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Tobacco addiction has been largely attributed to nicotine, a component

in tobacco leaves and smoke. However, extensive evidence suggests that

some non-nicotine components of smoke should not be overlooked when

considering tobacco dependence. Yet, their individual effect and synergistic

effect on nicotine reinforcement remain poorly understood. The study herein

focused on the role of non-nicotine constituents in promoting the effects

of nicotine and their independent reinforcing effects. Denicotinized cigarettes

were prepared by chemical extracting of cut tobacco, and the cigarette smoke

extracts (CSE, used as a proxy for non-nicotine ingredients) were obtained

by machine-smoking the cigarettes and DMSO extraction. The compositions

of harmful components, nicotine, and other minor alkaloids in both cut

tobacco and the CSE of experimental denicotinized cigarettes were examined

by GC-MS, and compared with 3R4F reference cigarettes. individually and

in synergy with nicotine were determined by conditioned place preference

(CPP), dopamine (DA) level detection, the open field test (OFT), and the

elevated plus maze (EPM). Finally, the potential enhancement mechanism

of non-nicotinic constituents was investigated by nicotine metabolism

and monoamine oxidase A (MAOA) activity inhibition in the striatum of

mice and human recombinant MAOA. Thenicotine content in smoke from

the experimental denicotinized cigarettes (under ISO machine-smoking

conditions) was reduced by 95.1% and retained most minor alkaloids, relative

to the 3R4F reference cigarettes. It was found that non-nicotine constituents

increased acute locomotor activities. This was especially pronounced for DA

levels in NAc and CPP scores, decreased the time in center zone. There

were no differences in these metrics with DNC group when compared to

the NS group. Non-nicotine constituents alone did not show reinforcing

effects in CPP or striatum DA levels in mice. However, in the presence of
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nicotine, non-nicotine constituents further increased the reinforcing effects.

Furthermore, non-nicotine constituents may enhance nicotine’s reinforcing

effects by inhibiting striatum MAOA activity rather than affecting nicotine

metabolism or total striatum DA content in mice. These findings expand

our knowledge of the effect on smoking reinforcement of non-nicotine

constituents found in tobacco products.

KEYWORDS

denicotinized cigarette, tobacco addiction, conditioned place preference, dopamine,
non-nicotine constituents

Introduction

As the main psychoactive component of tobacco, nicotine
is considered essential for dependence (Ashok et al., 2017).
Most existing work on tobacco dependence has focused only
on nicotine (Gellner et al., 2016), and nicotine is widely
administered as a substitute of tobacco (Coe et al., 2005).
However, nicotine alone cannot fully explain the strong
dependence on tobacco in smokers. The effects on intracranial
self-stimulation thresholds caused by nicotine are even weaker
than very weak drugs like caffeine or phencyclidine (Bespalov
et al., 1999), and nicotine requires more sessions than
general addictive drugs to form a significant place preference
(Piechota et al., 2010).

In an investigation of smokers (Rose et al., 2010), when
comparing the attractiveness of non-nicotine constituents and
nicotine, it was found that denicotinized cigarettes (used as
a model of non-nicotine constituents) were self-administered
more than other routes of nicotine administration (including
intravenous injection of nicotine, nicotine patches, and sprays).
This result demonstrates the smokers’ preference for non-
nicotine constituents, but their abuse potential remains to be
explored. In addition to nicotine, tobacco smoke contains more
than 7,000 different compounds (Rodgman and Perfetti, 2008),
some of which may affect neurochemistry or act as nicotine
enhancers.

In terms of psychoactive effects, three major alkaloids
in cigarette smoke (nornicotine, anabasine, and R-anatabine)
have been reported to activate α4β2 nAChR (a major subtype
of nicotinic acetylcholine receptor expressed in the brain)
and could result in increased midbrain DA release (Hoffman
and Evans, 2013; Wills and Kenny, 2021) similar to nicotine
(McGranahan et al., 2011). Moreover, it has been reported
that nornicotine, in concentrations much higher than found in
tobacco smoke, can independently support weak intravenous
self-administration in rats (Bardo et al., 1999).

Some other mechanisms may help explain the increased
attraction of cigarettes. Phenylethylamine and benzaldehyde
in cigarette smoke were reported to reduce the activity of

CYP2A6 (Rahnasto et al., 2003), an enzyme responsible for
about 80% of nicotine metabolism in humans: The inhibition
of CYP2A5 [the ortholog of the human CYP2A6 gene in
mice (Le Foll and Goldberg, 2005; Grabus et al., 2006)]
significantly delayed nicotine metabolism and thus decreased
nicotine intake behavior (Sellers et al., 2003; Damaj et al., 2007;
Bagdas et al., 2014; Chen et al., 2020; Goyal et al., 2021).
Studies have also reported that pretreatment with monoamine
oxidase A (MAOA, the main enzyme of physiologically active
monoamines) inhibitors could also promote nicotine self-
administration (Guillem et al., 2005, 2006), and constituents like
harman and norharman in cigarette smoke were reported to
inhibit MAOA (Toorn et al., 2019).

For total cigarette smoke composition, numerous studies
have shown that cigarette smoke extracts (CSE) were more
addictive than nicotine alone at the same concentration
(Brennan et al., 2014, 2015; Costello et al., 2014). CSEs have been
widely used in toxicology research (DeMarini, 2004; Liu et al.,
2007; Donate et al., 2021; Song et al., 2021), and these extracts
provide another opportunity to study the collective contribution
of many non-nicotine constituents in the aerosol condensate
matrix. Although isolating CSEs can be difficult, their study can
be more directly related to the key questions in clinical cases.

Conditioned place preference (CPP) is a classical method
in drug reinforcement research (Le Foll and Goldberg, 2005;
Grabus et al., 2006), and was used for assessing addiction-related
behaviors, as well as for quantifying the rewarding effects of
substances (Cunnigham et al., 1993; Cunningham et al., 2006).
The DA neurotransmitter system is central to addiction, and
psychostimulants produce an abnormal release of DA in the
midbrain of animals and humans (Di Chiara, 2000; Dani, 2003;
Hyman et al., 2006; Benowitz, 2010; Deadwyler, 2010). The
effect of cigarettes (Barrett et al., 2004; Brody et al., 2004) and
other addictive drugs (Di Chiara et al., 2004) on the midbrain
DA system function correlates with self-reported drug liking
measurements in humans, suggesting that increased midbrain
DA levels caused by psychoactive drugs are important indicators
for reinforcing effects analysis. Moreover, the recently reported
advanced monitoring measurement, a genetically encoded DA
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fluorescent biosensor (Sun et al., 2018), was able to circumvent
previous problems, including the long sampling time (5–10 min
interval) of microdialysis (Chefer et al., 2009), low detection
limit, inability to distinguish catecholamine neurotransmitters
of fast scanning cyclic voltammetry (Venton and Cao, 2020),
and the biosensor also responded well to DA in both rodents
and neurons in vitro (Sun et al., 2020). The sensing module
based on natural membrane-targeted DA receptor ensures
sufficient chemical specificity and an adequate level of detection.
A conformational change in the receptor due to extracellular
dopamine binding, Green Fluorescence Protein (GFP) domain
that located in the third intracellular loop (Sun et al., 2020;
Salinas et al., 2022).

In the present study, we used the CSE of denicotinized
cigarettes (made of cut tobacco after chemical extraction) as
a model for non-nicotine constituents. The CPP test and DA
recordings were used to examine the reinforcing effects of
the CSE on experimental denicotinized cigarettes. Nicotine
metabolism and MAOA inhibition were examined to identify
the potential mechanism of the enhancing effect of non-nicotine
constituents on nicotine. Our results provide valuable insights
into tobacco reinforcement by more clearly defining the roles of
non-nicotine constituents in cigarettes.

Results

Chemical analysis of cut tobacco and
smoke of experimental cigarettes

An overview of the composition analysis of smoke and
cut tobacco between the experimental cigarettes and the 3R4F
reference cigarettes can be found in Figure 1. The contents
of most harmful substances in the smoke of the experimental
cigarette were close to that of the 3R4F reference cigarettes
(Figure 1A). Compared with the CSE of 3R4F reference
cigarettes, a significant decrease was found in the nicotine
contents (0.69 mg/cigarette to 0.03 mg/cigarette, Figure 1B)
and most minor alkaloids (Figure 1C) in the CSE of the
experimental cigarettes. Similarly, the nicotine content of the
experimental cigarettes (0.70 mg/g) was lower than the 3R4F
reference cigarettes (25.01 mg/g) (Figure 1D) in the cut tobacco.

Behavioral tests

Compared with the NS group (animals administrated
normal saline), the DNC + NIC (∗∗∗p < 0.001) and NIC
(∗p < 0.05) groups showed significant CPP, and compared
with the DNC group, the DNC+NIC (∗ p < 0 01) group
and the NIC (∗ p < 0 05) group showed obvious CPP
(Figures 2A,B), while there was no significant difference
(ns, p > 0.05) when comparing the DNC group (animals
administrated denicotinized cigarette CSE) with the NS group.

The open field test, conducted immediately after injection,
indicated that only the DNC + NIC treatment showed an
increased effect (∗∗p < 0.01), compared with the DNC + NIC
group, the total activity distance of the DNC group and the NIC
group was less, and the difference was statistically significant
(∗p < 0.05). while the other treatments had no significant
(ns, p > 0.05) effect on locomotor activities (Figure 2C). The
elevated plus maze test (8 h after OFT) showed a state of
intense anxiety in the group of the DNC + NIC (∗∗∗p < 0.001)
and the NIC (∗p < 0.05), compared with the DNC group, the
DNC + NIC group stayed in the open arm for a shorter time,
indicating that the DNC+NIC group was more anxious, and the
difference was statistically significant (Figure 2D).

Dopamine level detection

Two weeks after unilateral microinjection of adeno-
associated virus (AAV) into the NAc (Figure 3A), and the green
fluorescence intensity was measured using by the multichannel
fiber photometry system, which reflected the DA level (Figure
3B). Mice showed strong immunohistochemical localization
of the DA fluorescence biosensor GRABDA2h in NAc slices
(Figure 3C).

The real-time DA levels were tested during injections (9th

day, 8 h after post-test). The results showed that compared
with NS, NIC enhanced the DA level [two-way ANOVA; F
(1, 5) = 6.96, ∗p < 0.05; Figure 3D], while DNC showed no
enhancement of the DA level [two-way ANOVA; F (1, 5)= 0.24,
ns, p > 0.05; Figure 3D]. DNC + NIC enhanced the DA level
[two-way ANOVA; F (1, 5) = 30.20, ∗∗p < 0.01; Figure 3D],
and the addition of DNC significantly enhanced the DA level
induced by NIC [two-way ANOVA; F (1, 5)= 39.15 ∗∗p < 0.01;
Figure 3D] as was also the case with CPP scores.

The DNC + NIC group induced stronger DA release than
the NIC group (Figure 3D). These results are also presented
by the heat-map graph (Figure 3E). The AUC (area under
curve) induced by the DA in DNC (∗∗ p < 0.01) group and
NIC (∗ p < 0.05) group was significantly lower than that in
the DNC + NIC group. The DA-released AUC (area under
the curve) induced by the DNC group (mean = 173.7) was
higher than that of the NS group (mean = 131.4), but there
was no statistical difference (p > 0.05, Figure 3F). The results
indicate that non-nicotine constituents may potentiate nicotine
reinforcing effects by a mechanism of increasing the nicotine-
induced DA release.

Investigation of potential mechanisms

The influence of non-nicotine constituents on
nicotine metabolism

To examine the influence of non-nicotine constituents on
nicotine metabolism, the blood concentrations of cotinine (the
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FIGURE 1

The contents of selected harmful substances in mainstream smoke extracts under ISO smoking, including 9 priority harmful substances listed
by the World Health Organization: NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; NNN, N′-nitrosonornicotine; Acetaldehyde; Acrolein;
Benzene; BaP, Benzo[a]pyrene; 1,3-Butadiene; CO, Carbon monoxide; Formaldehyde (A). Nicotine contents in mainstream smoke extracts from
ISO smoking (B). Minor alkaloid contents in mainstream smoke extracts from ISO smoking (C). Nicotine contents in cut tobacco (D).

main nicotine metabolite) were determined after the injection
of the drug. The results indicate that the DNC + NIC group
was not significantly different from NIC (p = 0.9995, one-way
ANOVA, Figure 4A). Compared with the DNC group, the level
of cotinine in the DNC + NIC (∗∗p < 0.01) group and the
NIC (∗∗p < 0.01) group was higher, and there was statistical
significance. The activity of CYP2A5 (the principal metabolism
enzyme of nicotine in mice) in the liver showed that levels
were not significantly different when NS was compared with
DNC + NIC, NIC or DNC (DNC vs. NS, ns, p > 0.05;NIC vs.
NS, ns, p > 0.05; DNC + NIC vs. NS, ns, p > 0.05 Figure 4B).
Additionally, there was no significant difference among the
other groups (DNC vs. DNC+NIC, ns, p > 0.05; DNC vs. NIC,
ns, p > 0.05; Nic vs. DNC+ NIC, ns, p > 0.05 Figure 4B).

Total dopamine amount and dopamine
metabolism in striatum

Dopamine (DA) amount and DA metabolism may also affect
DA levels, thus affecting tobacco reinforcement. No statistically
significant difference in DA amount between these groups was
evident (ns, p > 0.05, Figure 5A). Additionally, inhibition
of MAOA was examined. Besides inhibiting MAOA activity,
MAOA inhibition was also associated with its’ gene expression

levels. Instead of causing changes in MAOA expression levels
in striatum (Figure 5B), DNC (∗∗p = 0.0024) and DNC + NIC
(∗∗p= 0.0012) inhibited MAOA activity (Figure 5C). NIC alone
did not cause changes in MAOA activity (ns, p > 0.05), nor did
it synergize with DNC (ns, p > 0.05 compared DNC group to the
DNC + NIC group, Figure 5C). However, the activity of MAOA
in NIC group was significantly higher than that in DNC group
(∗∗P < 0.01). The activity of MAOA in DNC + NIC group was
significantly lower than that in NIC group (∗∗P < 0.01). Similar
to the results of MAOA in striatum, DNC and DNC + NIC
were also inhibited human recombinant MAOA activity in vitro
(DNC + NIC vs. NS, ∗∗∗p < 0.001; DNC vs. NS, ∗∗∗p < 0.001.
Figure 5D), and NIC had no effect alone and did not synergize
with DNC (NIC vs. NS, ns, p > 0.05; DNC vs. DNC + NIC, ns,
p > 0.05 Figure 5D). Compared with NIC group, the MAOA
activity of DNC group and DNC+NIC group was inhibited
in vitro (∗ p < 0.001).

Discussion

The present study provides important information
regarding the potential to augment nicotine reinforcement of
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FIGURE 2

Non-nicotine constituents enhanced nicotine addiction. Conditioned place preference before and after training (n = 8), NIC effect
F1,28 = 26.180, p < 0.001, DNC effect F1,28 = 2.171, p = 0.152; interaction F1,28 = 0.124, p = 0.727 (A). Heat map of the time spent in each area
of the CPP chamber (B). The total distance traveled in the open field (n = 8), NIC effect F1,20 = 4.812, p = 0.040, DNC effect F1,20 = 4.735,
p = 0.042, interaction F1,20 = 12.515, p = 0.002 (C). Time in the open arms (n = 8), NIC effect F1,28 = 19.696, p < 0.001, DNC effect
F1,28 = 5.931, p = 0.021, interaction F1,28 = 0.196, p = 0.661 (D). One-way analysis of variance (ANOVA) post hoc test for (A,C,D): *p < 0.05,
**p < 0.01, ***p < 0.001.

non-nicotine constituents in cigarette smoke by preparing
denicotinized cigarettes and applying them to animal
experiments.

In this study, the contents of 19-associated smoke harmful
chemical compositions, nicotine, and other minor alkaloids
of 3R4F reference cigarettes and denicotinized cigarettes
were reported (Figure 1). The contents of some harmful
substances in the CSE of denicotinized cigarettes were
consistent with those found in 3R4F reference cigarettes
(Figure 1A), except for lower concentrations of tobacco-specific
nitrosamines [TSNA, including 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone, NNK; N′-nitrosonornicotine, NNN; N′-
nitrosoanatabine, NAT and N-nitrosoanabasine, NAB]. This is
the characteristic difference between Chinese Virginia cigarettes
(mainly containing flue-cured tobacco) and 3R4F reference
cigarettes (blended cigarettes) (Xiong et al., 2010; Zhang et al.,
2018) which is also the reason for the difference in minor
alkaloids. To better understand the non-nicotine constituents
in this study, the nicotine content of the cut tobacco in the
experimental cigarettes was reduced to 0.7 mg/g, which was
2.8% of the 3R4F standard cigarette level (Figure 1B), and
was close to 0.4–0.6 mg/g (Bespalov et al., 1999; Rodgman and
Perfetti, 2008; Piechota et al., 2010; Rose et al., 2010; Ashok
et al., 2017) in other studies of denicotinized cigarettes. Thus,
the observed differences in smoke chemistry between 3R4F

and denicotinized cigarettes can be attributed to differences
in cigarette design and processes used to reduce nicotine
content.

Despite significant inhibition of MAOA activity
(Figures 5C,D), individual non-nicotine constituents caused
no DA increase (Figures 3D–F). This finding was consistent
with the work reported by Marti et al. (2011) on HEK293-α4β2
cells, which showed CSE did not cause additional α4β2-nAChR
activation compared to nicotine, despite containing non-
nicotine constituents. Our results differed from other studies
when investigating the induced DA release effect of several
minor alkaloids in smoke components in the NAc (Dwoskin
et al., 1995; Arib et al., 2010) due in part to their much higher
dose of administration.

The non-nicotine constituents showed no reinforcing
properties in mice (Figure 2), which was further demonstrated
by the lack of locomotion (Figure 2C) and the lack of anxiety
symptoms after withdrawal for 3 days (Figure 2D). This
was consistent with other studies that showed that individual
psychoactive alkaloids (Hoffman and Evans, 2013) or the
cocktail (Clemens et al., 2009) (anabasine, nornicotine, cotinine,
and myosmine) were unable to induce reinforcing effects based
on CPP on the dose related to cigarette smoke context.

For the CSE of denicotinized cigarettes and nicotine, the
effect on mice seems to be in conflict with the increased
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FIGURE 3

Real-time DA level during drug exposure. Schematic illustration of virus injection and the optical fiber embedment (A). Schematic diagram of an
optical fiber recording device (B). The expression of GRABDA2h was tracked on the coronal section in the nucleus accumbens (C). DA signals in
NAc of drug treatments (baseline: −5 to 0 min. 0 min: injection time point, s.c.) (n = 6). Mean ± SEM overlaid for each group (D). Heat maps of
DA level recording related to drug administration (E). The area under the curve (AUC) of the DA signal, Mean ± SEM, NIC effect F1,20 = 50.145,
p < 0.001, DNC effect F1,20 = 12.470, p = 0.002, interaction F1,20 = 1.960, p = 0.177, one-way analysis of variance (ANOVA) post hoc test for
*p < 0.05, **p < 0.01, ***p < 0.001 (F).

attraction compared to nicotine administration in the study
by Rose et al. (2010). This difference might be attributed to
the prior smoking experience of the human subjects and the
unique sensory attributes (Rose, 2006), including the “throat
hit,” the sight, taste, and smell of cigarettes, the contexts cues
(White et al., 2020), and the social and cultural factors (Stewart
et al., 2015; Boudreau et al., 2016), which are considered
essential factors of tobacco use (Wang et al., 2018). These factors
further demonstrate the complexity of tobacco reinforcement
and the importance of studying pharmacological and non-
pharmacological non-nicotine factors.

The CPP test manifested the reinforcing effects of the
rewarding stimulus (Tzschentke, 1998; Paredes, 2009), and the
DNC + NIC group (mean = 0.52) showed longer time spent
in the drug-paired environment than the NIC group (mean =
0.46) (Figures 2A,B), which implied the possible promotion
of DNC in the presence of nicotine. A similar trend was
found in DA release (Figures 3D–F). When administrated with
nicotine, the peak value of abnormal release of DA in the
NAc was about 135% above the base level, which was similar
to other studies using microdialysis (Rada et al., 2001; Ding
et al., 2022); this observation supported the reliability of using
the DA biosensor to monitor drug-induced DA release, while
DNC further enhanced the DA peak value of nicotine to 157%
(Figure 3D).

The reinforcing effect and DA level induced by DNC +
NIC were greater than the sum of the two parts, suggesting
that the relationship of the DNC group to nicotine was
synergistic rather than additive, and the synergistic effect was
further supported by the unique enhancement of the DNC
+ NIC group in locomotor activity compared to the NIC
group (Figure 2C) and anxiety performance (Figure 2D). The
results show that there was no difference in blood cotinine
concentration between the DNC + NIC and NIC groups
(Figure 4A), and the same activity of CYP2A5 between the DNC
and NS groups excluded pharmacokinetic factors. However,
as compared to the addition of CSE into NS, the MAOA
inhibition of non-nicotine constituents might be an important
factor for the enhancement on nicotine, which would lead
to stronger DA release and reinforcement properties. This is
consistent with previous studies using the MAOA inhibitor
(Guillem et al., 2005; Lotfipour et al., 2011; Smith et al., 2015,
2016) or CSE of normal nicotine content cigarettes (Costello
et al., 2014; Hall et al., 2014; Gellner et al., 2016; Cross et al.,
2020), but it is worth highlighting that this study complemented
the effects of the mixture of non-nicotine constituents.

Similarly, nicotine transdermal patch supplementation
reduced withdrawal symptoms in subjects who switched
to denicotinized cigarettes (Buchhalter et al., 2005;
Donny and Jones, 2009). It must be acknowledged that
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FIGURE 4

Non-nicotine constituents did not affect nicotine metabolism. Plasma cotinine (ng/mL) at 30 min after subcutaneous administration [n = 6, (A)].
The activity of CYP2A5 in mouse liver and compared to the NS group, NIC effect F1,12 = 0.003, p = 0.957, DNC effect F1,12 = 0.033, p = 0.859,
interaction F1,12 = 0.161, p = 0.695 with one-way analysis of variance (ANOVA) post hoc test [n = 6, (B)].

FIGURE 5

Administration of drugs did not change total striatum dopamine or MAO gene expression. DA concentration in striatum homogenate, NIC effect
F1,32 = 9.764, p = 0.004, DNC effect F1,32 = 0.379, p = 0.542, interaction F1,32 = 4.394, p = 0.044 [n = 8, (A)]. MAOA and MAOB mRNA
expression as determined by qPCR [fold-change mRNA expression normalized to the NS group, n = 3, (B)]. Effects of drugs on the activity of
MAOA in mice striatum in comparison to the NS group, NIC effect F1,24 = 0.020, p = 0.889, DNC effect F1,24 = 31.835, p < 0.001, interaction
F1,24 = 0.066, p = 0.799 [n = 6, (C)]. Effects of drugs on the activity of recombinant MAOA (Human recombinant protease) compared to the NS
group, NIC effect F1,8 = 0.935, p = 0.362, DNC effect F1,8 = 434.542, p < 0.001, interaction F1,8 = 0.935, P = 0.362 [n = 3, (D)]. One-way
analysis of variance (ANOVA) post hoc test for (A,C,D): **p < 0.01, ***p < 0.001.
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FIGURE 6

A brief outline of the study design.

chemical extraction did not completely remove nicotine, but the
CSE of denicotinized cigarettes with residual little nicotine in
this study did not cause the above enhancement, which indicate
there may be a concentration threshold for most behavioral
or physiological actions. Although 0.5 mg/kg dose nicotine is
widely used and caused the strongest CPP response (Grabus
et al., 2006; Walters et al., 2006), the limitations of evaluating
the effects of single nicotine dose in this study warrant future
work. Furthermore, we also investigated the influence of
repeated exposure to different formulated injections on DA
levels, and the result showed no difference in striatum DA
measurements between the different groups (Figure 5A), which
was similar to results after chronic exposure (Pietilä and Ahtee,
2000).

Genetically encoded DA sensors (Sun et al., 2018) were
successfully used to monitor the DA levels and exhibited
excellent performance in terms of long-range stability and
reliability. The results suggest that the DA-releasing ability
of drugs was synchronized with the CPP reinforcing effects
test (Figures 2, 3), which demonstrated the great potential
of DA detection as an indicator for evaluating reinforcing
properties. Moreover, based on its much higher sampling
frequency, the biosensor can more realistically reflect the
release dynamics of DA (Salinas et al., 2022), especially when
exploring the drug-related DA dynamics even at sub-second
timescales.

The results of this study suggests that denicotinized
cigarettes have the potential to be the model applied in
the study of non-nicotine constituents, but we also note
the limitations of residual nicotine in these cigarettes.
Additionally, the DNC group in the present study represents
only initial user, and the study of subjects with a smoking
history of normal nicotine content cigarettes deserves
further investigation.

Conclusion

This study utilized denicotinized cigarettes as a model
of non-nicotinic constituents and assessed their abuse
reinforcing effects and effects in mice. The molecular and
behavioral results obtained in the present animal study
suggest that non-nicotinic constituents alone could inhibit
MAOA activity but could not induce CPP or promote
extra DA release. Nicotine could induce CPP or extra
DA release, but it was far less effective than CSE from
normal nicotine content cigarettes. In contrast to the widely
known potentiation properties of non-nicotine ingredient
mixtures, this study is the first to show their diminished
effects when they are applied in the absence of nicotine.
These results indicate that exploring the interaction between
nicotine and non-nicotine components may help researchers
better understand why tobacco in the form of cigarettes is
highly addictive.

Materials and methods

Study design

The study design was performed as shown in Figure 6.
Cigarette sample preparation: Denicotinized cigarette

smoke extracts were obtained using cigarette suction and
DMSO extraction. Components of tobacco and smoke were
analyzed by GC-MS (gas chromatography-mass spectroscopy).
Detailed steps are described above.

Cigarette smoke extracts (CSE) stocks preparation and
grouping: Given the different contents of individual constituents
among the experimental cigarettes and 3R4F cigarettes, nicotine
was added to the CSE of denicotinized cigarettes (named DNC)
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to a final concentration that was consistent with the nicotine
content of 3R4F cigarette CSE (named DNC + NIC) and
represented the normal nicotine content of cigarettes. Likewise,
NIC was obtained by adding the same amount of nicotine
into DMSO, and NS means DMSO control. CSE stocks were
dissolved in physiological saline before injection.

Behavioral tests: Four groups (n = 32, male mice) received
different injections and were subjected to behavioral tests to
determine the rewarding and reinforcing effects of the injection
components. CPP (1nd–9th days) was used to assess addiction-
related behaviors and partially quantify the rewarding effects
of substances. OFT (10th day) was used to test locomotion in
mice. EPM (10th day) was used to monitor anxiety-like behavior
in mice.

Potential mechanism research: Four groups of mice (n= 24,
male) received different injections, and a genetically encoded
DA sensor was used to monitor the DA dynamics on the
7th injections. Blood was collected and analyzed by LC-MS to
measure the blood cotinine concentration.

Thirty minutes after the administration (8th day), 24
animals were sacrificed by intraperitoneal injection of 2,2,2-
tribromoethanol (Aibei Biotechnology), and blood, liver, and
brain samples were collected.

The activity of CYP2A5, the total amount of DA, and the
activity of MAOA in the brain of mice treated with different
drugs were measured.

Cigarette preparation and smoking

Based on increasing polarity, petroleum ether, chloroform,
acetone, and water were used to extract the cut tobacco
(Yunnan, China) components by extraction pot (RTN-
6.0, Henan, China). The acetone extract, the chloroform
extract, and the petroleum ether extract were backfilled
into the cut tobacco and packed in conventional tobacco
tubes (84 × 24.0 mm), which were used in follow-up
studies.

After incubation at 22 ± 1◦C and 60 ± 3% relative
humidity for 48 h, the smoke from DNC cigarettes and
3R4F reference cigarettes (University of Kentucky Lexington,
KY, USA) was generated using a smoking machine (Model
SML2000, Anhui, China) in accordance with the ISO 3308
Standard Smoking procedure: puff volume 35 mL, puff duration
2 s, 60 s time interval between puffs, and no ventilation
holes were blocked (International Standard Organization,
2012). The mainstream cigarette smoke was collected on
a 44 mm filter pad (Borgwaldt, Germany) and extracted
with DMSO for DNC. For DNC + NIC, nicotine was
added to a final concentration of 1.176 mg/mL (the same
concentration as 3R4F CSE), and 1.176 mg/mL nicotine in
DMSO for NIC (DMSO only for NS). All CSE were stored at
−80◦C.

Gas chromatography-mass
spectroscopy analysis of nicotine and
minor alkaloids

The filter disc was extracted with a 5% NaOH aqueous
solution for 30 min, then triethylamine dichloromethane and an
internal standard were added and mixed. After centrifugation,
the dichloromethane phase was collected with an organic phase
filter and placed in a chromatographic analysis bottle for
injection and analysis.One microliter was analyzed by GC–
MS. Separation was obtained with a DB-5MS capillary column
(30 cm, 0.25 mm id, and 0.25 µm df). The splitless mode
was used, with an inlet temperature of 280◦C and an oven
temperature program increasing from 100 to 155◦C and a final
temperature of 280◦C and a total run time of 10 min.

Drugs

Each day’s CSE solution was prepared fresh before
experimentation to minimize differences. Briefly, the
stock solutions of NIC and DNC + NIC were diluted in
physiological saline at the required concentration (0.5 mg/kg)
for subcutaneous injection (s.c.) and adjusted to pH 7.2–7.4.
DNC and NS were made in the same way. Human Monoamine
A Oxidase (recombinant, expressed in baculovirus-infected BTI
insect cells) was purchased from SIGMA (M7316).

Subjects tables

Male C57BL/6 mice, 6 to 8 weeks of age, were obtained from
Charles River Animal Technology (Beijing, China). Mice had
free access to food and water with a 12h/12h light/dark cycle
throughout the experiment. After the mice were acclimated to
the colony for at least 7 days, the test was initiated during
the light phase. The experimental procedure was carried out
as described by the National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals, and was
approved by the Experimental Animal Management and Ethics
Committee of the China Tobacco Quality Supervision and
Inspection Center.

Conditioned place preference

Eight 3-compartment chambers (Mobile Datum, Shanghai)
were used to measure the locomotor activity and CPP. Sliding
guillotine doors were used to separate the three compartments.
The middle compartment (70× 180× 200 mm) had a blue PVC
floor and walls. The end compartments (170 × 180 × 200 mm)
provided different visual and tactile cues; one compartment
(chambers without drugs) had black walls with a PVC strip hole
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floor and the other one (chambers with drugs) had white walls
with a circular hole floor.

The nicotine injection dose of the DNC + NIC and
NIC groups was 0.5mg/kg (s.c.) (Klemperer et al., 2019). To
determine baseline preferences, the animals were placed in the
middle chambers (acclimation period, 1min) and allowed to
explore freely in the three chambers on the 1st pre-test day. From
2nd to 8th days, mice were placed in one side of the chamber
for 15 min after injection. Animals received saline injections in
the black chambers in the morning and drug injections in the
white chambers in the afternoon, with the order of injections
switched every day. Post-test were performed on the on the 9th

day, and the percentage of time spent in the drug-paired boxes
was defined as the CPP scores.

Open field test

The open field test was used to evaluate the motor ability
of the different mouse experimental groups on the day after
the post-test (10th day). The test device was a gray frosted
opaque acrylic glass box with an upper opening of 40, 40, and
40 cm. The illumination source was a 20W red fluorescent
lamp placed 100 cm above the floor. The open field experiment
was performed as previously described by JOVE (Journal of
Visualized Experiments) (Cassidy et al., 2018). After drug
injection, the animals were placed in the center of the open field
and allowed to move freely for 10 min.

Elevated plus maze

After 8 h of OFT, when the mice were experiencing
withdrawal from nicotine, mice were subjected to the EPM test.
The experimental device was a 5 × 5 cm central axis structure,
with four 50 cm-high arms and every two adjacent arms were
vertical. Two closed arms were surrounded by a high wall of
30× 5× 15 cm, while the other arms were open (30× 5× 1 cm).
The light source was a 20W red fluorescent lamp located 100 cm
above the maze. The mice were placed in the center of the
maze with their head facing one open arm and were allowed
to explore freely for 10 min. The time spent on opening and
closing the arm was taken as a standard anxiety index. Smart
3.0 (Panlab, Harvard Apparatus, USA) was used for behavioral
analysis of OFT and EPM experiments. The apparatus was
cleaned thoroughly between trials with a 75% alcohol cotton
cloth to eliminate any odor effect.

Surgery

To perform DA recording during drug administration, AAV
with GRABDA2h (Dopamine receptor with green fluorescent
protein) was injected into the NAc, followed by optical fiber

implantation to deliver excitation and emission light that reflect
DA levels. Mice were anesthetized by intraperitoneal injection
with a 0.2 mL/10 g tribromoethanol solution, fixed on a
brain stereotactic instrument equipped with a circulating water
insulation system, and erythromycin ointment was applied to
the eyes of mice to avoid injury from surgical glare. The incision
region was shaved and iodophor was applied for preoperative
disinfection. After incision, mice were adjusted to align bregma
(the intersection of the coronal suture and sagittal suture)
and lambda points (the intersection of herringbone suture
and sagittal suture) until the error did not exceed 0.03 mm.
According to the NAc brain area [anterior and posterior (AP):
1.4 mm, medial and lateral (ML): ± 1.0 mm, dorsal and ventral
(DV):−3.9 mm], a small hole was drilled in the skull. A fine glass
electrode tube connected to a micro syringe pump was slowly
lowered into the target brain area through the hole, and 250 nL
of AAV9-hsyn-DA2h (Vigene Biosciences, Shandong, China)
was injected at a speed of 25 nL/min. After the injection, the
glass tube remained at the injection site for another 5 min, and
was then slowly removed. An optical fiber was inserted 50 µm
above the injection site, and a light curing resin was applied and
cured with a UV lamp for 10–15 s to fix the optical fiber, with
dental cement applied for further fixation. The animals were
removed and placed in an incubator for animal surgery recovery.
After the operation, the animals were raised separately and were
allowed to recover for 2 weeks.

Immunohistochemistry

After anesthesia, animals were intracardially perfused with
50 mL 1 × PBS and 50 mL 4% PFA/1 × PBS solution for
histological analysis. After perfusion, the brain was collected,
fixed in 4% paraformaldehyde at 4◦C for 4 h, and gradually
dehydrated in 10%, 20%, and 30% (w/v) sucrose in PBS. Then,
the brains were immediately frozen in an OCT embedding
medium and were cut to 20 µm slices. The thicknesses
were incubated with Rabbit anti-GFP antibody (1:500) at 4◦C
overnight and then incubated with Alexa488 (Thermo) coupled
with Goat anti-rabbit secondary antibody (1:500) for 1.5 h. DAPI
was incubated for 5 min and cleaned for nucleus observations.
Images were obtained on a Zeiss microscope and analyzed on
ImageJ software.

Dopamine level recording

Mice were acclimatized for 2 weeks prior to experiments
for AAV expression. The formula 4F/F (F−F0) /F0 was used
to calculate differences in fluorescence, where F represents
the current fluorescence intensity and F0 represents the
baseline fluorescence. Before the experiment, mice were placed
in the recording environment for 30 min to adapt, and
the environment was kept quiet and dark to minimize
any interference.
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Analysis of blood cotinine

Blood samples were collected from the mouse eye orbit.
Samples were placed in a 1.5 mL centrifuge tube containing
20 µL heparin sodium, centrifuged immediately, and the
supernatant was aspirated. The cotinine internal standard
working solution was added to the supernatant followed by
methanol, then vortex shaken, centrifuged, and placed in a
chromatographic analysis bottle before injection and analysis.

HPLC and mass spectrometry were carried out following
previous methods, with modifications (Faulkner et al., 2017).
High Performance Liquid Chromatography (HPLC) and mass
spectrometry were carried out following previous methods, with
modifications (Faulkner et al., 2017). Briefly, complete column
separation was performed on an ACQUITY UPLC-BEH-HILIC
HPLC column (Waters, 2.1 × 150 mm, 1.7 µm), and the
column temperature was 40◦C. The mobile phase consisted
of 10 mmol/L ammonium formate (pH = 3.5) (A) and pure
acetonitrile (B) at a flow rate of 0.7 mL/min.

Monoamine oxidase A activity,
qRT-pCR and dopamine content
ELISA kit

The striatum of mice was excised with a mold in a buffer
solution at 4◦C, quickly frozen in liquid nitrogen, and stored
at −80◦C. A steel ball oscillating grinder (oscillation for 5
s static for 5 s, repeat five times) was used to obtain brain
tissue homogenate. Brain tissue was lysed with RIPA buffer
(1 mL/100 mg of brain tissue), then transferred to a centrifuge
tube and mixed thoroughly by pipetting up and down. After
5 min at room temperature, the homogenate was centrifuged
(11,000 rpm, 10 min, 4◦C). The supernatant was carefully
removed and transferred to a new centrifuge tube. Recombinant
human MAOA was dissolved in 1× PBS.

The DA content and MAOA activity levels in mice striatum
were measured using an enzyme linked immunosorbent assay
(ELISA) kit (Shanghai Jiang Lai Biotechnology Co., Ltd., China)
based on the manufacturer’s procedures. Quantitative Real-time
Polymerase Chain Reaction (qRT-PCR) was performed using
qRT-PCR kit (Accurate Biology) following the manufacturer’s
instruction.

Statistical analysis

All statistical data were analyzed by GraphPad Prism
(Version 8.4, GraphPad Software Inc., USA) and were tested
for normality. One-way analysis of variance (ANOVA) followed
by Turkey’s test was used for all the analyses except DA curve
comparisons (two-way ANOVA). The fluorescence intensity
was determined according to the equation, 4F/F (F−F0) /F0

with SEM. Data are presented as the mean ± SEM, and were
analyzed with two-way analysis of variance (ANOVA) followed
by Bonferroni’s post hoc test and one-way ANOVA followed by
Turkey’s test. p < 0.05 indicates a significant difference, and
different significance levels are marked as ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001.
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