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Recently, attention has been drawn toward brain imaging technology in

the medical field, among which MRI plays a vital role in clinical diagnosis

and lesion analysis of brain diseases. Different sequences of MR images

provide more comprehensive information and help doctors to make accurate

clinical diagnoses. However, their costs are particularly high. For many

image-to-image synthesis methods in the medical field, supervised learning-

based methods require labeled datasets, which are often difficult to obtain.

Therefore, we propose an unsupervised learning-based generative adversarial

network with adaptive normalization (AN-GAN) for synthesizing T2-weighted

MR images from rapidly scanned diffusion-weighted imaging (DWI) MR

images. In contrast to the existing methods, deep semantic information is

extracted from the high-frequency information of original sequence images,

which are then added to the feature map in deconvolution layers as a

modality mask vector. This image fusion operation results in better feature

maps and guides the training of GANs. Furthermore, to better preserve

semantic information against common normalization layers, we introduce

AN, a conditional normalization layer that modulates the activations using the

fused feature map. Experimental results show that our method of synthesizing

T2 images has a better perceptual quality and better detail than the other

state-of-the-art methods.
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Introduction

Magnetic resonance imaging (MRI) has been used
worldwide for the diagnosis of various conditions throughout
the body, among which the brain and spine are the most
effective. The magnetic field strength of MRI scanners has
evolved from less than 0.5 T in the 1980s to the extensively used
1.5 and 3 T, and even 7 T (Van der Kolk et al., 2013; Lian et al.,
2018). Different sequences of MR images from MRI scanners
help doctors make more accurate decision. While doctors
desire different sequences of images, certain conditions (e.g.,
medical conditions, patients’ physical conditions, costs) result
in sacrificing some imaging sequences to complete the scan
(Shen et al., 2017). For example, diffusion-weighted imaging
(DWI) in MR without contrast has a shorter scanning time but
lower spatial resolution, making it difficult to identify small
lesions. However, we can observe the lesion under higher-field
strength T2-weighted MR images (T2).

Interpolation-based methods (e.g., nearest-neighbor,
bilinear; Kim et al., 2010; Tam et al., 2010) are simple and
rapid, but they blur sharp edges and fine details (Yang et al.,
2014). Recent studies have shown promising results using
learning-based methods for synthesizing MR images at high-
field strengths, such as sparse learning (Zhang et al., 2012) and
random forests (Alexander et al., 2014). For example, Xiang
et al. (2018) proposed a deep embedding convolutional neural
network (DECNN) to synthesize CT images from T1-weighted
MR images, Qu et al. (2020) introduced a deep learning network
that leverages wavelet domain to synthesize 7 T MRI from 3 T
MRI. Isola et al. (2017) proposed that conditional generative
adversarial networks (GANs) not only learn image-to-image
mappings, but also learn a loss function for training the
mappings. GANs tend to synthesize higher-quality images while
DWI MRI and T2 MRI differ in both resolution and contrast
(Andrew et al., 2019).

This article aims to address the problem of synthesizing
T2 MRI from DWI MRI. When scanning a patient’s cranial
MRI, the brain tissue signals collected under different pulse
sequences are quite different. The large variability in these
acquired brain tissue signals makes this synthesis problem
challenging to solve. Recently, convolutional neural network
(CNN) has become a common method for image prediction;
furthermore, many studies are constantly improving this model
(Liao et al., 2013; Xu et al., 2016; Huang et al., 2021). Briefly, for
a given objective, CNN can automatically learn to minimize the
loss function. If it takes a simple approach and asks the CNN
to minimize Euclidean distance between predicted and ground
truth pixels, it will produce muzzy results (Pathak et al., 2016;
Zhang et al., 2016). Therefore, it would be highly desirable if
we can instead specify only a high-level goal, such as “make
the output indistinguishable from ground truth,” to synthesize
realistic images and then automatically learn a loss function
that satisfies this goal, which is also the research direction of

GANs (Goodfellow et al., 2014; Denton et al., 2015). In this
work, examples of the DWI image and their corresponding T2
image are shown in Figure 1. These images were taken from a
cerebral MRI of the same patients. In the DWI MR image, the
blue arrows point to the “cerebrospinal fluid (CSF)” with a low-
intensity value, and the yellow arrows point to the white matter
with a high-intensity value. However, in the T2 MR image, the
“CSF” appears to be bright, while the “white matter” appears to
be dark. In general, the mapping between these two sequences of
DWI and T2 is highly complex. Inspired by this, we incorporate
some prior knowledge, such as the difference of signals between
different tissues in MRI, to guide the synthesis of the generator
and make the generator become more powerful. Therefore, as
shown in the generator design method of GANs in Figure 2,
we introduce high-level semantic information for splicing with
features extracted from the source domain and receive the input
of this information in the middle layer to generate T2 MRI with
richer details.

In this article, we introduce GANs to solve the synthesis
problem of DWI MRI to T2 MRI and use an adaptive
normalization (AN) before activation function to make it
suitable for image synthesis after adding high-level semantic
information. Similar to the batch normalization (Ioffe and
Szegedy, 2015), the activation is normalized in a channel-wise
manner and then modulated with learned scale and shift. As
shown in Figure 3, there are two generators G : DWI→ T2
and R : T2→ DWI, and associated adversarial discriminators
DG and DR. The forward generator G learns the mapping from
DWI (source domain) to T2 MRI (target domain), and the
reverse generator R learns the mapping from T2 to DWI MRI.
We add a cycle consistency loss function (Zhou et al., 2016) that
encourage the two cycle-generated behaviors G (R (T2)) ≈ T2
and R (G (DWI)) ≈ DWI. Finally, through the experiments we
find that the images synthesized by the AN-GAN framework
after using the AN method and adding high-level semantic
information are effective for medical image synthesis. Some
classical image synthesis methods such as pix2pix and cycle-
GAN achieved better perceptual appearance; however, there
could be excessive deformation in the generated images, and
this may affect their clinical applications. However, the images
generated by our proposed AN-GAN framework have more
details.

Related work

Recent studies on image synthesis based on learning include
deep generative models. Many experts and scholars have carried
out research on conditional image synthesis in order to improve
the quality of synthesized images and achieved gratifying results.
They have also made innovations in normalization methods.

Recent deep generative models include GANs
(Goodfellow et al., 2014) and variational autoencoder (VAE;
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FIGURE 1

DWI MRI and T2 MRI.

FIGURE 2

AN-GAN framework design consists of three parts, namely, generator, extraction network, and discriminator.

Kingma and Welling, 2014). The network we proposed is built
on GANs and adds a module to extract high-level semantic
information. The traditional GANs have a generator and a
discriminator where the goal of the generator is to generate
realistic images so that the discriminator cannot distinguish
between synthetic and real images. The adversarial losses in

GANs have achieved many results on image synthesis problems,
such as image generation (Denton et al., 2015), image generation
(Zhu et al., 2016), and representation learning (Mathieu et al.,
2016). Recent studies include person image synthesis and
editing (Zhang et al., 2021), image inpainting (Liu et al., 2021),
and image attribute editing (Wang et al., 2021). We refer to
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FIGURE 3

(A) Two generator mapping models G : DWI→ T2 and R : T2→ DWI, and two associated adversarial discriminators DG and DR. DG distinguishes
between the images generated by G and T2, and vice versa for DR and R. (B) Two consistency loss cG,R : DWI→ G(DWI)→ R(G(DWI)) ≈ DWI
and cR,G : T2→ R(T2)→ G(R(T2))→ T2 to further regularize the mappings.

cycle-GAN framework proposed by Zhu et al. (2017) to train
two generators and two discriminators, as shown in Figure 3,
where one generator learns the mapping from the source
domain to the target domain and the other generator learns the
mapping from the target domain to the source domain, and the
two generators and the corresponding discriminators have the
same structure.

The input of many problems adopts the idea of conditional
image synthesis, such as many models of text-to-image synthesis
(Mescheder et al., 2018; Brock et al., 2019). Recent studies
include converting the semantic layouts that construct from
text to images through an image generator (Hong et al., 2018)
and using a single-text condition translate image styles (Kwon
and Ye, 2022). Another widely used form is image-to-image
synthesis based on conditional GANs, where both input and
output are images. Image-to-image translation can be traced
back to the work of Hertzmann et al. (2001) on image analogies,
who used non-parametric models (Efros and Leung, 1999) to
create new images from a single paradigm. Recent studies have
enhanced the expressiveness of the generator by providing an
example style map to control the style of output image (Huang
et al., 2018) and extracting information from semantic layout
and scene attributes as condition variables (Karacan et al., 2016).
Mirza and Osindero (2014) proposed conditional generative
adversarial nets that use the given labels to generate specific
images in the testing phase. The “pix2pix” framework was
proposed by Isola et al. (2017), who used conditional GANs
to learn image-to-image mappings. Zhu et al. (2017) proposed
a cycle-GAN framework on this basis using unpaired data for
training. Choi et al. (2018) proposed StarGAN that implements
the transfer of multiple domains using one model. Compared
with earlier non-parametric-based methods such as composing
realistic pictures from simple freehand sketches annotated with
text labels (Chen et al., 2009), learning-based methods are

generally faster during testing. In this article, DWI images and
high-level semantic information extracted from DWI images are
used as training sets, and the proposed AN method updates
affine parameters to synthesize more detailed T2 MR images.

The normalization layer is an important part of the deep
learning network now, including unconditional normalization
and conditional normalization, which can be found in various
classifiers. Currently popular unconditional normalization
layers include instance normalization (Ulyanov et al., 2016),
layer normalization (Ba et al., 2016), group normalization
(Wu and He, 2018), and weight normalization (Salimans
and Kingma, 2016). Conditional normalization includes
conditional batch normalization (Dumoulin et al., 2017) and
adaptive instance normalization (Huang and Belongie, 2017).
Different from the earlier normalization techniques, conditional
normalization layers require external data and generally operate
as follows. First, layer activations are normalized to zero
mean and unit deviation. Then the normalized activations are
denormalized by modulating the activation using a learned
affine transformation whose parameters are inferred from
external data. In the style transfer task, these affine parameters
are used to control the global style, and the spatial coordinates
are consistent. However, our proposed AN applies spatially
varying affine transformations and is suitable for synthesizing
medical images by generators that incorporate high-level
semantic information of target domain images.

Adaptive image synthesis

The goal of this article is to learn the mapping from
set A to set B, that is, the mapping function from DWI
to T2 MR. Training samples {x1, x2, . . . , xN} , xi ∈ A,{
y1, y2, . . . , yN

}
, yi ∈ B ,where N means the number of
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training samples. We simultaneously train two generators
G : A→ B and R : B→ A, and two corresponding
discriminators DG and DR. This training procedure is shown
in Figure 3. The discriminator DG distinguishes between
the image

{
y
}

of the target domain and the image {G (x)}
generated by the source domain, while the discriminator DR

distinguishes the image {x} of the source domain and the image
{R(y)} generated by the target domain. Our training objective
consists of two aspects, namely, adversarial loss function and
consistency loss function. The former uses the data distribution
of the images generated in the source domain to match the data
distribution of the target domain images, and the latter prevents
conflicts between the learned generators G and R. We also use
the extracted high-level semantic information as a condition to
guide the generator to synthesize images and use an AN method
to make it suitable for image synthesis after stitching high-level
semantic information.

Here, we give the design principle of cycle-GAN. We assume
that there is some potential relationship between the domains.
For example, they are the presentation of two different signals of
brain tissues and organs. We can use supervision at the sets of
level (there is one set of images in domain A and a different set
in domain B) in the absence of paired data. Therefore, we design
two mappings, i.e., G : A→ B and R : B→ A. Meanwhile, G
and R should be inverse to each other, and both mappings
are bijections. The goal of the mapping G is that the output
ŷ = G (x) , x ∈ A, is indistinguishable from images y ∈ B. The
goal of the mapping R is that the output x̂ = R

(
y
)
, y ∈ B, is

indistinguishable from images x ∈ A. This article realizes this
assumption by training the mappings G and R simultaneously.
Then the consistency loss is introduced to enforce guarantee
G (R (B)) ≈ B. Finally, this loss is combined with the adversarial
loss in domain A and domain B to achieve the goal of image-to-
image conversion.

Adversarial loss

The mapping functions of both generators use adversarial
losses, first proposed by Goodfellow et al. (2014). Let y be the
adversarial loss function composed of the generator G : A→ B
and the corresponding discriminator DG as follows:

LGDG (G, DG, A, B) = Ex∼Px
[
log

(
1− DG

(
ŷ
))]
+ (1)

Ey∼Py
[
logDG

(
y
)]

where ŷ = G (x), Px and Py are the distributions of the source
domain and the ground truth image. The goal of the generator
G is to synthesize images ŷ that look similar to the real image y,
which is in the set B, while the goal of the discriminator DG is
to distinguish ŷ from y. Similarly, the adversarial loss function
composed by the generator R : B→ A and the corresponding

discriminator DR can be written as follows:

LRDR (R, DR, B, A) = Ey∼Py
[
log

(
1− DR

(
x̂
))]
+ (2)

Ex∼Px
[
logDR (x)

]
where x̂ = R

(
y
)
. The goal of the generator R is to synthesize

images x̂ that look similar to the real image x, which is in the
set B, while the goal of the discriminator DG is to distinguish x̂
from x. Finally, our goal is to make the image synthesized by the
generator closer to the real image, against the discriminator that
distinguishes the generated image from the real image, which
can be expressed as follows:

min
G

max
DG

LGDG (G, DG, A, B), min
R

max
DR

LRDR (3)

(R, DR, B, A)

Consistency loss

Our model uses l1 regularization as a pixel-level constraint
to penalize network in order to avoid the blurring effect
of the generated images when using l2 regularization. Our
discriminator adopts the structure of “70 × 70” PatchGAN.
This discriminator divides image into N × N patches equally,
penalizes structure at the scale of patches, and then classifies
the true and false of each patch., As shown in Figure 3, we
think the mapping function is cycle-consistent which can reduce
unnecessary mapping between set A and set B. Therefore, we
use a consistency loss to motivate the two behaviors x→ ŷ→
R
(
ŷ
)
≈ x and y→ x̂→ G

(
x̂
)
≈ y as follows

Ladv (G, R) = Ey∼Py
[
G
(
x̂
)
− y 1

]
+ Ex∼Px

[
R
(
ŷ
)
− x 1

]
(4)

where||∗||;1 means l1 -norm. Our total loss function is written as
follows:

L = LGDG (G,DG,A,B)+ LRDR (R,DR,B,A)+ (5)

λLadv (G,R)

where λ = 10.

Adaptive normalization

We propose a new conditional normalization method to
address the problem regarding the fusion of introduced high-
level semantic information. Let m ∈ QH×W be a mask, where
H is the image height and W is the image width. The high-
level semantic information extracted from the residual network
is fused to the source domain information. Then they are
characterized on m. First, let li be the activations for a batch
of N samples in the ith layer in a deep convolutional network.
Let Ci be the number of channels in this layer. Let Hi and
Wi be the height and width of the activation map in this
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FIGURE 4

DWI and T2 datasets.

layer. Similar to the batch normalization, the pixel values after
the convolution operation are normalized in a channel-wise
manner, then modulate with the learned scaling parameter γ

and shift parameter µ. The value in space (n ∈ N, c ∈ Ci, a ∈
Hi, b ∈Wi) can be expressed as follows:

γic,a,b (m)
hin,c,a,b − µi

c

σic
+ βic,a,b (m) (6)

µi
c =

1
NHiWi

∑
n,a,b

hin,c,a,b, (7)

σic =

√√√√ 1
NHiWi

∑
n,a,b

((
hin,c,a,b

)2
−
(
µi
c
)2
)

where hin,c,a,b is the activation before normalization. µi
c and σic

are the mean and standard deviation of the activations in
channel c. γic,a,b (m) and βic,a,b (m) are affine parameters learned
in the normalization layer, which depend on the high-level
semantic information and vary with respect to the location(
a, b

)
. The value of mask m in the activation map at the site

(n, a, b) is updated by using the scaling parameter γic,a,b (m) and
the translation parameter βic,a,b ( m).

Experiments

To verify the effectiveness of proposed AN-GAN, we
evaluate our method through experiments on MR image
translation, including descriptions of experimental data,
experimental settings, and evaluation metrics. In the ablation
experiments, the improvements we explore benefit from
two points in the proposed framework, namely, high-level
semantic information extracted from the source domain
and the proposed new normalization method. To verify the
effectiveness of these two modules, we will remove the high-
level semantic information module in the AN-GAN framework,
use a batch normalization method, and compare these two
experimental results with the proposed method. Finally, we
will compare with existing GANs models CGAN, pix2pix,

cycle-GAN, and StarGAN. The experimental data included
two MRI sequences, namely, DWI and T2. Figure 4 shows an
example of these data.

FIGURE 5

Design of the decoder of generator, which contains three
deconvolution layers, where 3× 3− Conv− 64 means a 3× 3
convolutional layer with 64 filters. ↑ 2 means a deconvolution
with stride 2 operate.

TABLE 1 Quantitative assessment of MRI image conversion.

Method MSE PSNR SSIM FSIM

AN-GAN (Without AN) 111.22± 5 27.67± 1 0.85± 0.2 0.91± 0.2

AN-GAN (Without mask) 96.86± 5 28.27± 1 0.89± 0.2 0.94± 0.2

AN-GAN 86.40± 5 29.30± 1 0.92± 0.1 0.97± 0.2
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FIGURE 6

(A) is the real T2 image; (B) is the T2 image generated with mask information; (C) is the T2 image generated with AN; and (D) is the T2 images
generated with mask information and AN. The numbers in yellow represent the SSIM and FSIM scores of the generated images.

FIGURE 7

Boxplots of SSIM (A) and FSIM (B) scores for synthetic images of three network models (CGAN, pix2pix, Cycle-GAN, StarGAN, and AN-GAN) on
the test set.

FIGURE 8

Experimental results of CGAN, pix2pix, Cycle-GAN, StarGAN, and AN-GAN in the test set. Synthesis of images from DWI to T2.

Datasets

The study was approved by the Institutional Review Board
of Yantai Yuhuangding Hospital and the Ethics Committee of
Shandong Technology and Business University, and informed

consent from the patients was waived. The experimental data
used in this article are collected from 20 adult volunteers
at Yantai Yuhuangding Hospital. They were scanned under
a DISCOVERY MR750w MRI scanner, using a self-shielding
gradient set with a maximum gradient amplitude of 40mTm−1.
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The size of each DWI MR image is 256 × 256 × 16, the size
of each T2 MR image is 256 × 256 × 12, and the voxel size is
1 mm×1 mm× 1 mm.

Experimental settings

We conduct all experiments using Windows 11 with
NVIDIA RTX3060 GPU and 12th Gen Intel(R) Core (TM)
i5-12400F CPU, and the environment is Python3.7 and
PyTorch1.8.0. Based on the scanning direction of the 3D
medical images, we slice the 3D medical images scanned by all
MRI equipment into 2D images and use the 2D slices to train
our proposed model. When conducting experiments, we crop
the size of the input image to 256× 256, where the parameter λ

of Eq. 5 is set to 10, the initial learning rate is set to 0.0001, and
the batch size is set to 2.

The AN-GAN framework is shown in Figure 5. We
normalize each layer of the network using an AN approach.
The discriminator uses 70× 70 PatchGANs (Isola et al., 2017).
It uses fewer parameters than the full-image discriminator and
can process arbitrary images in a convolutional fashion. During
the training process, the adversarial loss uses a least-squares
loss (Mao et al., 2017). In the process of deconvolution, the
high-level semantic information of the source domain is used to
guide the synthesis of the generator, where the decoder design is
shown in Figure 5.

In this article, we use mean squared error (MSE), peak signal
to noise ratio (PSNE), structural similarity (SSIM) (Wang et al.,
2004), and feature similarity index measure (FSIM) (Zhang
et al., 2011) for an objective evaluation of image translation
results. The real images of all target domains are used as
reference datasets, and the SSIM and FSIM scores of the
generated images are used as quantitative evaluation criteria.

Ablation study

To verify the effectiveness of adding AN methods and high-
level semantic information, we compare AN-GAN with AN with
AN-GAN using only batch normalization and AN-GAN adding
only high-frequency information GANs are compared and
quantitatively analyzed in our dataset. As shown in Table 1, AN-
GAN using AN and high-level semantic information effectively
improves image translation performance. The synthesized
image is shown in Figure 6. From the CSF in the yellow box
area in Figures 6B,D, it can be seen that only adding high-
frequency information does not improve the quality of image
translation, and the synthesized result is blurred. Among them,
(Figure 6C) compared with (Figure 6D), after using high-
frequency information and AN, the image structure synthesized
by AN-GAN is more complete, the details are richer, and it
is closer to the real image. SSIM and FSIIM scores are used

for quantitative evaluation. We find that using high-frequency
information and AN, SSIM achieves 0.9177 and FSIM achieves
0.9762, which are higher than the scores of 0.8486 and 0.9143 for
adding high-frequency information alone and 0.8895 and 0.9446
for using AN alone.

Comparison

We evaluate the feasibility and effectiveness of the AN-GAN
framework that will be compared with classic models in the field
of image translation as follows:

• CGAN: a method to generate a specific image. The
proposal of CGAN enables GAN to use images and
corresponding labels for training, and use the given
labels to generate specific images in the testing phase.
• Pix2pix: a method using patch-level discriminators.
• Cycle-GAN: a method to learn two

mappings simultaneously.
• StarGAN: this method implements the transfer of

multiple domains using one model.

In this article, these five models are quantitatively evaluated
on the test set. The results of SSIM and FSIM are shown in the
boxplot in Figure 7. Compared with CGAN, pix2pix, Cycle-
GAN, and StarGAN, the AN-GAN framework is more stable
and the effect is better. As shown in Figure 8, the images
generated by the CGAN framework have large deformations.
Pix2pix, Cycle-GAN, and StarGAN frameworks all successfully
implement image translation between the two domains with
good results, but some brain tissues are not visually clear. The
results of our proposed AN-GAN show clear details and distinct
texture of soft tissue, which is superior to other methods.

Conclusion

In various clinical scenarios, medical images are crucial for
the diagnosis and treatment of diseases. Different sequences of
MRI images provide doctors with different lesion information,
which complement each other and help doctors make accurate
decisions in clinical scenarios. However, the cost of MRI
equipment is high. Using low-cost scanned MRI image
sequences to synthesize other sequence MRI images can not
only save the cost of patients but also provide doctors with
more comprehensive lesion information. In contrast to the
existing methods, this article proposes the AN-GAN framework,
which adds high-frequency information to guide generator
training and designs an AN method to make it suitable
for generators incorporating the high-frequency information.
Through experiments on our collected datasets, we demonstrate
that AN-GAN outperforms other state-of-the-art methods.
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