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Although theoretical studies have suggested that working-memory capacity

is crucial for academic achievement, few empirical studies have directly

investigated the relationship between working-memory capacity and

programming ability, and no direct neural evidence has been reported to

support this relationship. The present study aimed to fill this gap in the

literature. Using a between-subject design, 17 programming novices and

18 advanced students performed an n-back working-memory task. During

the experiment, their prefrontal hemodynamic responses were measured

using a 48-channel functional near-infrared spectroscopy (fNIRS) device.

The results indicated that the advanced students had a higher working-

memory capacity than the novice students, validating the relationship

between programming ability and working memory. The analysis results also

showed that the hemodynamic responses in the prefrontal cortex can be

used to discriminate between novices and advanced students. Additionally,

we utilized an attention-based convolutional neural network to analyze the

spatial domains of the fNIRS signals and demonstrated that the left prefrontal

cortex was more important than other brain regions for programming ability

prediction. This result was consistent with the results of statistical analysis,

which in turn improved the interpretability of neural networks.
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Introduction

In the past decade, computer science and programming
have been applied in many fields, such as engineering, social
sciences music, art, and biology (Buitrago Flórez et al., 2017).
Consequently, programming ability has become a basic skill that
students may need to master. Several studies have suggested that
students with better programming ability have better problem-
solving skills and logical reasoning ability (Tu and Johnson,
1990; Shute, 1995; Wing, 2008; Werner et al., 2012; Ivanova et al.,
2020; Relkin et al., 2021).

Programming requires memorization of a wide range of
information and the ability to manipulate the information at
the same time. Students process and hold this information
in their working memory, the mode of information storage
in the human brain as proposed by cognitive psychology
(Baddeley and Hitch, 1974). Working memory is used to
store task-relevant information for further application in the
process of performing cognitive tasks. It is a memory system
with limited capacity for temporary processing and storage
of information that supports human thought processes by
providing an interface for perception, long-term memory, and
action (Baddeley, 2003). Working memory is not only the
core of human cognition but also an important component of
learning, reasoning, problem-solving, and intellectual activity
(Barrouillet and Lépine, 2005; Baddeley, 2010). Working
memory plays a critical role in learning. Extensive research
has demonstrated a significant relationship between working-
memory capacity and academic achievement (Swanson and
Alloway, 2012; Anmarkrud et al., 2019). Studies have shown
that high performance in math and readings are linked to
high working-memory performance (Purpura and Ganley, 2014;
Cantin et al., 2016). However, to the best of our knowledge, none
of the prior studies showed that programming ability was related
to working memory. Nevertheless, since code comprehension
involves diverse cognitive domains, including math, logic, and
language (Ivanova et al., 2020), programming ability may also
be assumed to be related to students’ working memory.

The n-back task is one of the most popular experimental
paradigms for measuring working memory. The n-back
paradigm is a continuous task paradigm (Cohen et al., 1997).
In the n-back experiment, participants are asked to monitor
a series of verbal/non-verbal stimuli and indicate whether the
stimuli currently presented are the same as those that appeared
in n trials previously (Braver et al., 1997). The traditional n-back
experimental measurements include evaluation of accuracy and
reaction time.

In recent years, many researchers have combined functional
magnetic resonance imaging (fMRI), electroencephalography
(EEG), and functional near-infrared spectroscopy (fNIRS) to
measure physiological signals in task-evoked experimental
processes to obtain the underlying neuroscientific mechanism

of working memory (Ragland et al., 2002; Herff et al., 2013; Lv
et al., 2014, 2015; Yeung et al., 2021).

In comparison with fMRI, fNIRS requires a small volume
and is lightweight and portable while yielding images with a
higher temporal resolution. fNIRS also shows a faster spatial
response speed than EEG (Ferrari and Quaresima, 2012; Hong
and Yaqub, 2019; Quaresima and Ferrari, 2019; Yang et al.,
2019).

Functional near-infrared spectroscopy is a neuroimaging
technique for measurement of hemodynamic processes in
the brain. In this technique, the absorption of infrared light
with a wavelength of 650–950 nm passing through the brain
tissue is evaluated to monitor the changes in blood oxygen
concentration in different brain tissue regions (Pinti et al.,
2020) and obtain insights into the same activation patterns
as fMRI. Matthes and Gross (1938) first demonstrated the
spectroscopic determination of oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) in human tissue in the
red and near-infrared regions. In 1993, some research groups
proved that fNIRS could be used to investigate brain activity
non-invasively (Chance et al., 1993; Hoshi and Tamura, 1993;
Villringer et al., 1993). Wolf et al. (2002) first used near-
infrared spectroscopy and detected significant changes in the
local concentrations of HbO and HbR during brain activity.
When the brain executes a task, the increased metabolic
demands for oxygen and glucose result in an oversupply of local
cerebral blood flow (CBF) to satisfy the increased metabolic
demand. CBF is regulated by several neurovascular coupling
mechanisms. Therefore, the excessive supply of local CBF leads
to an increase in HbO concentration and a decrease in HbR
concentration (Pinti et al., 2020). Some previous studies have
shown that fNIRS is sensitive to load-dependent working-
memory changes in activation (Herff et al., 2013; Meidenbauer
et al., 2021) and have demonstrated linear increments in HbO
concentrations in frontal activation based on n-back levels
(Ayaz et al., 2012; Yeung et al., 2021). The results of a meta-
analysis of brain imaging data acquired during the n-back task
showed that the participants’ prefrontal cortex was activated
consistently (Nystrom et al., 2000; Owen et al., 2005). Therefore,
in this study, we mainly focused on the concentration changes
in HbO and HbR in the prefrontal cortex.

Functional near-infrared spectroscopy is also an effective
approach to explore the temporal and spatial states of the
human brain (Maki et al., 1995). It provides a balance between
temporal and spatial resolution in comparison with other
neurophysiological modalities, making it a viable option for
mental workload estimation (Isbilir et al., 2019). In the present
study, we focused on investigating the channel-wise analysis
of fNIRS spatial features to explore the most important brain
regions for predicting programming ability.

A recurrent neural network (RNN) is usually considered
the best neural network structure for time series prediction,
but recent studies have shown that a convolutional neural
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network (CNN) can perform these predictions comparably
not only with greater accuracy but also more easily and
clearly (Bai et al., 2018), particularly when there are many
similar time series to learn from Chen et al. (2019). Dilated
convolutions can make one-dimensional CNNs effectively learn
time series dependencies (Yu and Koltun, 2016; Borovykh et al.,
2018). In RNNs, the prediction of subsequent time steps must
occur after the previous time step has been completed. In
contrast, convolutions can be performed in parallel because
the filters used in each layer are the same. Therefore, in
training and evaluation, CNNs can process long input sequences
simultaneously rather than sequentially as with RNNs (Bai et al.,
2018). Since fNIRS signals in the n-back task show multiple
similar time series, and we aimed to capture features over
the global theoretical receptive fields, a CNN was the best
choice for the backbone network in the present study. CNNs
have been widely used for automatic fNIRS signal analysis
(Trakoolwilaiwan et al., 2017; Janani et al., 2020) and have been
used to investigate mental workload levels using multichannel
fNIRS signals (Ho et al., 2019; Saadati et al., 2020). One
previous study employed a CNN to analyze fNIRS features
during an n-back task and proved that CNNs can learn features
automatically and obtain accurate results (Yang et al., 2020).

False discovery rate (FDR) measurements (Singh and Dan,
2006) and statistical parametric mapping (SPM) (Koh et al.,
2007) have been applied for channel-wise analysis for fNIRS
signals. However, these statistical analysis methods corrupt the
temporal domain information in fNIRS signals. Among deep
neural networks, squeeze-and excitation network (SENet).

SENet, NIRSIT, PET. represents the pioneering concept of
channel attention (Guo et al., 2022). The traditional pooling
layer reduces the feature map, resulting in damage to channel
important information. In contrast, a squeeze-and-excitation
(SE) block is a type of attention layer that can collect
channel important weight in train processing. The SE block
can be used to collect global information, capture channel-
wise relationships, and incorporate spatial attention into the
structure of the CNN (Hu et al., 2020), thereby improving the
interpretability of neural networks. Moreover, in comparison
with the application of convolution in feature mapping, the
computational cost of SE and weighted summation is very low
(Guo et al., 2022). However, SENet, which is an advanced, novel
channel-attention network, has not been reported for use in
fNIRS signal analysis.

To the best of our knowledge, no previous study has directly
explored the brain mechanisms underlying the relationship
between working memory and programming ability by using
fNIRS data. Thus, the first aim of the current study was to
validate the relationship between programming ability and
working memory by using an n-back task. The second aim
was to investigate whether the fNIRS signals detected during
the performance of n-back tasks can predict the participant’s
programming ability. The third aim was to explore the capability

of the attention-based CNN method to analyze the spatial
information of the fNIRS signals to identify the optimal brain
regions to predict programming ability. Thus, we aimed to
explore whether general psychological experiments could be
used to predict learners’ programming ability, and to provide
neuroscience evidence for the findings.

Materials and methods

Participants

Thirty-five participants (17 novices and 18 advanced
students) were recruited from the School of Information and
Electronic Engineering, Zhejiang University of Science and
Technology in China. The novice group included 13 male and
four female participants, while the advanced group included
14 male and four female participants. All participants were
over 18 years of age [mean ± standard deviation (SD),
20.61± 1.23 years].

The novices were freshmen from C++ courses who had not
undergone programming-intensive training previously. On the
other hand, the advanced students were from the programming
competition team who had at least 2 years of programming-
intensive training and had at least received an award in the
international collegiate programming contest (We did not
investigate the effect of programming training on working
memory in the present study, and merely used this approach to
select participants). Before the experiment, the participants were
asked to complete a programming level test, which consisted of
ten items with ten points for each completely correct answer and
deductions for incomplete results. The maximum total score in
the programming level test was 100. The advanced students had
higher scores on the programming level test than the novices
(mean ± SD, 83.9 ± 5.96 vs. 50.0 ± 7.71). An independent-
sample t-test revealed that the scores on the programming level
test were significantly different between the two groups [F (1,
34) = 214.07, p < 0.001,η2

p = 0.87].
All participants signed the informed consent form before the

experiment and received a small gift at the end of the study to
thank them for their time and effort.

Experimental setup and tasks

The participants were assigned to two groups: novice
and advanced students. The experimental procedures were
conducted through computer programs based on E-prime, a
general psychological experiment software. Each participant
was individually tested in a laboratory environment for
approximately 30 min. Before completing the task, participants
learned about the experimental procedure. The participants
were asked to relax and do nothing as the baseline task, and
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measurements obtained during this baseline task were used as
the baseline for comparison of fNIRS signals.

The present study employed an n-back task to investigate
the participants’ working memory. The participants monitored
a series of character stimuli and responded whenever a stimulus
presented was the same as the one presented n trials previously
(Owen et al., 2005). The main n-back task involved 30 blocks,
with 10 blocks of each n-back level presented pseudorandomly
(Braver et al., 1997). Figure 1 shows the trial schematic of the
n-back task conditions in the present study. For example, in the
2-back task, the third C did not match the first A. However,
the fourth B matched the second B, so the participants were
required respond positively whenever the character they saw was
the same as the one they viewed two characters earlier. fNIRS
data were recorded continuously during the entire session.

Functional near-infrared spectroscopy
data acquisition

In the present study, we focused on the HbO and
HbR concentration changes in the prefrontal cortex. The
hemodynamic responses measured in the prefrontal cortex
were consistent enough to distinguish three levels of n-back
workloads (Owen et al., 2005; Herff et al., 2013).

Functional near-infrared spectroscopy (fNIRS) data were
recorded at a sampling rate of 8.13 Hz using a wearable NIRS

device, the NIRSIT model from OBELAB (Korea). The NIRIST
device has a comprehensive 48-channel system and can capture
depth-dependent hemodynamic changes in the prefrontal
cortex. This system utilizes 24 laser sources (780/850 nm;
maximum power under 1 mw) and 32 photodetectors (Choi
et al., 2016). The grouping of NIRSIT channels is shown in
Figure 2 and includes the right (#1–16), center (#17–32), and
the left (#33–48) regions.

Functional near-infrared spectroscopy
data pre-processing

Figure 3 presents the flow diagram for fNIRS data pre-
processing. We first loaded fNIRS data into the NIRSIT Analysis
Tool for visual inspection, segmentation of the main n-back
trials from practice trials, and division of the prefrontal cortex
into three regions—right, center, and left—as shown in Figure 2.
We then performed visual inspection at the participant level to
examine overall data quality and to evaluate the quality of the
data obtained from both sides of the prefrontal cortex, which
showed a much lower signal-to-noise ratio (SNR) than the data
from the center of the prefrontal cortex.

Since each participant had a different completion time,
we tailored the data with the shortest completion time. Thus,
the three n-back tasks had different data lengths. However, in

FIGURE 1

Trial schematic of the n-back task conditions.
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FIGURE 2

Channel configuration in our experiment.

FIGURE 3

Flow diagram of functional near-infrared spectroscopy (fNIRS) data pre-processing for the study.

the subsequent data processing, we focused on the slope and
statistical features that are less affected by data length.

Visual inspection was performed by examining the
spectrogram of every channel to identify the presence of cardiac
oscillations, which are typically approximately 1 Hz (Tong et al.,
2011). The presence of this cardiac signal is a good indicator
that the optical density signals are successfully coupled with a
physiological hemodynamic response (Hocke et al., 2018). This
method was employed for preliminary selection of participants.
In this visual inspection, one participant with unusable data,
which was defined by the presence of more than seven unclean
channels in one area, was identified and excluded from further
analyses. Thus, the novice and advanced student groups
included data from 17 participants each.

Then, we used the NIRSIT Analysis Tool to convert the
raw light intensity data into HbO and HbR concentrations
by means of the modified Beer–Lambert law (Sassaroli and
Fantini, 2004). However, the signals still contained biological

and technical artifacts. Several cardiovascular phenomena, such
as heart beats, respiration, and blood pressure (Mayer waves),
influenced the recorded data. Movement artifacts such as
high-frequency spikes, shifts from baseline intensity, and low-
frequency variations, which are present in most fNIRS datasets,
can severely affect the quality of recorded data (Franceschini
et al., 2006; Huppert et al., 2009).

Therefore, we conducted further data processing in Python-
SciPy. To attenuate heartbeat and other biological signals,
we used an elliptical Infinite Impulse Response (IIR) low-
pass filter with a cutoff frequency of 0.5 Hz and a filter
order of 6, which robustly removed biological artifacts in the
data (Herff et al., 2013). Then, we tried to use the wavelet
artifact removal method to reduce the effect of movement
artifacts. Since the signals showed channel- and participant-
wise variations and the wavelet basis function had limited
adaptability, we found it difficult to identify a suitable wavelet
basis function to remove the movement artifacts effectively.
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Therefore, we used the empirical mode decomposition (EMD)
method, which can decompose signals without any additional
parameters and therefore robustly reduced the influence of
movement artifacts and Mayer wave-like effects in the data.
Some of the spontaneous physiological information, such as
breathing rate (∼0.3 Hz) and very low-frequency oscillations
(<0.01 Hz), were still reflected in the data obtained for post-
processing analysis. Therefore, we used the EMD method to
deal with this noise after applying a low-pass filter, since direct
application of a high-pass filter would have destroyed other
useful signal components. Furthermore, due to various factors,
the amplitude and intensities of the acquired hemodynamic
signals differed significantly among participants. To attenuate
the influence of a single participant’s data on the grand average
of acquired hemodynamic signals, we subtracted the first value
of that channel from the signal of all channels and rejected
channels that may have significantly influenced the grand
average. After these treatments, we obtained information on
trends in HbO and HbR concentrations.

The slope of the trend data (Herff et al., 2013) is often used
as a simple but effective feature. To obtain this slope, we fitted
a straight line to the data using linear regression with a least-
squares approach.

Attention-based convolutional neural
network for functional near-infrared
spectroscopy spatial feature analysis

The structure of the attention-based CNN that we
introduced to analyze the fNIRS signals is depicted in
Figure 4, with the channel-attention blocks showing the spatial
importance of fNIRS channels. After data pre-processing as
described in Section “Functional near-infrared spectroscopy
data pre-processing,” each channel of data was resampled and
rescaled to a uniform length L = 256. Then, we stacked all
channels to build a 48 × 256 feature matrix and used direct
resampling and rescaling. The fNIRS signals did not contain
periodic frequency information, which may have been corrupted
by those processes.

In our training procedure, the mean-squared-error (MSE)
method was chosen for the loss function.

MSE =
1
n

n∑
i = 1

(yi − yi)
2

Here, we choose Adam as our optimizer and set the initial
learning rate to 0.01.

Three SE blocks were inserted into three normal
convolution layers. After the global average pooling operator,
each channel data point was consolidated into one data point.
In the first SE block, the fully connected layer transforms
the 1 × 48 vector to 1 × 24; this process is also called the
“squeeze.” The squeezing function also serves to embed the

global distribution of feature responses over all channels. This
operator is followed by an excitation operator, which consists of
a fully connected layer and a sigmoid activation layer. Excitation
is a self-gating mechanism (Hu et al., 2020) that produces a
mask representing the per-channel modulation weights. These
weights are then applied to the original feature map to generate
the new output. This series operation is also known as the
self-attention operation (Vaswani et al., 2017). The feature
vector needs to be squeezed small and then return to the origin
scale via excitation because we aimed to improve the training
pressure and to prevent overfitting. The reduction factor needs
to be carefully adjusted within the training process. A special
classified task was chosen. After proper training, we opened the
SE block to observe the channel-wise weights mask.

The backbone network of the attention-based CNN we
used (as shown in Figure 4) had a traditional CNN structure.
Here, FC refers to the fully connected layer; BN refers to the
batch-normalization layer; and the two round circles indicate
the dot-product operator. However, to prevent mixing of the
channel information, a generic convolution (GC) layer cannot
be used at the beginning of the network. As illustrated in
Figure 4, the key point is to replace the first GC layer with
a depth-wise convolution (DC) layer before the self-attention
mechanism finds the important channels. Nevertheless, the
other convolution layers are still GC layers. The DC layer
ignores the interchannel information, which must be remedied
with a point-wise convolution (PC) layer. This will complicate
the overall structure of our neural network.

Due to the limited amount of training data in this study,
the neural network was easily overfitted. However, in our
training procedure, we were not overtly concerned with the
generalization properties of the neural network. Instead, we
aimed to reveal the importance of channels. The main purpose
of this model is to train the channel-attention block, and
some degree of overfitting can help make important channels
more obvious (Hu et al., 2020). Thus, model overfitting can be
acceptable for general inference.

Results

The criterion for statistical significance was set at p < 0.05.
The Greenhouse–Geisser correction was used to compensate
for sphericity violations. Effect sizes were measured by η2

p, with
η2
p = 0.01, 0.06, and 0.14 indicating small, medium, and large

effects, respectively (Fritz et al., 2012).

n-back performance

The descriptive statistics for accuracy and reaction time in
each group are presented in Table 1. Accuracy was calculated
by determining the average percentage of correct trials under
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FIGURE 4

The structure of the attention-based convolutional neural network.

each back condition, while reaction time was computed by
determining the mean across correct trials for each back
condition. As shown in Table 1, novices performed the trials
with lower accuracy and slower reaction times than advanced
students over each back level.

Paired t-tests indicated that the accuracies for the 1-back and
2-back conditions were near the ceiling levels and did not differ
in both advanced students and novices. Accuracy for the 3-back
condition was marginally significantly lower than those for the
1-back [t (16) = 1.984, p = 0.073] and the 2-back [t (16) = 2.072,
p = 0.063] conditions among the advanced students. However,
accuracy for the 3-back condition was significantly lower than
those for the 1-back [t (16) = 4.690, p = 0.001] and the 2-back [t
(16) = 3.801, p = 0.003] conditions among the novices.

Paired t-tests indicated that the 1-back task was performed
faster than the 2-back [t (16) = −4.641, p = 0.001; t
(16) = −4.935, p < 0.001] and 3-back [t (16) = −8.567,
p < 0.001; t (16) = −11.950, p < 0.001] tasks by the advanced
students and the novices, respectively, while the 2-back task was
performed faster than the 3-back [t (16) = −7.637, p < 0.001;
t (16) = −8.368, p < 0.001] task by both advanced students
and the novices.

To examine group differences, we conducted one-way
repeated-measures analysis of variance (ANOVA) with
programming ability (novices vs. advanced students) as the
between-subjects factor and n-back levels (1-back, 2-back, and
3-back) as the within-subject factor.

One-way repeated-measures ANOVA revealed a marginally
significant main effect of programming ability on accuracy [F
(1, 32) = 3.867, p = 0.075, η2

p = 0.260]. The interaction between

programming ability and the n-back task was not significant [F
(2, 64) = 1.692, p = 0.207, η2

p = 0.133].
One-way repeated-measures ANOVA with Greenhouse–

Geisser correction revealed a main effect of programming ability
on reaction time [F (1, 32) = 5.650, p = 0.029, η2

p = 0.239]. The
interaction between programming ability and the n-back task
was also not significant [F (2, 64) = 1.177, p = 0.304, η2

p = 0.061].
Figure 5 illustrated that the correlations between reaction

time and programming score were negative for 1-, 2-, and 3-
back levels (r = −0.75, r = −0.71, and r = −0.81), i.e., the
reaction time was faster for a higher programming score.

Functional near-infrared spectroscopy
hemodynamic responses

To determine the differences in hemodynamic responses
between novices and advanced students under the three
n-back conditions, we first analyzed the grand averages of
all participants.

Figure 6 exhibited the grand averages of all participants for
the three n-back levels. The blue lines showed the grand averages
for novices, while the magenta line showed the overall mean for
advanced students. For HbO, a clear increase was observed at
the 1-, 2-, and 3-back levels, and the slope was positive for all
three n-back conditions in the left, center, and right prefrontal
cortices. The grand average increase was steeper in the 2-back
task than in the 1-back task and was the steepest in the 3-back
task.

For HbR, a slight decrease in concentration changes can be
seen for all three n-back conditions, and the slope was negative
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TABLE 1 Means and standard deviations of accuracy and reaction time during the n-back task.

Dependent variable Accuracy Reaction time (ms)

Novices Advanced students Novices Advanced students

M SD M SD M SD M SD

1-back 0.986 0.023 0.992 0.019 550 113 474 53.2

2-back 0.983 0.033 0.986 0.032 751 152 654 75.5

3-back 0.845 0.080 0.931 0.065 1276 222 1087 196

FIGURE 5

Correlations between reaction time and programming score for the three n-back levels.

for the three n-back levels; conversely, there was no obvious
difference between the 1- and 2-back grand averages and the
3-back grand average.

One-way repeated-measures ANOVA revealed a main effect
of programming ability on HbO [F (1, 32) = 8.838, p = 0.007,
η2
p = 0.287; F (1, 32) = 12.713, p = 0.002, η2

p = 0.366; F (1,
32) = 25.805, p < 0.001, η2

p = 0.540] in the right, center, and
left prefrontal cortices. The interaction between programming
ability and the n-back task was not significant.

Figure 7 illustrated that the correlations between HbO and
programming score were negative for the three n-back levels in
the left (r = −0.50, −0.51, −0.54), center (r = −0.36, −0.17,
−0.38), and right (r = −0.09, r = −0.23, r = −0.38) prefrontal
cortices, i.e., HbO is lower for higher programming scores.

One-way repeated-measures ANOVA revealed that the
main effect of programming ability on HbR [F (1, 32) = 0.001,
p = 0.980, η2

p < 0.001; F (1, 32) = 2.716, p = 0.114, η2
p = 0.110;

F (1, 32) = 0.104, p = 0.750, η2
p = 0.005] was not significant in

the right, center, or left prefrontal cortices, and there was no
interaction between programming ability and the n-back task.

The results indicated that HbO can indicate working-
memory load and show significant associations between brain
activity and programming ability, but HbR cannot.

Functional near-infrared spectroscopy
feature analysis using attention-based
convolutional neural network

To obtain the most important channels in the fNIRS signals,
we constructed a virtual classification task, and tried letting the
neural network model illustrate the importance of the fNIRS
channels through the virtual training task. Under this virtual
task, we directly combined all subject data into a signal batch
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FIGURE 6

Grand averages of all participants in the three n-back levels. (A)
Left prefrontal cortex. (B) Center prefrontal cortex. (C) Right
prefrontal cortex.

and used MSEloss to train the network. After approximately
50 epochs, the loss stopped falling, and we obtained almost
100% accuracy. Because the amount of data was not very large,
the generalization ability of the network was weak. However,
we were not going to use this trained network for general
classification in a new set of data. We only needed to observe
the network’s understanding of channel importance under this
task. In the present study, we used the mean value of 10 training
sessions for subsequent analysis.

The left panels in Figure 8 showed the channel weights
fitting with the training process. The left panel showed that the
accuracy (red curve) was close to 100% with the loss (blue curve)
down to zero. Furthermore, we distinguished those weights into

three brain regions (see Figure 2), as shown in the right panels.
After fitting, the left prefrontal cortex showed an obviously high
weight in the three n-back levels. These findings were consistent
with the results of one-way repeated-measures ANOVA, in
which the left prefrontal cortex had a larger effect size than the
right and center prefrontal cortices.

Discussion

The main purpose of the present study was to investigate the
brain mechanisms underlying the relationship between working
memory and programming ability by using fNIRS signals.

The analysis of participants’ n-back performance showed
differences in the accuracy and reaction time depending on the
n-back level between novices and advanced students. Advanced
students performed better than novices in terms of both
accuracy and reaction time. Since the n-back task is recognized
as an effective method to measure working memory, a better
n-back performance indicated higher working-memory capacity
(Kirchner, 1958). The study results validated the relationship
between programming ability and working memory, and
students with higher working-memory capacity showed better
programming ability. The results also provided evidence that
limited working-memory capacity has negative effects on
learning (Alloway, 2009).

Since the n-back task may be easier for advanced students,
the advanced participants were expected to show less prefrontal
cortex activation during each n-back experiment (Asgher et al.,
2019; Khoe et al., 2020). Figures 6, 7 illustrated the neural
evidence of this finding. The hemodynamic responses of HbO
associated with n-back stimulus presentation increased more in
novices than in advanced students. The results of the statistical
analyses revealed that HbO in the prefrontal cortex showed
significant differences between novices and advanced students
during the n-back task. Thus, HbO signals measured during the
n-back test can be used to robustly predict the programming
ability of students. The changes in cerebral blood oxygen
signals represent the changes in local oxygen consumption
caused by local brain activity and reflect the activity state of
the human brain (Strangman et al., 2002). According to the
neural efficiency hypothesis (Haier et al., 1988), the higher
the performance in related fields (the higher the cognitive
ability), the lower the activation degree of the cerebral cortex,
showing a negative correlation. Thus, in comparison with a
lower cognitive ability group, a higher cognitive ability group
shows lower activation of brain regions when performing
tasks with the same difficulty (Dunst et al., 2014; Genc et al.,
2018). A higher working-memory load tends to produce greater
prefrontal cortex activation (Herff et al., 2013). The novices
exhibited significantly higher HbO concentration increments
than their advanced counterparts during the n-back tests.
Thus, the working-memory load in novices was higher and
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FIGURE 7

Correlations between hemoglobin (HbO) and programming score for the three n-back levels in the left, center, and right prefrontal cortices. (A)
Left prefrontal cortex. (B) Center prefrontal cortex. (C) Right prefrontal cortex.

consumed more mental resources. In comparison with the
novices, the advanced students illustrated lower prefrontal
cortex activation for the n-back task, which was considered to
place less of a demand on working-memory load and was easier
to complete for the advanced students. This is the underlying
basis for the measurement of prefrontal cortex activation of
fNIRS signals during n-back tasks to predict an individual’s
programming ability.

The results also indicated the possibility of predicting
students’ programming potential through general psychological
experiments such as n-back test (as shown in Figure 5). This
method may be especially useful for evaluating individuals with
no programming foundation.

Additionally, HbR activation reduced slightly during the
n-back task, as illustrated in Figure 6, and programming ability
showed no main effect on HbR. This may be because relative
to HbO, the HbR concentration is weak and difficult to detect
in real time (Abibullaev and An, 2012), making it harder to
detect significant effects on HbR activation in task-based fNIRS
(Huppert et al., 2006).

Although the main effects of programming ability on
HbO were significantly different in the left, middle, and right
prefrontal cortices, by applying the deep learning method of
attention-based CNN to the fNIRS signals, we found that the
channels that can better distinguish programming ability were
in the left region of the prefrontal cortex (see Figure 8). CNNs
can extract microfeatures from temporal domain signals that
may be corrupted by statistical analysis. CNNs can also be
used to discover and extract the appropriate internal structure
through convolution and pooling operations and automatically
generate the deep features of the raw data. Moreover, the
deep features are robust against translation and scaling (Zhao
et al., 2017); they work well in discarding noisy series and can
extract meaningful patterns while ignoring patterns without
value (Aussem and Murtagh, 1997). By introducing attention
modules (i.e., the SE block), we can open the black box to
see which feature the CNN network relies on to identify
those signals. As the CNN network is gradually fitted, the
attention modules indicate the important channels, as shown in

Figure 8. These high-weight channels are those that the neural
network uses to understand and classify. In other words, these
channels and their corresponding brain regions have higher
resolution in this task. The SE block can also improve the
representational power of the regular CNN by offering it a
kind of dynamic channel-wise fixing feature (Hu et al., 2020).
Furthermore, the feature importance values produced by the
self-attention operation can be used for model pruning, which
can lead to the construction of more efficient physiological
signal analysis networks.

The results of the current study also provided further
evidence to support the lateralization of brain functions. The
left prefrontal cortex was more important in programming
ability prediction, as demonstrated in Figures 7, 8. Many studies
have reported functional hemispheric asymmetry in cognitive
processes (Gazzaniga, 1989, 1995; Goel, 2019). Smith et al.
(1996) and Smith and Jonides (1997) used PET technology to
study the neural basis of working memory with the n-back
paradigm. Their results showed that the activation areas in
the verbal and spatial n-back tasks are different: the former
activates the left hemisphere, and the latter activates the
right hemisphere. Baddeley and Logie (1999) also reviewed
the evidence showing that the left hemisphere is associated
with verbal working-memory tasks. As shown in Figure 6,
our results also demonstrated that left prefrontal cortex
regional activation was more dynamic during the verbal
n-back test.

This study had some limitations that should be addressed in
future studies. First, we did not consider the mediating factors
between working memory and programming ability. Previous
studies have shown that the relationship between working
memory and academic performance is mediated by visuospatial
abilities (Logie et al., 2000) and the ability to control attention
(Kane and Engle, 2003). Future studies should aim to control
these mediating factors to acquire more rigorous results. Second,
the number of participants who met the criteria for advanced
students was relatively small. Further studies with additional
data are required to improve the generalizability of the findings.
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FIGURE 8

The channel weights fitting with the training process of the attention-based convolutional neural network (CNN). The left panel shows all
channel weights sorted in the order of the final training results. All channels are sorted by the last loss value. The right panel presents a
top-down view of the left panel. However, the channels are re-ranked into the left, center, and right regions. We list the three groups in
Supplementary Table 1. The right panel has two axes: re-ranked channels and epochs. The normalized channel weight is represented by color
bars. (A) 1-back, (B) 2-back, (C) 3-back.

Conclusion

To the best of our knowledge, few empirical studies
have directly examined the relationship between working-
memory capacity and programming ability, and no studies have
provided direct neural evidence to support this relationship. The
present study attempts to fill this gap and demonstrates that
students’ programming ability can be predicted by evaluation

of their working-memory capacity while providing direct
neural evidence supporting this relationship. The results of
our analyses indicate that fNIRS detected functional neural
changes associated with the workload in the prefrontal cortex,
demonstrating that the hemodynamic responses measured in
the prefrontal cortex can be used to discriminate between
novices and advanced students. Additionally, we utilized an
attention-based CNN to analyze the spatial domains of the
fNIRS signals and demonstrated that the left prefrontal cortex
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was more important than other brain regions for programming
ability prediction.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: https://github.
com/GiantMushroom/NIRdataset.git.

Ethics statement

The studies involving human participants were reviewed
and approved by the Ethics Committee of the School of
Information and Electronic Engineering, Zhejiang University of
Science and Technology. The participants provided their written
informed consent to participate in this study.

Author contributions

XG: methodology and writing – original draft preparation.
YL: conceptualization, validation, writing – review and
editing, and funding acquisition. YZ: formal analysis and
writing – original draft preparation. CW: investigation and data
curation. All authors contributed to the article and approved the
submitted version.

Funding

This research was supported by the Research Projects of the
Humanities and Social Sciences Foundation of the Ministry of
Education of China (grant no. 20YJA880034).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnins.2022.1058609/full#supplementary-material

References

Abibullaev, B., and An, J. (2012). Classification of frontal cortex haemodynamic
responses during cognitive tasks using wavelet transforms and machine learning
algorithms. Med. Eng. Phys. 34, 1394–1410. doi: 10.1016/j.medengphy.2012.01.002

Alloway, T. P. (2009). Working memory, but not IQ, predicts subsequent
learning in children with learning difficulties. Eur. J. Psychol. Assess. 25, 92–98.
doi: 10.1027/1015-5759.25.2.92

Anmarkrud, Ø, Andresen, A., and Bråten, I. (2019). Cognitive load and working
memory in multimedia learning: conceptual and measurement issues. Educ.
Psychol. 54, 61–83. doi: 10.1080/00461520.2018.1554484

Asgher, U., Ahmad, R., Naseer, N., Ayaz, Y., Khan, M. J., and Amjad, M. K.
(2019). Assessment and classification of mental workload in the prefrontal cortex
(PFC) using fixed-value modified beer-lambert law. IEEE Access 7, 143250–
143262. doi: 10.1109/access.2019.2944965

Aussem, A., and Murtagh, F. (1997). Combining neural network forecasts
on wavelet-transformed time series. Connect. Sci. 9, 113–122. doi: 10.1080/
095400997116766

Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., and Onaral,
B. (2012). Optical brain monitoring for operator training and mental workload
assessment. Neuroimage 59, 36–47. doi: 10.1016/j.neuroimage.2011.06.023

Baddeley, A. (2003). Working memory: looking back and looking forward. Nat.
Rev. Neurosci. 4, 829–839. doi: 10.1038/nrn1201

Baddeley, A. (2010). Working memory. Curr. Biol. 20, R136–R140. doi: 10.1016/
j.cub.2009.12.014

Baddeley, A. D., and Hitch, G. (1974). Working memory. Psychol. Learn. Motiv.
8, 47–89. doi: 10.1016/s0079-7421(08)60452-1

Baddeley, A. D., and Logie, R. H. (1999). “Working memory: the multiple-
component model,” in Models of Working Memory, eds A. Miyake and P. Shah
(Cambridge, MA: Cambridge University Press), 28–61.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv [Preprint].
Available online at: https://arxiv.org/abs/1803.01271 (accessed April 19, 2018).

Barrouillet, P., and Lépine, R. (2005). Working memory and children’s use
of retrieval to solve addition problems. J. Exp. Child Psychol. 91, 183–204. doi:
10.1016/j.jecp.2005.03.002

Borovykh, A., Bohte, S., and Oosterlee, C. W. (2018). Dilated convolutional
neural networks for time series forecasting. J. Comput. Finan. 22, 73–101. doi:
10.21314/jcf.2019.358

Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., and Noll,
D. C. (1997). A parametric study of prefrontal cortex involvement. Neuroimage 5,
49–62.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S.,
and Danies, G. (2017). Changing a generation’s way of thinking: teaching
computational thinking through programming. Rev. Educ. Res. 87, 834–860. doi:
10.3102/0034654317710096

Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., and
Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.1058609
https://github.com/GiantMushroom/NIRdataset.git
https://github.com/GiantMushroom/NIRdataset.git
https://www.frontiersin.org/articles/10.3389/fnins.2022.1058609/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.1058609/full#supplementary-material
https://doi.org/10.1016/j.medengphy.2012.01.002
https://doi.org/10.1027/1015-5759.25.2.92
https://doi.org/10.1080/00461520.2018.1554484
https://doi.org/10.1109/access.2019.2944965
https://doi.org/10.1080/095400997116766
https://doi.org/10.1080/095400997116766
https://doi.org/10.1016/j.neuroimage.2011.06.023
https://doi.org/10.1038/nrn1201
https://doi.org/10.1016/j.cub.2009.12.014
https://doi.org/10.1016/j.cub.2009.12.014
https://doi.org/10.1016/s0079-7421(08)60452-1
https://arxiv.org/abs/1803.01271
https://doi.org/10.1016/j.jecp.2005.03.002
https://doi.org/10.1016/j.jecp.2005.03.002
https://doi.org/10.21314/jcf.2019.358
https://doi.org/10.21314/jcf.2019.358
https://doi.org/10.3102/0034654317710096
https://doi.org/10.3102/0034654317710096
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1058609 November 26, 2022 Time: 14:47 # 13

Guo et al. 10.3389/fnins.2022.1058609

theory of mind during the elementary years. J. Exp. Child Psychol. 146, 66–78.
doi: 10.1016/j.jecp.2016.01.014

Chance, B., Zhuang, Z., UnAh, C., Alter, C., and Lipton, L. (1993). Cognition-
activated low-frequency modulation of light absorption in human brain.pdf. Proc.
Natl. Acad. Sci. U.S.A. 90, 3770–3774. doi: 10.1073/pnas.90.8.3770

Chen, Y., Kang, Y., Chen, Y., and Wang, Z. (2019). Probabilistic forecasting with
temporal convolutional neural network. arxiv [Preprint]. doi: 10.48550/arXiv.
1906.04397

Choi, J., Kim, J., Hwang, G., Yang, J., Choi, M., and Bae, H. (2016). Time-
divided spread-spectrum code-based 400 fW-detectable multichannel fNIRS IC
for portable functional brain imaging. IEEE J. Solid State Circ. 51, 484–495. doi:
10.1109/jssc.2015.2504412

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides,
J., et al. (1997). Temporal dynamics of brain activation during a working memory
task.pdf. Nature 386, 604–608. doi: 10.1038/386604a0

Dunst, B., Benedek, M., Jauk, E., Bergner, S., Koschutnig, K., Sommer, M., et al.
(2014). Neural efficiency as a function of task demands. Intelligence 42, 22–30.
doi: 10.1016/j.intell.2013.09.005

Ferrari, M., and Quaresima, V. (2012). A brief review on the history of
human functional near-infrared spectroscopy (fNIRS) development and fields of
application. Neuroimage 63, 921–935. doi: 10.1016/j.neuroimage.2012.03.049

Franceschini, M. A., Joseph, D. K., Huppert, T. J., Diamond, S. G., and Boas,
D. A. (2006). Diffuse optical imaging of the whole head. J. Biomed. Opt. 11:054007.

Fritz, C. O., Morris, P. E., and Richler, J. J. (2012). Effect size estimates: current
use, calculations, and interpretation. J. Exp. Psychol. Gen. 141, 2–18. doi: 10.1037/
a0024338

Gazzaniga, M. (1989). Organization of human brain. Science 245, 947–952.

Gazzaniga, M. (1995). Principles of human brain organization derived from
split-brain studies. Neuron 14, 217–228. doi: 10.1016/0896-6273(95)90280-5

Genc, E., Fraenz, C., Schluter, C., Friedrich, P., Hossiep, R., Voelkle, M. C., et al.
(2018). Diffusion markers of dendritic density and arborization in gray matter
predict differences in intelligence. Nat. Commun. 9:1905. doi: 10.1038/s41467-
018-04268-8

Goel, V. (2019). Hemispheric asymmetry in the prefrontal cortex for complex
cognition. Handb. Clin. Neurol. 163, 179–196. doi: 10.1016/B978-0-12-804281-6.
00010-0

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., et al.
(2022). Attention mechanisms in computer vision: a survey. Comput. Vis. Media
8, 331–368. doi: 10.1007/s41095-022-0271-y

Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., and Paek,
J. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and
attention studied with positron emission tomography. Intelligence 12, 199–217.
doi: 10.1016/j.neubiorev.2009.04.001

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., and Schultz, T. (2013).
Mental workload during n-back task-quantified in the prefrontal cortex using
fNIRS. Front. Hum. Neurosci. 7:935. doi: 10.3389/fnhum.2013.00935

Ho, T. K. K., Gwak, J., Park, C. M., and Song, J.-I. (2019). Discrimination
of mental workload levels from multi-channel fNIRS using deep leaning-based
approaches. IEEE Access 7, 24392–24403. doi: 10.1109/access.2019.2900127

Hocke, L. M., Oni, I. K., Duszynski, C. C., Corrigan, A. V., Frederick, B. D.,
and Dunn, J. F. (2018). Automated processing of fNIRS data-a visual guide to the
pitfalls and consequences. Algorithms 11:67. doi: 10.3390/a11050067

Hong, K.-S., and Yaqub, M. A. (2019). Application of functional near-infrared
spectroscopy in the healthcare industry: a review. J. Innov. Opt. Health Sci.
12:1930012. doi: 10.1142/s179354581930012x

Hoshi, Y., and Tamura, M. (1993). Detection of dynamic changes in cerebral
oxygenation coupled to neuronal function mental work in man. Neurosci. Lett.
150, 5–8. doi: 10.1016/0304-3940(93)90094-2

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2020). Squeeze-and-Excitation
Networks. IEEE Trans. Pattern Anal. Mach. Intellig. 42, 2011–2023.

Huppert, T. J., Diamond, S. G., Franceschini, M. A., and Boas, D. A. (2009).
HomER: A review of time-series analysis methods for near-infrared spectroscopy
of the brain. Appl. Opt. 48, 280–298.

Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., and Boas,
D. A. (2006). A temporal comparison of BOLD, ASL, and NIRS hemodynamic
responses to motor stimuli in adult humans. Neuroimage 29, 368–382. doi: 10.
1016/j.neuroimage.2005.08.065

Isbilir, E., Cakir, M. P., Acarturk, C., and Tekerek, A. S. (2019). Towards
a multimodal model of cognitive workload through synchronous optical brain
imaging and eye tracking measures. Front. Hum. Neurosci. 13:375. doi: 10.3389/
fnhum.2019.00375

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O’Reilly, U. M.,
et al. (2020). Comprehension of computer code relies primarily on domain-general
executive brain regions. eLife 9:e58906. doi: 10.7554/eLife.58906

Janani, A., Sasikala, M., Chhabra, H., Shajil, N., and Venkatasubramanian, G.
(2020). Investigation of deep convolutional neural network for classification of
motor imagery fNIRS signals for BCI applications. Biomed. Signal Process. Control
62:102133. doi: 10.1016/j.bspc.2020.102133

Kane, M. J., and Engle, R. W. (2003). Working-memory capacity and the control
of attention: the contributions of goal neglect, response competition, and task set
to Stroop interference. J. Exp. Psychol. Gen. 132, 47–70. doi: 10.1037/0096-3445.
132.1.47

Khoe, H. C. H., Low, J. W., Wijerathne, S., Ann, L. S., Salgaonkar, H., Lomanto,
D., et al. (2020). Use of prefrontal cortex activity as a measure of learning curve in
surgical novices: results of a single blind randomised controlled trial. Surg. Endosc.
34, 5604–5615. doi: 10.1007/s00464-019-07331-7

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly
changing information.pdf. J. Exp. Psychol. 55, 352–358. doi: 10.1037/h0043688

Koh, P. H., Glaser, D. E., Flandin, G., Kiebel, S., Butterworth, B., Maki, A.,
et al. (2007). Functional optical signal analysis: a software tool for near-infrared
spectroscopy data processing incorporating statistical parametric mapping.
J. Biomed. Opt. 12:064010. doi: 10.1117/1.2804092

Logie, R. H., Della Sala, S., Wynn, V., and Baddeley, A. D. (2000). Visual
similarity effects in immediate verbal serial recall.Q. J. Exp. Psychol. A 53, 626–646.
doi: 10.1080/713755916

Lv, J., Jiang, X., Li, X., Zhu, D., Chen, H., Zhang, T., et al. (2015). Sparse
representation of whole-brain fMRI signals for identification of functional
networks. Med. Image Anal. 20, 112–134. doi: 10.1016/j.media.2014.10.011

Lv, J., Jiang, X., Li, X., Zhu, D., Zhang, S., Zhao, S., et al. (2014). Holistic
atlases of functional networks and interactions reveal reciprocal organizational
architecture of cortical function. IEEE Trans. Biomed. Eng. 62, 1120–1131. doi:
10.1109/TBME.2014.2369495

Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y., and Koizumi, H.
(1995). Spatial and temporal analysis of human motor activity using noninvasive
NIR topography. Med. Phys. 22, 1997–2005. doi: 10.1118/1.597496

Matthes, K., and Gross, F. (1938). Fortlaufende registrierung der lichtabsorption
des blutes in zwei verschiedenen spektralbezirken. Naunyn Schmiedebergs Arch.
Pharmacol. 191, 381–390.

Meidenbauer, K. L., Choe, K. W., Cardenas-Iniguez, C., Huppert, T. J., and
Berman, M. G. (2021). Load-dependent relationships between frontal fNIRS
activity and performance: a data-driven PLS approach. Neuroimage 230:117795.
doi: 10.1016/j.neuroimage.2021.117795

Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., and
Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI
evidence against stimulus-based regional organization in human prefrontal cortex.
Neuroimage 11, 424–446. doi: 10.1006/nimg.2000.0572

Owen, A. M., McMillan, K. M., Laird, A. R., and Bullmore, E. (2005).
N-back working memory paradigm: a meta-analysis of normative functional
neuroimaging studies. Hum. Brain Mapp. 25, 46–59. doi: 10.1002/hbm.20131

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S.,
et al. (2020). The present and future use of functional near-infrared spectroscopy
(fNIRS) for cognitive neuroscience. Ann. N.Y. Acad. Sci. 1464, 5–29. doi: 10.1111/
nyas.13948

Purpura, D. J., and Ganley, C. M. (2014). Working memory and language: skill-
specific or domain-general relations to mathematics? J. Exp. Child Psychol. 122,
104–121. doi: 10.1016/j.jecp.2013.12.009

Quaresima, V., and Ferrari, M. (2019). A mini-review on functional near-
infrared spectroscopy (fnirs): where do we stand, and where should we go?
Photonics 6:87. doi: 10.3390/photonics6030087

Ragland, J. D., Turetsky, B. I., Gur, R. C., Gunning-Dixon, F., Turner, T.,
Schroeder, L., et al. (2002). Working memory for complex figures: an fMRI
comparison of letter and fractal n-back tasks. Neuropsychology 16, 370–379. doi:
10.1037/0894-4105.16.3.370

Relkin, E., de Ruiter, L. E., and Bers, M. U. (2021). Learning to code and
the acquisition of computational thinking by young children. Comput. Educ.
169:104222. doi: 10.1016/j.compedu.2021.104222

Saadati, M., Nelson, J., and Ayaz, H. (2020). “Convolutional neural
network for hybrid fNIRS-EEG mental workload classification,” in Advances
in Neuroergonomics and Cognitive Engineering, ed. H. Ayaz (Cham: Springer),
221–232. doi: 10.3389/fnbot.2022.873239

Sassaroli, A., and Fantini, S. (2004). Comment on the modified Beer-Lambert
law for scattering media. Phys.Med. Biol. 49, N255–N257. doi: 10.1088/0031-9155/
49/14/n07

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.1058609
https://doi.org/10.1016/j.jecp.2016.01.014
https://doi.org/10.1073/pnas.90.8.3770
https://doi.org/10.48550/arXiv.1906.04397
https://doi.org/10.48550/arXiv.1906.04397
https://doi.org/10.1109/jssc.2015.2504412
https://doi.org/10.1109/jssc.2015.2504412
https://doi.org/10.1038/386604a0
https://doi.org/10.1016/j.intell.2013.09.005
https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.1037/a0024338
https://doi.org/10.1037/a0024338
https://doi.org/10.1016/0896-6273(95)90280-5
https://doi.org/10.1038/s41467-018-04268-8
https://doi.org/10.1038/s41467-018-04268-8
https://doi.org/10.1016/B978-0-12-804281-6.00010-0
https://doi.org/10.1016/B978-0-12-804281-6.00010-0
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1016/j.neubiorev.2009.04.001
https://doi.org/10.3389/fnhum.2013.00935
https://doi.org/10.1109/access.2019.2900127
https://doi.org/10.3390/a11050067
https://doi.org/10.1142/s179354581930012x
https://doi.org/10.1016/0304-3940(93)90094-2
https://doi.org/10.1016/j.neuroimage.2005.08.065
https://doi.org/10.1016/j.neuroimage.2005.08.065
https://doi.org/10.3389/fnhum.2019.00375
https://doi.org/10.3389/fnhum.2019.00375
https://doi.org/10.7554/eLife.58906
https://doi.org/10.1016/j.bspc.2020.102133
https://doi.org/10.1037/0096-3445.132.1.47
https://doi.org/10.1037/0096-3445.132.1.47
https://doi.org/10.1007/s00464-019-07331-7
https://doi.org/10.1037/h0043688
https://doi.org/10.1117/1.2804092
https://doi.org/10.1080/713755916
https://doi.org/10.1016/j.media.2014.10.011
https://doi.org/10.1109/TBME.2014.2369495
https://doi.org/10.1109/TBME.2014.2369495
https://doi.org/10.1118/1.597496
https://doi.org/10.1016/j.neuroimage.2021.117795
https://doi.org/10.1006/nimg.2000.0572
https://doi.org/10.1002/hbm.20131
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1016/j.jecp.2013.12.009
https://doi.org/10.3390/photonics6030087
https://doi.org/10.1037/0894-4105.16.3.370
https://doi.org/10.1037/0894-4105.16.3.370
https://doi.org/10.1016/j.compedu.2021.104222
https://doi.org/10.3389/fnbot.2022.873239
https://doi.org/10.1088/0031-9155/49/14/n07
https://doi.org/10.1088/0031-9155/49/14/n07
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1058609 November 26, 2022 Time: 14:47 # 14

Guo et al. 10.3389/fnins.2022.1058609

Shute, V. J. (1995). Who is likely to acquire programming skills? J. Educ.
Comput. Res. 7, 1–24. doi: 10.2190/vqjd-t1yd-5wvb-rypj

Singh, A. K., and Dan, I. (2006). Exploring the false discovery rate in
multichannel NIRS. Neuroimage 33, 542–549. doi: 10.1016/j.neuroimage.2006.06.
047

Smith, E. E., and Jonides, J. (1997). Working memory a view from
neuroimaging. Cogn. Psychol. 33, 5–42.

Smith, E. E., Jonides, J., and Koeppe, R. A. (1996). Dissociating verbal and spatial
working. Cerebr. Cortex 6, 11–20. doi: 10.1093/cercor/6.1.11

Strangman, G., Culver, J. P., Thompson, J. H., and Boas, D. A. (2002). A
quantitative comparison of simultaneous BOLD fMRI and NIRS recordings
during functional brain activation. Neuroimage 17, 719–731. doi: 10.1006/nimg.
2002.1227

Swanson, H. L., and Alloway, T. P. (2012). “Working memory, learning,
and academic achievement,” in APA Educational Psychology Handbook, Vol
1: Theories, Constructs, and Critical Issues, eds K. R. Harris, S. Graham, T.
Urdan, C. B. McCormick, G. M. Sinatra, and J. Sweller (Cham: Springer),
327–366.

Tong, Y., Lindsey, K. P., and deB Frederick, B. (2011). Partitioning
of physiological noise signals in the brain with concurrent near-infrared
spectroscopy and fMRI. J. Cereb. Blood Flow Metab. 31, 2352–2362.

Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., and Choi, J. W.
(2017). Convolutional neural network for high-accuracy functional near-infrared
spectroscopy in a brain–computer interface: three-class classification of rest,
right-, and left-hand motor execution. Neurophotonics 5:011008. doi: 10.1117/1.
NPh.5.1.011008

Tu, J.-J., and Johnson, J. R. (1990). Can computer programming improve
problem-solving ability? SIGCSE Bull. 22, 30–33.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Proceedings of the 31st Conference on Neural
Information Processing Systems, Long Beach, CA.

Villringer, A., Planck, J., Hock, C., Schleinkofer, L., and Dimagl, U. (1993). Near
infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during
activation of brain function in human adults. Neurosci. Lett. 154, 101–104.

Werner, L., Denner, J., Campe, S., and Kawamoto, D. C. (2012). “The fairly
performance assessment: measuring computational thinking in middle school,”
in SIGCSE ‘12 Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, Raleigh.

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philos. Trans. A Math. Phys. Eng. Sci. 366, 3717–3725. doi: 10.1098/rsta.2008.0118

Wolf, M., Wolf, U., Toronov, V., Michalos, A., Paunescu, L. A., Choi, J. H.,
et al. (2002). Different time evolution of oxyhemoglobin and deoxyhemoglobin
concentration changes in the visual and motor cortices during functional
stimulation: a near-infrared spectroscopy study. Neuroimage 16(3 Pt 1), 704–712.
doi: 10.1006/nimg.2002.1128

Yang, D., Hong, K. S., Yoo, S. H., and Kim, C. S. (2019). Evaluation of neural
degeneration biomarkers in the prefrontal cortex for early identification of patients
with mild cognitive impairment: an fNIRS study. Front. Hum. Neurosci. 13:317.
doi: 10.3389/fnhum.2019.00317

Yang, D., Huang, R., Yoo, S. H., Shin, M. J., Yoon, J. A., Shin, Y. I., et al. (2020).
Detection of mild cognitive impairment using convolutional neural network:
temporal-feature maps of functional near-infrared spectroscopy. Front. Aging
Neurosci. 12:141. doi: 10.3389/fnagi.2020.00141

Yeung, M. K., Lee, T. L., Han, Y. M. Y., and Chan, A. S. (2021). Prefrontal
activation and pupil dilation during n-back task performance: a combined
fNIRS and pupillometry study. Neuropsychologia 159:107954. doi: 10.1016/j.
neuropsychologia.2021.107954

Yu, F., and Koltun, V. (2016). Multi-scale context aggregation by dilated
convolutions. arxiv [Preprint]. Available online at: https://arxiv.org/abs/1511.
07122 (accessed April 30, 2016).

Zhao, B., Lu, H., Chen, S., Liu, J., and Wu, D. (2017). Convolutional neural
networks for time series classification. J. Syst. Eng. Electron. 28, 162–169. doi:
10.21629/jsee.2017.01.18

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.1058609
https://doi.org/10.2190/vqjd-t1yd-5wvb-rypj
https://doi.org/10.1016/j.neuroimage.2006.06.047
https://doi.org/10.1016/j.neuroimage.2006.06.047
https://doi.org/10.1093/cercor/6.1.11
https://doi.org/10.1006/nimg.2002.1227
https://doi.org/10.1006/nimg.2002.1227
https://doi.org/10.1117/1.NPh.5.1.011008
https://doi.org/10.1117/1.NPh.5.1.011008
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1006/nimg.2002.1128
https://doi.org/10.3389/fnhum.2019.00317
https://doi.org/10.3389/fnagi.2020.00141
https://doi.org/10.1016/j.neuropsychologia.2021.107954
https://doi.org/10.1016/j.neuropsychologia.2021.107954
https://arxiv.org/abs/1511.07122
https://arxiv.org/abs/1511.07122
https://doi.org/10.21629/jsee.2017.01.18
https://doi.org/10.21629/jsee.2017.01.18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Programming ability prediction: Applying an attention-based convolutional neural network to functional near-infrared spectroscopy analyses of working memory
	Introduction
	Materials and methods
	Participants
	Experimental setup and tasks
	Functional near-infrared spectroscopy data acquisition
	Functional near-infrared spectroscopy data pre-processing
	Attention-based convolutional neural network for functional near-infrared spectroscopy spatial feature analysis

	Results
	n-back performance
	Functional near-infrared spectroscopy hemodynamic responses
	Functional near-infrared spectroscopy feature analysis using attention-based convolutional neural network

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


