD) is a chronic degenerative disease
characterized by the extracellular deposition of beta-amyloid
and intracellular accumulation of phosphorylated tau protein
(Spina et al., 2021). For older adults, AD is the most common
cause of dementia, with an incidence rate of approximately
1.5% among people over 65 years old and nearly 50%
among people over 90 years old (Scheltens et al., 2021).
Interestingly, cognitive impairment of many AD patients occurs
substantial years after pathological changes, such as amyloid
and neurofibrillary tangles (NFTs). In contrast, more than
20% of the aged population have an amyloid deposition.
Individuals with intact cognition and neuropathology consistent
with AD were called asymptomatic AD (AsymAD) (Patel
et al., 2019). AsymAD is distinguishable from normal aging
based on neuropathology, brain imaging, and cerebrospinal
fluid biomarkers (Ayodele et al., 2021). While some of these
individuals progress to symptoms related to cognition, which
deviate from mild cognitive impairment (MCI), and then to
AD, not all do. They are, therefore, a heterogeneous group,
representing those with prodromal AD and those impervious
to AD despite having pathological hallmarks. These individuals
are highly likely to develop symptomatic AD. Abundant
evidence has demonstrated genetic risk factors of AD, such
as APP, PSEN1, PSEN2, and apolipoprotein ε4 allele (APOE4)
(Lefterov et al., 2019). However, transcriptomic changes in
the brain, which might reveal AD vulnerability, are currently
unknown. In the present study, we identified genetic risk
factors for AD onset in asymptomatic and symptomatic
individuals with clear signs of AD pathology at autopsy.
Understanding the fundamental changes may shed light on
specific biological mechanisms involved in early pathological
hallmarks of AD, providing new therapeutic targets for early
intervention.

2 Materials and methods

2.1 Data acquisition and processing

We searched the microarray sequencing datasets of AD
patients’ post-mortem brain samples for 5 years on the Gene
Expression Omnibus database (GEO). Then we removed the
datasets with incomplete annotation of platform annotation
information. Finally, we selected three datasets of the same
platform [GSE139384 (Morimoto et al., 2020), GSE118553
(Patel et al., 2019), and GSE132903 (Piras et al., 2019)].
We integrated the temporal lobe data in the post-mortem
brains of 184 AD patients and 132 healthy people with
ComBat package (Supplementary Data Sheet 1). All the above
datasets were gathered using the Illumina HumanHT-12 V4.0
platform.

2.2 Screening of key differentially
expressed genes

We screened the differentially expressed genes (DEGs)
between AD patients and control in the processed new
dataset using the limma R package. We first use the
lmFit function to construct the linear model and then
use the contrasts fit function to calculate the contrast
of the model (estimated coefficient and standard error).
Next, eBayes function to compute moderated t-statistic,
moderated F-statistic, and log-odds of differential expression,
and use the top table function (adjust.method is ‘ fdr ’) to
extract the gene table. Finally, the differential genes were
screened by the standard of |logFoldChange| = 0.5, adjust
P = 0.05, and displayed visually by ggplot2 and heatmap.
Further, we performed weighted correlation network analysis
(WGCNA) with the new dataset we got to identify the co-
expression of hub genes.

2.3 Functional enrichment and
pathway analysis of DEGs

All the DEGs were analyzed by GO (Gene ontology)
and KEGG (Kyoto Encyclopedia of Genes and Genomes)
enrichment analysis to investigate the biological mechanisms.
With enrichgo and enrichKEGG functions in the clusterProfiler
package, we analyzed the differential genes and logFC
values to obtain significantly enriched gene functions and
pathways. GO analysis was annotated by org.Hs.eg.db package,
KEGG analysis set hsa as species information, p value
and q value were set to 0.05, and visualize with barplot
and GOChord. In order to reduce the poor enrichment
results caused by the fixed threshold method for screening
differential genes, we further performed GSEA analysis on
the overall genes list with logFC value of the new dataset
using the gseKEGG function in the clusterProfiler package,
organism is hsa.

2.4 Establishment of PPI network

We input DEGs list into the String database1 and obtained a
protein interaction network diagram and data forms. Then, we
downloaded the data tables and imported them into cytoscape
software, using the cytohubba plug-in to calculate the key
nodes. Based on the results of MCC algorithm, the interactive
network diagrams of different colors are drawn according to the
calculated scores.

1 https://cn.string-db.org
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TABLE 1 Datasets characteristics.

Datasets Tittle Platform Organism Submission
date

PMID Samples

GSE139384 Synaptopathy in Kii ALS/PDC, a disease concept based
on transcriptome analyses of human brains

GPL10558 (Illumina
HumanHT-12 V4.0
expression beadchip)

Homo sapiens October 25, 2019 32422904 6

GSE118553 Transcriptomic analysis of probable asymptomatic and
symptomatic Alzheimer’s brains

August 14, 2018 31063847 115

GSE132903 Transcriptome changes in the Alzheimer’s middle
temporal gyrus: importance of RNA metabolism and
mitochondria-associated membrane (MAM) genes

June 18, 2019 31256118 195

2.5 Differential genes between
symptomatic and asymptomatic AD

Differentially expressed genes were first analyzed between
asymptomatic and symptomatic AD groups in the GSE118553
dataset to identify the genetic risk factors for symptomatic
AD. We then overlapped these DEGs with AD-related
DEGs derived from WGCNA. Feature importance with a
logistic regression analysis were used to identify the predicted
importance of the DEGs further. Specifically, we first sorted
out the expression of immune-related differential expressed
genes in the validation set. Next, the matrix was input
into SPSS 26.0 software, and the binary logistic regression
analysis with the forward conditional method was carried
out with whether it was symptomatic AD as the dependent
variable and the expression of each gene as the independent
variable. Finally, the matrix of the key genes successfully
incorporated into the model was input into the R language,
the rms package was loaded, and the linear regression model
between these genes and symptomatic AD was constructed
using the lrm function. Then, the nomogram function
was used to draw a nomogram representing the regression
fitting to visually demonstrate the predictive power of these
genes.

3 Results

3.1 Demographic characteristics and
data processing

A total of 184 AD patients and 132 normal controls
were included in this study. The demographic information
is shown in Tables 1, 2. After standardized processing
and removing the batch effect, the distribution of the
three datasets tends to be comparable, indicating that the
processed data is highly uniform and quality (Supplementary
Figure 1).

TABLE 2 Datasets clinical characteristics.

Group Gender Age

AD Control Male Female ≤85 years >85 years

GSE139384 3 3 6 0 4 2

GSE118553 84 31 64 65 65 50

GSE132903 97 98 99 96 98 97

3.2 Identification of DEGs between AD
patients and healthy

Nighty-two DEGs were found, including 68 down-regulated
and 24 upregulated genes (Figures 1A,B). Next, we got the
Median Absolute Deviation (MAD) of each gene, and the most
minor top 30% genes were removed. Then we removed outlier
genes and samples using the goodSampleGenes method in the R
software package WGCNA (Figure 2C) and constructed a scale-
free co-expression network. Then we evaluated the optimal
power using the pick Soft Threshold function in the WGCNA
package with a threshold of 0.9 (Figure 2A). As is shown in
Figure 2B, the weighted gene network constructed with a power
value of six has good connectivity. To classify genes with similar
expression profiles into Gene modules, we set the gene tree’s
minimum size as 30, the sensitivity as 3, and the distance
less than 0.25 to synthesize modules. Finally, 18 co-expression
modules were obtained, and gene clustering maps and module
vector clustering maps were shown in Figures 2D,E (the gray
module is considered a gene set that cannot be assigned to any
module). Next, clinical information of the dataset was included
to clarify its correlation with the modules (Figure 2F). Finally,
based on the truncation criteria with |MM| > 0.8 and |GS| > 0.2,
we selected the top five modules with the highest coefficient as
the key modules: turquoise, dark turquoise, blue, brown, and
black modules. Among them, 585 genes with high connectivity
were extracted as hub genes, intersecting with the previously
obtained 92 DEGs. A total of 66 co-expressed differential genes
were left (Figure 2G).
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FIGURE 1

Differentially expressed genes between AD and control samples. (A) The right red genes represent significantly high expression in AD; the left red
genes represent significantly high expression in control. (B) The heatmap shows the top 50 genes significantly expressed in AD or ND samples.

3.3 Enrichment of DEGs and protein
interaction network

We analyzed these 66 DEGs in GO and KEGG databases.
We found that the GO database enriched regulating exocytosis,
synapse organization, presynapse, neuron projection terminus,
and transport vesicle pathways. Moreover, it is enriched in
protein kinase C binding, chloride transmembrane transporter
activity, and SNARE binding pathways (Figure 3A). The
GO plot package chord diagram showed that SYT13, PFN2,
NSF, PCLO, SYP, PRKCB, VAMP2, VSNL1, and SYT1 were
significantly enriched in multiple major pathways (Figure 3B).
While in the KEGG database is enriched in GABAergic synapse,
synaptic vesicle cycle, insulin secretion, morphine addiction,
and vasopressin-regulated water reabsorption pathways
(Figure 3C). To discuss the pathway enrichment of the whole
sample more comprehensively, we further performed GSEA
analysis. The results showed that these genes were significantly
enriched in 21 pathways, especially those associated with
Alzheimer’s disease and neurodegenerative diseases (Table 3).

Next, 66 DEGs were further analyzed with STRING
(Figure 4). After excluding 17 independent DEGs, we finally
constructed a protein interaction network map according to the
Maximal Clique Centrality (MCC) score, with the remaining 49
genes processed by Cytohubba. The top 10 hub genes are SYP,

SYT1, GABRG2, GABRA1, SLC12A5, GAD1, SV2B, STMN2,
VAMP2, and SCG2 (Table 4).

3.4 Gene expression profiling of
symptomatic and asymptomatic AD

Firstly, we extracted the temporal lobe information from
AsymAD (n = 32) and SymAD (n = 52) in GSE118553
dataset. Seven hundred and sixty-two DEGs were identified,
including 30 upregulated genes and 732 down-regulated genes
(Figures 5A,B). Then, we sequence overlapped these DEGs
with 92 AD-specific DEGs and WGCNA hub genes and
finally obtained 19 key genes, including VSNL1, TAGLN3, SYP,
SVOP, SLC12A5, RTN1, PCSK1, PAK1, NSF, NEFM, NCALD,
LOC387856, HPRT1, GABRG2, FGF12, ENC1, CHGB, CAP2,
and ADCYAP1 (Figure 5C and Table 5).

3.5 VSNL1, RTN1, FGF12, and ENC1
might be genetic risk factors
associated with AD onset

Next, we performed a stepwise logistic regression analysis
of these 19 DEGs to identify symptomatic AD risk factors
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FIGURE 2

WGCNA analysis results. (A) The corresponding scale-free topological model fit indices at different soft threshold powers. (B) The
corresponding mean connectivity values at other soft threshold powers. (C) Sample clustering. (D) Cluster dendrogram of genes. (E) Correlation
map of vector clustering of 18 modules. (F) Correlation heatmap between modules and clinical features, the lower left corner of each grid is the
P-value, and the upper right corner is the correlation coefficient. (G) The Wayne diagram of intersection with 585 hub genes obtained by
WGCNA and 92 DEGs by limma.
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FIGURE 3

GO and KEGG enrichment analysis. (A) The most significant enrichment pathways in the GO database. (B) Chord diagram of GO enrichment
analysis. (C) The most considerable enrichment pathways in the KEGG database.

TABLE 3 GSEA results.

ID Description setSize Enrichment score Adj. P-value

hsa05168 Herpes simplex virus 1 infection 467 0.284718529 8.72× 10−5

hsa05022 Pathways of neurodegeneration 434 −0.333872677 9.04× 10−5

hsa05010 Alzheimer’s disease 345 −0.318194061 3.88× 10−3

hsa05014 Amyotrophic lateral sclerosis 320 −0.335493776 9.26× 10−4

hsa05016 Huntington disease 269 −0.363160142 3.04× 10−4

hsa05020 Prion disease 240 −0.398580749 3.67× 10−5

hsa05012 Parkinson’s disease 232 −0.41709762 4.81× 10−5

hsa04024 cAMP signaling pathway 217 −0.315166868 4.24× 10−2

hsa03010 Ribosome 131 −0.360481409 4.24× 10−2

hsa00190 Oxidative phosphorylation 103 −0.505392372 2.21× 10−5

hsa04350 TGF-beta signaling pathway 92 0.417938926 1.33× 10−3

hsa04911 Insulin secretion 86 −0.432626299 1.24× 10−2

hsa04512 ECM-receptor interaction 86 0.363314004 4.22× 10−2

hsa04260 Cardiac muscle contraction 81 −0.4123577 3.67× 10−2

hsa04721 Synaptic vesicle cycle 78 −0.562303369 4.81× 10−6

hsa05120 Epithelial cell signaling in Helicobacter pylori
infection

68 −0.44664597 2.13× 10−2

hsa05110 Vibrio cholerae infection 49 −0.547099768 1.48× 10−3

hsa00620 Pyruvate metabolism 46 −0.496786058 2.67× 10−2

hsa03050 Proteasome 45 −0.530909935 4.32× 10−3

hsa00020 Citrate cycle (TCA cycle) 30 −0.6441294 1.17× 10−3

hsa04966 Collecting duct acid secretion 27 −0.577941421 2.69× 10−2
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FIGURE 4

PPI network.

TABLE 4 Cytohubba results.

Gene name Description MCC Degree LogFC

SYP Synaptophysin 398 18 −0.624723213

SYT1 Synaptotagmin-1 368 18 −0.972911963

GABRG2 Gamma-aminobutyric acid type B receptor subunit 2 280 11 −0.745760764

GABRA1 Gamma-aminobutyric acid receptor subunit alpha-1 266 12 −0.837374053

SLC12A5 Solute carrier family 12 member 5 241 7 −0.664705232

GAD1 Glutamate decarboxylase 1 157 9 −0.743098858

SV2B Synaptic vesicle glycoprotein 2B 145 10 −0.665987783

STMN2 Stathmin-2 88 13 −0.640119418

VAMP2 Vesicle-associated membrane protein 2 81 10 −0.682915931

SCG2 Secretogranin-2 51 7 −0.665987783

and obtained four genes: VSNL1, RTN1, FGF12, and ENC1
(Table 6). Specifically, the goodness of fit and predictive
ability of the model are as follows: (1) according to the
Omnibus Test results, the chi-square value of the model
is 54.070, and the p-value is <0.001, indicating that the
model is statistically significant; (2) according to the results
of Hosmer and Lemeshow Test, the p-value of the fitting
model is 0.229 > 0.05, which indicates that the information

in the current data has been fully extracted and the goodness
of fit of the model is high; (3) according to the results of
the classification table, the sensitivity of the model is 90.4%
and the specificity is 80.4%. On the whole, it has a correct
prediction rate of 88.1% for all samples, indicating that it has
good predictive ability. Through the nomogram, we found that
decreased VSNL1, RTN1, and increased FGF12 and ENC1 were
positively correlated with disease risk (Figure 5D). Then, we
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FIGURE 5

The gene expression difference between AsymAD and SymAD. (A) The right red genes represent significantly high expression in SymAD; the left
red genes represent increased expression in AsymAD. (B) The heatmap shows the top 50 genes predominantly expressed in AsymAD or SymAD.
(C) Wayne diagram to intersection DEGs of three difference analysis. (D) Nomogram of four essential genes. (E–H) Expression differences of
four critical genes in AsymAD and SymAD group. ** means p-value < 0.01; **** means p-value < 0.0001.

further examined the expression levels of these four genes
in disease grouping and observed that the expression of all
these four genes was significantly lower in the SymAD group
(Figures 5E–H).

4 Discussion

The present study analyzed three datasets of post-mortem
brain samples of AD patients and the healthy. Since the
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TABLE 5 Nineteen DEGs list.

Gene name Description LogFC Adj. P-value

PCSK1 Phosphoenolpyruvate carboxykinase 1 −0.914236026 4.27× 10−4

CAP2 Cyclase associated actin cytoskeleton regulatory protein 2 −0.8927109 6.52× 10−6

LOC387856 Coiled-coil domain containing 184 (CCDC184) −0.872134325 1.49× 10−6

VSNL1 Visinin like 1 −0.823806102 2.71× 10−6

PAK1 p21 (RAC1) activated kinase 1 −0.752922248 3.19× 10−6

GABRG2 Gamma-aminobutyric acid type A receptor subunit gamma 2 −0.751904972 9.59× 10−6

SLC12A5 Solute carrier family 12 member 5 −0.73219574 3.82× 10−6

ADCYAP1 Adenylate cyclase activating polypeptide 1 −0.716567516 1.08× 10−3

TAGLN3 Transgelin 3 (Neuronal protein NP2) −0.715251481 2.70× 10−6

NCALD Neurocalcin delta −0.694917396 8.29× 10−3

SVOP SV2 related protein −0.666215273 1.93× 10−4

RTN1 Reticulon 1 (Neuroendocrine-specific protein) −0.663450406 6.98× 10−6

FGF12 Fibroblast growth factor 12 −0.657390284 1.46× 10−4

ENC1 Ectodermal-neural cortex 1 −0.649388586 2.01× 10−2

CHGB Chromogranin B −0.645099164 5.03× 10−6

NSF N-Ethylmaleimide sensitive factor, vesicle fusing ATPase −0.62336505 4.38× 10−6

NEFM Neurofilament medium chain −0.609879042 2.56× 10−3

SYP Synaptophysin −0.599413737 4.34× 10−6

HPRT1 Hypoxanthine phosphoribosyltransferase 1 −0.587576219 7.57× 10−6

temporal lobe is demonstrated to be most related to AD,
we extract the specific brain region for further analysis.
A dataset with information on asymptomatic AD was applied
for subsequent analysis of genetic risk factors and their onset.
Differential analysis, WGCNA analysis, function enrichment
pathway analysis, protein interaction network analysis, and
logistic regression analysis were used to interpret the data.
Finally, we found four essential genes closely related to AD,
including VSNL1, RTN1, FGF12, and ENC1.

A lot of analytical methods have found many risk molecules
associated with AD (Talwar et al., 2014). However, most recent
studies still focus on genetic characteristics of early-onset or
familial AD (Mold et al., 2020) and pay less attention to the gene
expression of late-onset AD. Therefore, we firstly investigated
the differential gene expression profiling between AD and the
healthy. Among the 92 candidate genes, the most significantly
upregulated genes were APLNR, GFAP, and AEBP1, while the
most down-regulated genes were CHGB, SYT1, and RGS4. With
further analysis by WGCNA, we finally obtained 66 differentially
expressed genes.

Moreover, SYP and SYT1 were identified as top hub gene
nodes in the protein interactions network, suggesting that these
two genes play a vital role in the pathogenesis of AD. SYP has
been widely demonstrated to cause cognitive disability. It mainly
functions as a membrane protein of small synaptic vesicles in the

central nerve system (Xiao et al., 2021). It directs the targeting
of vesicle-specific membrane protein 2 (synaptobrevin) toward
intracellular compartments (Chen et al., 2022). The other vital
DEGs are SYT1, encoding synaptotagmin, integral membrane
proteins of synaptic vesicles, and serves as a Ca2+ sensor in
vesicular trafficking and exocytosis (Baker et al., 2018; Shi et al.,
2020).

There are several canonical pathways in AD, including
inflammatory responses, cholesterol, lipid metabolism, and
endosomal vesicle recycling (Guerreiro and Hardy, 2014; Wang
et al., 2021). Interestingly, metabolism and cellular biological
functions were also observed in this study. It is noted that
these DEGs were mainly enriched in exocytosis, synapse, and
transport pathways in the GO database. Among them, the most
enriched pathway in BPs is neurotransmitter transport and
regulation of exocytosis. Apart from this, the most prominent
pathway for enrichment in CCs is the presynapse and neuron
projection terminus.

In contrast, protein kinase C binding and chloride
transmembrane transporter activity are primarily significant
pathways. Similarly, the most prominent enrichment in the
KEGG database is the synapse, metabolism, and hormone-
related pathways. All of the evidence mentioned above suggest
that the DEGs between AD and controls are closely related to
cell membrane function, transport, synapse, and metabolism.
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TABLE 6 Logistic regression analysis of four key genes.

Variable B Std. err. Wald P OR 95% CI

VSNL1 −5.058 1.588 10.147 0.001 0.006 0.000–0.143

RTN1 −5.208 1.768 8.682 0.003 0.005 0.000–0.175

FGF12 2.884 1.495 3.721 0.054 17.891 0.955–335.245

ENC1 2.347 0.851 7.607 0.006 10.458 1.973–55.444

Meanwhile, it is noted that AsymAD is a subtype of
preclinical AD characterized as an asymptomatic at-risk state
for AD, where beta-amyloids in the brain and CSF are thought
to be the primary evidence (Mantzavinos and Alexiou, 2017).
Basic scientists indicate that alterations in neurons, microglia,
and astroglia drive the disease’s insidious progression before
cognitive impairment appear (Elahi et al., 2020). In addition,
data obtained through imaging studies with PiB-PET also
suggests that Aβ deposits may appear up to two decades
before the onset of clinical manifestations of dementia. There
is growing evidence that pathological changes in AD have
occurred 10 years before symptoms arise, but not all AsymADs
will translate into SymADs. AsymADs are not the necessary
stage of AD. Therefore, in the second part, we discussed the
difference between AsymAD and SymAD to find the risk factors
for converting AsymAD to SymAD and provide targets for
subsequent drug treatment.

In the comparative analysis of AsymAD and SymAD, we
obtained 19 genes by intersection. Among them, compared
with AD genes through GeneCards2 and MalaCards3 databases,
we found that CAP2, VSNL1, PAK1, SYP, ENC1, NEFM,
ADCYAP1, SVOP, CHGB are related to Alzheimer’s disease;
LOC387856 (CCDC184) and SYP are associated with dementia.
Finally, according to logistic regression analysis, four molecules
most related to clinical transformation (VSNL1, RTN1, FGF12,
and ENC1) were screened out.

Visinin-like 1 (VSNL1) is a member of a subfamily of
neuronal calcium sensor proteins. The encoded visinin-
like protein 1 (VILIP-1) upregulates functional α4β2
nicotinic/acetylcholine receptors in hippocampal neurons
(Recabarren and Alarcon, 2017). Several studies have shown
that in patients with early symptomatic AD, the level of
VILIP-1 in cerebrospinal fluid is closely related to whole
and regional brain atrophy and is associated with amyloid
load in normal individuals in cognition (Tarawneh et al.,
2012). Moreover, VILIP-1 influences the intracellular neuronal
signaling pathways involved in synaptic plasticity in the central
nervous system. It also participates in cyclic nucleotide cascades,
nicotinic signaling, and Ca2+ homeostasis, leading to neuronal
loss (Groblewska et al., 2015). In this study, the expression of

2 https://www.genecards.org

3 https://www.malacards.org

VSNL1 in SymAD was significantly downregulated, which was
consistent with the results of Mirza and Rajeh (2017).

Reticulon 1 (RTN1) is an endoplasmic reticulum stress
protein in the reticulon family involved in endocrine secretion
and membrane trafficking. RTN1 is expressed predominantly in
neuroendocrine tissues. Its function is mainly implicated
in DNA binding or epigenetic modification, neuronal
differentiation, and neurodegenerative diseases such as
AD (Recabarren and Alarcon, 2017). Considerable evidence
suggests that all RTN proteins and receptor NgR are engaged in
the pathology change of AD by regulating the beta-site amyloid
precursor protein-cleaving enzyme 1 (BACE1) function or
APP processing, and thereby product amyloid β in the brain
(Kulczynska-Przybik et al., 2021). Previous studies have
observed a significant decrease in RTN1 expression in the
frontal cortex of AD patients (Kim et al., 2000). Similarly, it
was also significantly downregulated in the temporal cortex of
symptomatic AD patients here.

The fibroblast growth factor 12 (FGF12) encodes the growth
factor family protein involved in nervous system development
and the positive regulation of voltage-gated sodium channel
activity (Siekierska et al., 2016). FGF family members possess
broad cell survival activities and are involved in various
biological processes, including embryonic development, cell
growth, morphogenesis, tissue repair, tumor growth, and
invasion. The PI3K-Akt and apoptotic pathways in fibroblasts
are the most relevant pathways to this gene. Gene Ontology
annotations closely related FGF12 to growth factor activity
and transmembrane transporter binding. This gene has been
shown to play an essential role in the pathogenesis of epileptic
encephalopathy (Deciphering Developmental Disorders Study,
2017).

The ectodermal-neural Cortex 1 (ENC1) gene is highly
expressed in developing neurons and plays a role in the
oxidative stress response as a regulator of the transcription
factor Nrf2. This gene encodes a member of the kelch-related
family of actin-binding proteins, which is implicated in neurite
development and neuronal process formation during neuronal
differentiation. In addition, ENC1 is upregulated in vitro models
of neural injuries, such as oxygen-glucose deprivation or toxic
intracellular protein aggregation and endoplasmic reticulum
stress. Among its related pathways are the glucocorticoid
receptor and wnt signaling pathway. Furthermore, based on
cognitive, pathological, and genomic data, ENC1 was identified
as a potential risk factor in cognitive performance and
neuropathological burden in the aging population (White et al.,
2017). Similar to other studies, we found a significant decrease
in ENC1 expression in the temporal cortex of symptomatic AD
patients (Wang et al., 2022).

In addition to the expression changes, the SNP loci of
these genes are also worthy of further study. In previous
researches, Hollingworth et al. (2012) found that VSNL1
(rs4038131) showed the most robust association with AD
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symptoms compared to controls. White et al. (2017) announced
that rs76662990G locus in ENC1 was associated with slower
cognitive decline in multiple domains. However, there is
little evidence for the genetic locus associated with the risk
of symptomatic AD, and more analysis and experimental
studies are needed to gradually discover the mechanism behind
it.

It is worth noting that our integrated dataset included a
total of 184 patients with AD and 132 non-AD participants.
The number of samples investigated ranged from 6 to 195
cases across the studies. There was no statistical difference
among datasets in age. In the same way, we found that
a total of 6 data sets obtained from the same platform
(GPL10558) were included in the study of Zhang et al.
(2019), of which the minimum sample size was 13, and
the maximum was as many as 106. The three datasets we
selected were also sequenced by using the same platform.
Additionally, a total of 4 microarray data sets were included
in the study of Yin et al. (2016). The small sample consisted
of 22 cases of hepatocellular carcinoma and 21 liver tissue
while the large sample covered 225 cases of hepatocellular
carcinoma and 220 liver tissue. They also claimed that there
was no significant difference between the datasets. We are
trying to include as many datasets as possible. Sample size
imbalance is inevitable as a consequence which is one of the
drawbacks of such research. Researchers need to further think
about how to solve this problem to improve the accuracy of
analysis.

The result of the present study provides new insight
into the earliest biological changes occurring in the brain
before the manifestation of clinical AD symptoms. It
offers new potential therapeutic targets for early disease
intervention. VSNL1, RTN1, FGF12, and ENC1 may be
the essential genes that progress asymptomatic AD to
symptomatic AD. Moreover, they may serve as genetic
risk factors to identify high-risk individuals showing an
earlier onset of AD.
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