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High-resolution imaging studies have consistently shown that in cortical

tissue water di�uses preferentially along radial and tangential orientations with

respect to the cortical surface, in agreement with histology. These dominant

orientations do not change significantly even if the relative contributions from

microscopic water pools to the net voxel signal vary across experiments that

use di�erent di�usion times, b-values, TEs, and TRs. With this in mind, we

propose a practical new framework for imaging non-parametric di�usion

tensor distributions (DTDs) by constraining the microscopic di�usion tensors

of the DTD to be diagonalized using the same orthonormal reference frame

of the mesoscopic voxel. In each voxel, the constrained DTD (cDTD) is

completely determined by the correlation spectrum of the microscopic

principal di�usivities associated with the axes of the voxel reference frame.

Consequently, all cDTDs are inherently limited to the domain of positive

definite tensors and can be reconstructed e�ciently using Inverse Laplace

Transform methods. Moreover, the cDTD reconstruction can be performed

using only data acquired e�ciently with single di�usion encoding, although

it also supports datasets with multiple di�usion encoding. In tissues with a

well-defined architecture, such as the cortex, we can further constrain the

cDTD to contain only cylindrically symmetric di�usion tensors and measure

the 2D correlation spectra of principal di�usivities along the radial and

tangential orientation with respect to the cortical surface. To demonstrate this

framework, we perform numerical simulations and analyze high-resolution

dMRI data from a fixed macaque monkey brain. We estimate 2D cDTDs

in the cortex and derive, in each voxel, the marginal distributions of the

microscopic principal di�usivities, the corresponding distributions of the

microscopic fractional anisotropies and mean di�usivities along with their 2D

correlation spectra to quantify the cDTD shape-size characteristics. Signal

components corresponding to specific bands in these cDTD-derived spectra

show high specificity to cortical laminar structures observed with histology.
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Our framework drastically simplifies the measurement of non-parametric

DTDs in high-resolution datasets with mesoscopic voxel sizes much smaller

than the radius of curvature of the underlying anatomy, e.g., cortical surface,

and can be applied retrospectively to analyze existing di�usion MRI data from

fixed cortical tissues.

KEYWORDS

di�usion tensor distribution (DTD), multidimensional di�usion MRI, microscopic

anisotropy, cortical cytoarchitecture, microscopic principal di�usivity, di�usion

reference frame, high-resolution di�usion MRI, multiple di�usion encoding

1. Introduction

By quantifying the microscopic motions of water molecules

diffusion MRI (dMRI) provides a sensitive clinical tool to non-

invasively probe the tissue structures at length scales (≈ 5µm)

much smaller than the voxel size. In isotropic and anisotropic

tissues, the dMRI signal at low diffusion sensitizations (b-values)

can be described phenomenologically using diffusion tensor

imaging (DTI) (Basser et al., 1994a,b). In DTI, the diffusion

signal attenuation in each voxel is modeled using a diffusion

tensor, D, which has 6 degrees of freedom. The diffusion tensor

can be decomposed or diagonalized in an orthogonal reference

frame whose principal coordinate axes are characterized by

the eigenvectors ǫ1, ǫ2, and ǫ3. The normalized orthogonal unit

vectors along the principal tensor axes represent 3 degrees of

freedom of D that define its orientation with respect to the

laboratory reference frame. The scalar principal diffusivities

λ1, λ2, λ3 corresponding to these directions represent the other

3 degrees of freedom of D and determine the mean diffusivity

and diffusion anisotropy. In general,D can be written as:

D = λ1ǫ1ǫ
T
1 + λ2ǫ2ǫT2 + λ3ǫ3ǫT3 , (1)

where ǫ1ǫ1
T , ǫ2ǫ2

T , ǫ3ǫ3
T are the principal coordinate axes

dyads (or rank-1 tensors) derived from the eigenvectors of the

diffusion tensor while the positivity of the principal diffusivities

(i.e., eigenvalues ofD) guarantees thatD is positive definite.

However, at b-values larger than 1, 500 s/mm2 the dMRI

tissue signal is more sensitive to the intravoxel variation

of water diffusion properties, and the DTI approximation

may no longer hold. To quantify the intravoxel diffusion

heterogeneity many approaches have been proposed, including

using signal representations with higher-order terms, such

as diffusion kurtosis imaging (DKI) (Jensen et al., 2005),

generalized diffusion tensor imaging (GDTI) (Özarslan and

Mareci, 2003; Liu et al., 2004), mean apparent propagator (MAP)

MRI (Özarslan et al., 2013; Avram et al., 2016), as well as

multi-exponential, multi-tensor, or multi-compartment tissue

diffusion models (Stanisz et al., 1997; Mulkern et al., 1999; Assaf

and Basser, 2005; Zhang et al., 2012).

Jian et al., extended the multi-tensor signal representations

to describe intravoxel diffusion heterogeneity using a Wishart

distribution of microscopic diffusion tensors (Jian et al., 2007).

Even though this parametric distribution is limited in its ability

to accurately quantify the range of diffusion heterogeneity

in healthy and diseased tissues, it nonetheless inspired great

interest in measuring subvoxel distributions of microscopic

diffusion tensors (DTDs). In general, however, to disentangle

microscopic processes with arbitrary diffusivities, diffusion

anisotropies, and orientations, it is necessary to sensitize the

measurement to diffusion-diffusion correlations (Cory et al.,

1990; Mitra, 1995; Callaghan and Komlosh, 2002) by preparing

the signal with multiple pulsed-field gradients (mPFG), or

multiple diffusion encodings (MDE). Historically, biological and

clinical applications of mPFG or MDE methods (Komlosh et al.,

2007) have focused on estimating microstructural parameters

such as the average axon diameters (Koch and Finsterbusch,

2008; Avram et al., 2013a,b; Komlosh et al., 2018) or pore size

distributions (Benjamini et al., 2016). More recently, MDE-

prepared MRI measurements were described using tensor-

valued diffusion encoding (Westin et al., 2016; Topgaard, 2017)

in the context of probing subvoxel diffusion heterogeneity

described using an ensemble of non-exchanging Gaussian

diffusion tensor processes whose corresponding ellipsoids have

distinct sizes, shapes, and orientations, i.e., the DTD.

While, at least in principle, one can reconstruct DTDs from

a very large number of measurements with encodings sampling

the 6D space of b-tensors, in practice, the limited signal-to-

noise ratio (SNR) and long scan duration make such clinical

or biological experiments very challenging (Topgaard, 2017;

Song et al., 2022). To reduce the requirements for the high

SNR level and a large number of measurements some have

made simplifying assumptions such as cylindrical symmetry

of microscopic tensors (Topgaard, 2017) which reduce the

dimensionality of non-parametric DTD reconstructions from

six to four degrees of freedom. Alternatively, one can use

parametric models (e.g., analytical functions) to estimate

features of the DTDs (Jian et al., 2007; Lasic et al.,

2014; Szczepankiewicz et al., 2016; Westin et al., 2016;
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Magdoom et al., 2021) from data acquired using MDE and

conventional single diffusion encoding (SDE) (Stejskal and

Tanner, 1965).

Meanwhile, numerous studies using dMRI and other

modalities provide converging evidence that, at a sufficiently

small (i.e., mesoscopic) length scale, neuronal tissues, including

cortical gray matter (GM) are organized preferentially

along local orthogonal frames of reference. Ever since the

earliest observations of cortical cyto- and myeloarchitecture

(Brodmann, 1909; Cajal, 1909; Vogt, 1910), histochemistry

and immunohistochemistry studies have consistently shown

that cellular and subcellular structures at the microscopic scale

are oriented predominantly along orthogonal, i.e., radial and

tangential, orientations with respect to the cortical surface. This

orthogonal reference frame persists at larger, mesoscopic scales

of tens and hundreds of micrometers, and can be clearly seen

in the arrangements of cells with various sizes, shapes, and

densities forming tissue architectural patterns along the same

radial and tangential orientations such as cortical columns and

laminae, respectively (Amunts and Zilles, 2015; Rubenstein

and Rakic, 2020). Most recently, studies using state-of-the-

art electron microscopy (EM) in cortical GM (Lichtman

and Denk, 2011; Shapson-Coe et al., 2021) have mapped

the 3D organization of neuronal cells in gray matter with

nanometer resolution over fields-of-view (FOVs) of hundreds

of micrometers. These studies revealed in unprecedented detail

anisotropic tissue structures, such as the microvasculature

(Zhang et al., 2015), branching dendrites, neurofilaments, and

other cell processes in various neuronal and non-neuronal cells

(pyramidal neurons, intrinsic neurons, glial cells, etc.) roughly

aligned along a local orthogonal frame of reference.

At mesoscopic length scales of a few 100 µm, diffusion

processes in neural tissues align closely with the dominant

orientations in the local tissue microstructure. Histological

validation studies using ultra high-resolution dMRI have

consistently found a good correspondence between the

orientations of the underlying tissue microstructure and the

orthogonal DTI reference frame (Budde and Annese, 2013;

Seehaus et al., 2013, 2015) defined by ǫ1ǫ1
T , ǫ2ǫ2

T , ǫ3ǫ3
T , or

the fiber orientation distribution functions (FOD) (Tournier

et al., 2004) measured with high-angular resolution diffusion

MRI (HARDI) (Tuch et al., 2002) in the brain (Leergaard et al.,

2010). Numerous dMRI studies of cortical microstructure in

fixed tissues (McNab et al., 2009, 2013; Dyrby et al., 2011;

Miller et al., 2011; Kleinnijenhuis et al., 2013; Leuze et al.,

2014; Aggarwal et al., 2015; Avram et al., 2022) and in vivo

(Jaermann et al., 2008; Heidemann et al., 2010; McNab et al.,

2013; Kleinnijenhuis et al., 2015; Gulban et al., 2018; Wang et al.,

2021), for review see Assaf (2019), suggest that at submillimeter

spatial resolution diffusion in the cortex is anisotropic and

varies with the cortical folding geometry (McNab et al., 2013;

Cottaar et al., 2018; Avram et al., 2022), in good agreement

with the cortical cyto- and myeloarchitectonic features observed

with histology and other modalities (Nieuwenhuys, 2013).

Moreover, HARDI-derived FODs show preferentially radial

and tangential components (Kleinnijenhuis et al., 2013; Leuze

et al., 2014; Aggarwal et al., 2015) which evoke cortical columns

(Petersen, 2007; Yacoub et al., 2008) and layers (Nagy et al.,

2013; Bastiani et al., 2016), respectively, that can be observed

with post-mortem histological staining. In addition, studies

of laminar-specific intra-cortical connectivity measured with

diffusion fiber microtractography (Leuze et al., 2014) of cortical

FODs (Aggarwal et al., 2015; Gulban et al., 2018) suggest a

similar orthogonal (radial and tangential) organization.

Increasing the spatial resolution in dMRI reduces the

intravoxel angular dispersion of subvoxel diffusion processes

and implicitly the orientational variance of the DTD. At

submillimeter spatial resolution, dMRI is sensitive to cortical

diffusion anisotropy and allows us to identify the radial and

tangential orientations along which diffusion processes align.

Recently, a careful survey of the high-resolution dMRI literature

(Assaf, 2019) suggests that when different contrast preparations

are used to vary the relative contributions of microscopic

tissue water pools to net voxel dMRI signal in the cortex, the

dominant diffusion orientations, as measured using the DTI

eigenvectors or the directions of FOD peaks, remain unaffected

even though the relative diffusivities or FOD amplitudes along

these orientationsmay change. Atmesoscopic spatial resolutions

of a few 100 µm, the orientational characteristics of the

dMRI signal remain remarkably consistent across experiments

with fixed and live cortical tissues using different T1- and/or

T2-weightings, i.e., different echo time (TE), repetition time

(TR), or inversion time (TI), diffusion sensitizations (b-

values) or diffusion/mixing times. These findings imply that

at mesoscopic spatial resolutions, subvoxel cortical diffusion

tensors from microscopic water pools are coincident along

the same dominant (radial and tangential) orientations but

may have potentially different diffusion anisotropies and

diffusivities. Implicitly, at the mesoscopic length scale, the

DTD is predominantly determined by the variations in the

shapes (diffusion anisotropies) and sizes (diffusivities) of the

microscopic diffusion tensors, rather than by their relative

orientations.

In this study, we describe a new framework that simplifies

the measurement and analysis of diffusion heterogeneity in

microscopic water pools within gray matter using a non-

parametric DTD. Specifically, if the voxel size is small enough

compared to the radius of curvature of the cortex, we can

constrain all the microscopic (subvoxel) diffusion tensors to

share the same principal reference frame determined, for

instance, by the dyadic of the principal diffusion eigenvectors,

ǫ1, ǫ2, ǫ3, measured with DTI. With this constraint, the DTD

is completely characterized by the voxel reference frame

ǫ1ǫ1
T , ǫ2ǫ2

T , ǫ3ǫ3
T , and by the 3D joint distribution of

corresponding subvoxel principal diffusivities, λ1, λ2, λ3, which

are random variables. This joint probability distribution can be
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estimated with a 3D Inverse Laplace Transform analysis using

only single diffusion encoded (SDE) MR measurements. This

practical, non-parametric framework for mapping DTDs, called

COnstrained Reference frame diffusion TEnsor Spectroscopic

(CORTECS) MRI, has the potential to quantify a wide range of

cortical diffusion heterogeneity in healthy or diseased brains.

2. Methods

2.1. Higher spatial resolution reduces the
intravoxel orientational dispersion of
dMRI signals

The net diffusion signal in an imaging voxel containing

complex tissue microstructure can be described generally using

an ensemble of subvoxel (i.e., microscopic) diffusion tensors

with different sizes, shapes, and orientations assumed to be in

slow exchange, i.e., the diffusion tensor distribution (DTD).

Ordinarily, we can quantify DTDs by analyzing diffusion-

weighted images (DWIs) acquired with multidimensional

diffusion encoding (MDE) (Westin et al., 2016; Topgaard, 2017;

Magdoom et al., 2021). The net dMRI voxel signal, S, is a

function of the tensor-valued encoding variable called the b-

tensor, b, computed by integrating the time-dependent diffusion

gradient waveforms amplitudes, and is related to the underlying

DTD, p(D):

S (b) =
∫

M+
p (D) e−b·D dD, (2)

where the integral runs over the space or domain of all

positive definite matrices, M+. Since the random variable D

has 6 degrees of freedom, p(D) is essentially a 6-dimensional

joint probability distribution (or correlation spectrum) of

the diffusion tensor elements. The high dimensionality and

the inherent challenge of defining the subspace of positive-

definite random tensor-valued variables, D, make solving this

problem infeasible in practice, as no closed-form solution

exists. Measuring p(D) requires a prohibitively large number of

measurements with a very high signal-to-noise ratio (SNR) and

MDE. Previously, approximations to p(D) have been proposed

either by assuming parametric models and/or by using statistical

reconstruction algorithms (Jian et al., 2007; Westin et al., 2016;

Topgaard, 2017; Magdoom et al., 2021).

In cortical GM the orthogonal coordinate axes along

which diffusive fluxes align at the microscopic scale of cellular

and subcellular structures (i.e., diffusion length scale) are

propagated at larger mesoscopic scales guiding the assembly of

these structures into orthogonal tissue architectural patterns of

cortical laminae and columns (Nieuwenhuys, 2013; Rubenstein

and Rakic, 2020). If the voxel size of dMRI data is significantly

smaller than the minimum radius of the curvature of the

underlying anatomy (i.e., cortical folding) the orientational

variance of subvoxel (microscopic) diffusion processes can

be neglected (Figure 1). Microscopic diffusion processes are

coincident with the axes of the local microstructural reference

frame determined by the cortical cyto- and myeloarchitecture.

For a continuously varying cortical anatomy with a minimum

radius of curvature, R, the range of orientational misalignment

between the microscopic diffusion tensors and the voxel

reference frame,±θmax, in a cubic voxel of side length, x, is:

θmax = tan−1

(

x
√
3

2R

)

(3)

Figure 1B shows that θmax decreases rapidly at low spatial

resolutions, R
x , but changes slowly at higher values of

R
x (Figure 1B). At a spatial resolution of a few hundred

micrometers the voxel size is much smaller than the cortical

radius of curvature (R = 5 mm) leading to very small values of

θmax. Under these circumstances, it is reasonable and practical

to constrain all diffusion tensor processes in microscopic water

pools throughout the voxel (i.e., the DTD) to be described using

the same local orthogonal reference frame (Figures 2A,B).

2.2. COnstrained Reference frame
di�usion TEnsor Correlation
Spectroscopic (CORTECS) MRI

Fixing the local reference frame for all subvoxel tensors

has several surprising advantages. First, it significantly reduces

the dimensionality of p(D) and decouples the statistical

random variables needed to describe p(D). Specifically, the

6D vector/tensor random variable, D, corresponding to the 6

components (or degrees of freedom) needed to describe the

general DTD is reduced to a 3D random variable comprising

the three principal diffusivities, λ1, λ2, λ3 along the axes of the

fixed voxel frame of reference, ǫ1ǫ1
T , ǫ2ǫ2

T , ǫ3ǫ3
T , respectively,

which are sufficient to describe the constrained DTDs (cDTDs)

within the CORTECS MRI framework (Figures 2C–E). Using

the eigenvalue decomposition of the diffusion tensor (Equation

1) we can re-write Equation (2) as a more tractable 3D Inverse

Laplace transform (ILT) problem:

S (b) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

p(λ1, λ2, λ3)e
−λ1ǫ1Tbǫ1−λ2ǫ2Tbǫ2−λ3ǫ3Tbǫ3 dλ1dλ2dλ3,(4)

where ǫi
Tbǫi is a non-negative scalar weighting that represents

the reciprocal Laplace variable corresponding to λi, and b

is the measurement b-tensor (Westin et al., 2016). We can

estimate non-parametric DTDs in the reduced dimensional

space of the principal diffusivities by applying the ILT to

dMRI data acquired with SDE and/or MDE. Besides the

drastic reduction in the computational complexity due to the
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FIGURE 1

(A) As we decrease the voxel size, x, relative to the radius of curvature of the tissue (e.g., due to cortical folding), R, the intravoxel orientational

variance of the continuously varying microstructural reference frame also decreases. For a voxel with an arbitrary orientation relative to the

underlying microstructure, the range of intravoxel orientational variation due to tissue curvature is ±θmax. (B) The value of θmax decreases rapidly

at low spatial resolutions, R/x, but changes very slowly at higher spatial resolutions, R/x. (C) A quantitative comparison of θmax at di�erent voxel

sizes assuming a cortical radius of curvature R = 5mm shows the significant reduction in intravoxel orientational variance due to the e�ects of

anatomical curvature at high spatial resolutions.

dimensionality reduction, the CORTECS framework inherently

enforces positive definiteness of diffusion tensors by requiring

positivity for λi.

Another very important advantage of constraining the

reference frames of the DTD tensor random variable is that we

can measure p(λ1, λ2, λ3) using only DWIs acquired with single

pulse-field gradient (sPFG), or SDE, a.k.a. linear tensor encoding

with rank-1 b-tensors. For a conventional SDE DWI with an

arbitrary b-value, b, and diffusion gradient direction given by the

unit vector g =
[

gx, gy, gz
]T , the encoding b-tensor has rank-1,

b = bggT . We can rewrite the signal equation above with respect

to the components of g expressed in the voxel frame of reference,

g′ =
[

g′1, g
′
2, g

′
3
]T = [ǫ1ǫ2ǫ3] g:

S (b) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

p(λ1, λ2, λ3)e
−λ1bg′21e−λ2bg

′2
2e−λ3bg

′2
3 dλ1dλ2dλ3 (5)

The factors bg′2i are the non-negative weighting parameters

of the principal diffusivities, λi, in the Laplace Transform

representation of the signal. We can generate a wide range

of joint weighting parameters bg′2i by varying the b-value

and diffusion gradient orientations in conventional SDE

preparations. Subsequently, from multiple SDE DWIs we can

estimate, in each voxel, the correlation spectrum of principal

diffusivities, p(λ1, λ2, λ3) which quantifies the properties

of all microscopic diffusion tensors. Compared to MDE-

DWIs, the conventional SDE-DWI can be acquired efficiently

using product single pulsed-field gradient (sPFG) spin-echo

(SE) diffusion MR sequences (Stejskal and Tanner, 1965)

available on all microimaging and clinical MRI scanners.

In general, SDE-DWIs can achieve higher b-values, shorter

echo times (TEs), higher spatial resolution, and/or better

SNR than MDE-DWIs using double or triple diffusion

encoding (Sjölund et al., 2015). Moreover, the spectral

reconstruction of p(λ1, λ2, λ3), henceforth referred to as 3D

cDTD, does not require statistical methods to enforce positive

definiteness but can still benefit from various techniques

that may be used to solve ILT-like problems, such as L2-

or L1-norm regularization, compressed sensing (Bai et al.,

2015), or constrained optimization (Benjamini et al., 2016),

etc.
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FIGURE 2

At a mesoscopic length scale cortical cyto- and myeloarchitecture is organized preferentially along the axes of an orthogonal frame of

reference (A). If the dMRI spatial resolution is su�ciently small (Figure 1) we can measure DTDs e�ciently using the constraints of the CORTECS

MRI framework (B). If we constrain all microscopic di�usion tensors to have the same principal axes of di�usion (C) we can quantify the DTD as

the 3D correlation spectrum of the corresponding principal di�usivities (D). If the microarchitecture varies along a single radial orientation, we

can further constrain the DTD to contain only axisymmetric tensors (F) and quantify the 2D correlation spectrum of the corresponding radial

and tangential di�usivities (G). We can also quantify the shape-size (i.e., microscopic FA-MD) correlation spectra of microscopic tensors from

the 3D (E) or 2D (H) constrained reference frame DTDs (cDTDs).

The microarchitecture of certain tissues can be described

more economically and effectively using a single dominant

axis. For example, in cortical gray matter, microscopic

diffusion processes align with cell and tissue structures

(Budde and Annese, 2013; Seehaus et al., 2013, 2015) that are

preferentially oriented radially or tangentially with respect to the

cortical surface (Kleinnijenhuis et al., 2013; McNab et al., 2013;

Leuze et al., 2014). Under these circumstances, we can further
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simplify the problem and assume that the DTD comprises only

tensors with cylindrical symmetry (Figures 2F–H). Thus, the

voxel reference frame is determined by a single orientation,

ǫ1ǫ1
T , i.e., normal to the cortical surface, which implicitly

determines the orthogonal, tangential component described by

the rank-2 tensor ǫ2ǫ2
T + ǫ3ǫ3T = I3 − ǫ1ǫ1T , where I3 is the

3x3 identity matrix. We can relate the signal in a voxel with fixed

principal axis ǫ1ǫ1
T to a two-dimensional correlation spectrum

of principal diffusivities along radial (cortical columns) and

tangential (cortical layers) orientations with respect to the

cortical surface, p(λr , λt):

S (b) =
∫ ∞

0

∫ ∞

0
p(λr , λt)e

−λrb cos2 φge−λtb sin
2 φg dλrdλt

(6)

The parameter φg = arccos(ǫ1
Tg) represents the angle

between the applied gradient direction, g, and the radial

direction of the underlying reference frame, ǫ1ǫ1
T , while

p(λr , λt) completely determines the corresponding distribution

of cylindrically symmetric diffusion tensors, henceforth referred

to as the 2D cDTD.

Lastly, in a final simplifying step, if all subvoxel diffusion

processes are isotropic, the correlation spectrum of diffusion

tensor eigenvalues reduces to a distribution of a single scalar

diffusivity random variable, λ0, which can be viewed as a 1D

cDTD:

S (b) =
∫ ∞

0
p(λ0)e

−λ0b dλ0 (7)

As an aside, we should point out an important connection

between 1D cDTD MRI and our previously proposed methods

for one- and multidimensional MD spectroscopic MRI using

isotropic diffusion encoding (IDE) (Avram et al., 2019, 2021).

Mapping non-parametric spectra of MD values in microscopic

tissue water pools using multiple IDE measurements does not

require that diffusion in these pools is isotropic. Meanwhile,

the 1D cDTD MRI spectral reconstruction using Equation (7)

correctly quantifies the spectra of water mobilities only if all

diffusion processes within the voxel are isotropic, in which case

the two methods will provide congruent results.

2.3. Mapping distributions and
correlation spectra of microscopic
fractional anisotropy and mean di�usivity

From the measured cDTD within each voxel, we can

compute non-parametric distributions and correlation spectra

of any DTI parameters derived from the microscopic diffusion

tensors, such as fractional anisotropy (FA) or mean diffusivity

(MD). Specifically, we can define a new random variable, α, that

quantifies the FA of each microscopic diffusion tensor in the

cDTD:

α =
√

1

2

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2
√

λ21 + λ
2
2 + λ

2
3

(8)

From p(λ1, λ2, λ3) we can then derive the probability density

function (one-dimensional spectrum) of the microscopic tensor

FAs, pFA(α), which quantifies the cDTD shape heterogeneity

non-parametrically. The statistical moments of pFA(α) provide

important microstructural parameters, such as the microscopic

anisotropy, µFA, computed as the mean of pFA(α) (Lasic et al.,

2014; Westin et al., 2016; Magdoom et al., 2021). Similarly,

we can define another cDTD-derived random variable that

quantifies the mean diffusivity of each microscopic tensor, µ =
(λ1 + λ2 + λ3)/3, and compute its probability density function

pMD(µ) to describe the spectrum the microscopic tissue water

mobilities non-parametrically.

Finally, from p(λ1, λ2, λ3) we can also compute non-

parametric multidimensional correlation spectra of two

or more microscopic DTI metrics. For example, we can

quantify non-parametrically the correlations between the

shapes and sizes of the diffusion ellipsoids corresponding

to the microscopic diffusion tensors by computing the joint

probability density function of the two random variables α and

µ, pFA−MD(α,µ). This practical and efficient decomposition of

tissue heterogeneity based on diffusion anisotropy and mean

diffusivity correlations in microscopic water pools may reveal

specific microstructural motifs or patterns potentially relevant

to many clinical applications.

2.4. A generalization of several
multi-tensor di�usion signal models

The CORTECS framework can describe a wide range

of heterogeneous diffusion processes in healthy and diseased

tissues and subsumes several diffusion tensor signal models.

For example, if we constrain p(λ1, λ2, λ3) = δ(λ1 − λ′1, λ2 −
λ′2, λ3 − λ′3), 3D cDTD simplifies to conventional DTI with

the three mean eigenvalues λ′1, λ′2, λ′3. In this way, 3D cDTD

can be viewed as a generalization of high-resolution DTI

that quantifies intravoxel diffusion heterogeneity as a non-

parametric correlation spectrum of the principal diffusivities

in microscopic water pools. To describe multi-exponential or

multi-tensor signal decays in heterogeneous tissues (Stanisz

et al., 1997; Mulkern et al., 1999; Avram et al., 2020) we can

assume that p(λ1, λ2, λ3) can be represented as a sum of delta

functions (point masses) (Avram et al., 2020). Moreover, the

spectroscopic decomposition of the net voxel signal in cDTD

makes it easy to disentangle partial volume contributions, such
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as those from cerebrospinal fluid (CSF), or free water in tissues

caused by edema or other processes (Pasternak et al., 2009).

2.5. Monte Carlo simulations

We conducted Monte Carlo (MC) simulations to evaluate

the numerical stability and accuracy of the voxel-wise estimation

of 3D and 2D cDTDs from noisy data. Specifically, starting

from ground truth DTDs constrained with fixed voxel

reference frames (2D and 3D cDTDs), defined analytically

using multidimensional log-normal distributions, respectively,

we computed the dMRI signals expected from an experiment

using conventional single-diffusion encoded (SDE) DWI

measurements with the same gradient orientations and b-values

as in our fixed-brain experiment described below. Next, from

these ground truth signals, we generated 500 instances of

noisy measurements by adding Rician noise to simulate real

measurements with different SNR levels. From each set of noisy

measurements, we computed the corresponding normalized 3D

correlation spectra of principal diffusivities, or normalized 2D

correlation spectra of radial and tangential diffusivities and

compared the statistics of these spectra (mean and standard

deviation) to the corresponding ground truth 3D and 2D

DTDs, respectively.

2.6. Ultra high-resolution dMRI of a fixed
macaque monkey brain

The brain of a healthy young adult rhesus macaque monkey

(Macaca mulatta) weighing 13.55 kg was prepared using a well-

controlled perfusion fixation process, as described in Saleem

et al. (2021). In brief, the animal was deeply anesthetized

with sodium pentobarbital and perfused transcardially with

heparinized saline, followed by 4% paraformaldehyde in 0.1

M phosphate buffer (pH 7.4). After perfusion, the brain was

removed from the cranium and post-fixed for 8 h in the

same buffered paraformaldehyde solution. Following the post-

fixation, the brain was transferred into 0.1Mphosphate-buffered

saline with sodium azide before the MRI data acquisition. All

procedures were carried out under a protocol approved by the

Institutional Animal Care and Use Committee of the National

Institute of Mental Health (NIMH) and the National Institute of

Health (NIH) and adhered to the Guide for the Care and Use of

Laboratory Animals (National Research Council).

Based on a preliminary structural MRI scan of the specimen,

we fabricated a three-dimensional (3D) brain mold inside

a cylindrical acrylic plastic container. The specimen was

positioned inside the brain mold which was placed inside a

custom 70 mm cylindrical container. The container was filled

with Fomblin and gently stirred under a vacuum for 4 h to

remove air bubbles. Subsequently, the container was sealed and

prepared for MR imaging using a Bruker 7T horizontal-bore

MRI scanner and a Bruker 72 mm quadrature RF coil.

We acquired whole-brain diffusion-weighted images

(DWIs) with a cubic voxel size of 200µm, i.e., a 375 x 320

x 230 imaging matrix on a 7.5 x 6.4 x 4.6 cm field-of-view

(FOV), using a diffusion spin-echo 3D echo-planar imaging

(EPI) sequence with 50 ms echo time (TE), 650ms repetition

time (TR), 18 segments and 1.33 partial Fourier acceleration.

We obtained a total of 112 DWIs using multiple b-value

shells (100, 1,000, 2,500, 4,500, 7,000, and 10,000 s/mm2) with

diffusion-encoding gradient orientations (3, 9, 15, 21, 28, and

36, respectively) uniformly sampling the unit sphere on each

b-value shell and across shells (Koay et al., 2012). The diffusion

gradient pulse durations and separations were δ = 6 ms and 1

= 28 ms, respectively. Each DWI volume was acquired using

a single average in 52 min. The total duration of the diffusion

MRI scan was 93 h and 20 min. We processed all whole-brain

high-resolution DWIs with the TORTOISE software pipeline

(Pierpaoli et al., 2010) which includes image registration, Gibbs

ringing correction (Kellner et al., 2016), denoising (Veraart

et al., 2016), corrections for EPI distortion including eddy

currents and B0 inhomogeneities using a high-tissue contrast

structural magnetization transfer (MT) scan as an anatomical

template. To better visualize the preferred diffusion orientations

in cortical GM, we computed fiber orientation distribution

functions (FODs) and derived direction-encoded color (DEC)

images (Dhollander et al., 2015). First, we interpolated the

multi-shell dMRI dataset (Özarslan et al., 2013) onto a single

densely sampled (128 uniformly sampled orientations) b-

shell (b = 8, 000 s/mm2), then used single-shell single-tissue

constrained spherical deconvolution (CSD) inMRtrix (Tournier

et al., 2012) to estimate and visualize FODs.

2.7. Histological processing

After imaging, the perfusion-fixed brain specimen was

prepared for histological processing with five different stains

as described in Saleem et al. (2021). In brief, the brain blocks

were frozen and serially sectioned through the entire brain

at 50µm thickness in the coronal plane. Next, five sets of

interleaved sections were processed for Parvalbumin (PV),

neurofilament protein (SMI-32), choline acetyltransferase

(ChAT), cresyl violet (CV), and Acetylcholinesterase (AchE)

staining. Finally, we captured high-resolution images of stained

sections using a Zeiss high-resolution slide scanner with 5X and

20X objectives. These images were then manually aligned with

the corresponding slices from the MRI data for comparison of

cortical architectonic features.

2.8. 2D CORTECS MRI in the fixed
macaque brain

From the distortion-corrected DWIs we estimated

fiber orientation distribution functions and compared their
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orientations in the cortex to those of microscopic structures

observed on histological images. We further analyzed the high-

resolution DWIs using DTI and estimated the voxel reference

frame, ǫ1ǫ1
T , ǫ2ǫ2

T , ǫ3ǫ3
T , through eigenvalue decomposition

of the net diffusion tensor in each voxel (Equation 1).

Subsequently, using the diffusion principal diffusion direction

ǫ1ǫ1
T , we computed the diffusion weightings of radial and

tangential processes, b cos2 φg and b sin2 φg, respectively, for

each measurement encoding and in each voxel. Finally, we

estimated a piecewise continuous approximation of the 2D

cDTD correlation spectrum, p(λr , λt), by numerically solving

the 2D ILT problem (Equation 6) using linear least-squares

error minimization with L2-norm regularization (Hansen,

1992) and positivity constraints, as described in Avram et al.

(2019, 2021). The spectral bins of the cDTD reconstruction

were defined on a 12 x 12 grid of logarithmically spaced λr
and λt values ranging from 0.01 to 2.00 µm2/ms. From the

2D cDTD correlation spectrum p(λr , λt) we derived maps

of the marginal distributions of the radial and tangential

diffusivities, microscopic FA and MD, as well as the microscopic

FA-MD correlation spectra, pFA−MD(α,µ), and related these

results to cortical cytoarchitectonic features observed with

histology. The microscopic FA-MD correlation spectra were

estimated numerically from the cDTDs using an 11 x 11 grid

of microscopic FA and MD values. We empirically selected

several ad hoc spectral domains in the 2D joint distributions

p(λr , λt) and pFA−MD(α,µ) to best capture the most prominent

spatial-spectral correlations. We compared maps of the

signal components corresponding to these domains to the

cortical cytoarchitectonic features in the corresponding stained

tissue section. The cDTD reconstruction and analysis for

the numerical simulations and fixed brain experiments were

implemented in MATLAB.

3. Results

3.1. Monte Carlo simulations

Monte Carlo (MC) simulations of 3D and 2D cDTD

reconstructions show that it is possible to distinguish subvoxel

diffusion tensor processes that are aligned in the same voxel

reference frame based on differences in the correlations of their

principal diffusivities using experimental designs that contain

only SDE measurements and can be achieved with current MRI

scanners. Figure 3 shows the MC results for a ground truth

3D cDTD, i.e., correlation spectrum of principal diffusivities,

(λ1, λ2, λ3), that consists of a mixture of three multivariate

log-normal distributions with peaks at (1.4, 1.0, 0.4), (1.1, 0.2

0.9), and (0.3, 1.3, 1.2) µm2/ms and standard deviations of 0.1

µm2/ms, reflecting the presence of 3 microscopic water pools

with distinct diffusion tensor properties. The mean normalized

spectra reconstructed from noisy measurements with various

SNR levels provide good estimates for the locations and

concentrations (i.e., areas under the peaks) of individual signal

components. Meanwhile, at higher SNR levels, the exact shapes

of the estimated spectral peaks are more accurately resolved.

Lower dimensional marginal distributions derived from the 3D

cDTDs also reveal the presence of multiple peaks and show

improved accuracy at higher SNR levels. Similar results were

obtained inMC simulations using 2D cDTDs shown in Figure 4.

The ground truth correlation spectrum of radial and tangential

diffusivities, p(λr , λt), that defines the 2D cDTD, consists of

a mixture of three multivariate log-normal distributions with

peaks located at (0.9,0.4), (0.4,1.0), and (1.4,1.4) µm2/ms

and standard deviations of 0.1 µm2/ms. The locations and

concentrations of these peaks can be estimated over a wide

range of SNR levels, with improved accuracy at higher SNRs.

Nevertheless, at lower SNR levels the exact shapes of these

peaks may be prone to biases. The smoothed appearances of the

reconstructed mean normalized spectra in Figures 3, 4 are due

to regularization (Hansen, 1992) and, in part, to small variations

in the locations and widths of the peaks estimated from

data with different instances of noise. Errors in the estimated

spectra may be due to measurement noise, the limited number

of measurements, and/or the regularization and positivity

constraints used to improve the condition number of the

spectral reconstruction. To better visualize the SNR-dependence

of reconstruction accuracy for the 2D and 3D CORTECS MRI

examples shown in Figures 3, 4 we assessed the similarities

between the mean normalized spectra reconstructed from data

with different SNR levels and the ground truth distributions

using the mean-squared error (MSE), structural similarity index

(SSIM) (Wang et al., 2004), and the Jensen-Shannon Divergence

(JSD) (Lin, 1991) (please see Supplementary Figure S1).

The spectral resolution depends on the number of

measurements with different encodings, the SNR level, and the

use of constraints and regularization for spectral reconstruction.

For a fixed SNR and a wide range of signal weightings (e.g.,

b-values), slowly decaying components have a better contrast-

to-noise ratio (CNR) than fast decaying ones and can therefore

be resolved with higher spectral resolution. The resulting non-

uniform spectral resolution is not unique to CORTECS MRI

but is inherent to the data required by all multidimensional

relaxation and diffusion spectroscopic MRI methods. These

techniques aim to disentangle multiexponential processes by

quantifying the underlying distribution of decay constants non-

parametrically using an ILT-like reconstruction from a finite set

of measurements. The spectral resolution could be improved

by using more advanced spectral reconstruction algorithms that

rely on statistical methods (Prange and Song, 2009), compressed

sensing (Bai et al., 2015), various constraints (Benjamini and

Basser, 2016), Bayesian estimation (McGivney et al., 2018), or

deep learning (Pirk et al., 2020).

In general, the presence of the fixative and the reduced

temperature (room temperature vs. body temperature) decreases
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FIGURE 3

Monte-Carlo simulation results illustrating the accuracy and numerical stability of the 3D cDTD reconstruction as a function of SNR. (A):

Log-log-log plots of mean normalized 3D cDTD correlation spectra of the principal di�usivities reconstructed from data with di�erent SNRs.

(B–D): Log-log plots of mean normalized 2D marginal distributions derived from the 3D cDTDs in the top row. (E–G): Log plots of the mean

normalized 1D marginal distributions derived from the 3D cDTDs in the top row. (H): A numerically simulated illustration of an ensemble of

di�usion tensors described by the ground truth 3D cDTD.
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FIGURE 4

Monte-Carlo simulation results illustrating the accuracy and numerical stability of the 2D cDTD reconstruction as a function of SNR. (A): Log-log

plots of mean normalized 2D cDTD correlation spectra of principal di�usivities reconstructed at di�erent SNR levels. (B,C): Log plots of mean

normalized 1D marginal distributions derived from the 2D cDTDs in the top row. (D): A numerically simulated illustration of an ensemble of

di�usion tensors described by the ground truth 2D cDTD.

the diffusivities in fixed tissues compared to those observed in

the live human brain (Dyrby et al., 2011). It is important to

note that if we scale all diffusivities by any factor, say 3, and

the b-values used in our experiment by its inverse, i.e., 1/3,

all signal attenuations, e−bD, remain unchanged. Consequently,

the Monte Carlo simulations with different SNR levels obtained

using fixed brain diffusivities and this study’s experimental

design with bmax = 10, 000 s/mm2 also accurately describe an

experiment in which all tissue diffusivities are scaled by a factor

of 3 simulating in vivo conditions and all b-values are scaled by a

factor of 1/3, i.e., bmax = 3, 333 s/mm2, simulating clinical scan

parameters.

3.2. Comparison of dMRI and histological
sections

Figure 5 shows a multi-scale side-by-side comparison of a

coronal section stained with SMI-32 and the corresponding

dMRI data in a representative region of the dorsal premotor

cortex. At the macroscopic scale (Figures 5A,B) we can clearly

see that the dominant diffusion direction in the FOD-DEC

image (Dhollander et al., 2015) (Figure 5B) varies continuously

along the cortical ribbon and remains perpendicular to the

cortical surface. At the mesoscopic scale (Figures 5C,D) the

curvature of the cortex becomes less prominent and the

tissue architecture reveals radially oriented neurofilaments in

pyramidal neurons with a staining intensity that varies in a

laminar pattern reflecting distinct cortical layers. The FODs

measured with dMRI in the same region (Figure 5C) show

a good alignment of water diffusion with the dominant

orientation of the local microstructure at the scale of hundreds

of micrometers. A careful visual inspection of the SMI-

32 section at high magnification (Figure 5E) reveals the

presence of cell processes oriented radially and tangentially

with respect to the cortical surface. The contribution of

tangential processes contributes to the slight differences in

SMI-32 staining intensities across cortical layers. At this scale,

the grid-like cortical architecture is clearly observable in

the orthogonal orientations of the FOD peaks which vary

continuously and coherently across multiple voxels (Figure 5F).

These observations confirm similar results from numerous high-

resolution dMRI studies and suggest that cortical diffusion
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processes are locally oriented along orthogonal reference frames

thatmatch the tissue architecture and do not change significantly

at the scale of a few hundred micrometers, providing a strong

justification for describing diffusion processes at smaller length

scales with the same fixed locally orthogonal reference frame.

3.3. Cortical architectonic features
revealed with CORTECS MRI

The SNR was estimated as the non-diffusion attenuated

magnitude signal averaged in a region-of-interest (ROI) divided

by the noise standard deviation measured in several ROIs

outside the brain (Afzali et al., 2021) using the raw magnitude

signals (before post-processing). The cortical SNR varied

between 50 and 120. Several imaging artifacts may contribute to

an underestimation of the SNR, including:

1. Ghosting/aliasing artifacts induced by the vibration of

gradient coils (potentially leading to noise overestimation),

2. Inaccurate calibration of the transmit and receive gains

causing a non-zero background in the reconstructed images

(potentially leading to noise overestimation), and

3. Spatial inhomogeneities in the B1 sensitivity (potentially

leading to tissue signal underestimation).

Our preliminary results of imaging 2D cDTDs in cortical

GM reveal diffusion processes with distinct joint radial and

tangential diffusivities and different specificities across cortical

domains and layers. In Figure 6, the spectral component images

on the diagonal line λr = λt represent isotropic diffusion

processes, while those below and above this line quantify

anisotropic processes that can be described using prolate and

oblate diffusion tensors, respectively. Comparing the maps of

the 1D marginal distributions of λr (Figure 6, left column)

and λt (Figure 6, top row) we found that the spectra of

radial diffusivities in tissue microenvironments provides slightly

better sensitivity to cortical layers than those of tangential

diffusivities. Figure 6B quantitatively maps the concentrations

of eight distinct microscopic diffusion processes which were

computed by integrating the 2D cDTDs over spectral domains

(Figure 6A, color-coded outlines) defined empirically based on

spatial correlations of spectral components. The resulting signal

component maps show high specificity to various cortical layers

and were in good agreement with the diffusion orientational

features observed in the FOD maps (Figure 6C). For example,

high concentrations of radial microscopic diffusion processes

were observed primarily in the mid-cortical layers (Figure 6B,

Components 1 and 7) and in subcortical WM (Figure 6B,

Component 2), while high concentrations of more isotropic

and tangential microscopic diffusion processes were observed

primarily in the superficial and deep cortical layers (Figure 6B,

Components 5 and 8). The spatial distribution of Component 3

(Figure 6B) in layer 3 and part of layers 5 and 6 matched with

the distribution of non-pyramidal neurons in the parvalbumin

stained section (not shown in Figure 6). Meanwhile, the dense

and patchy distribution of Component 6 (Figure 6B) localized

mainly in layer 5 corresponded to the intensely stained

pyramidal neurons in this layer in AchE- (not shown in Figure 6)

and SMI-32-stained sections (Figure 6D).

3.4. Shape-size correlation spectra
derived from the cDTD distributions

The distributions pFA(α) (Figure 7A, top row) and

pMD(µ) (Figure 7A, left column) are derived from the non-

parametric 2D cDTDs in Figure 6 and quantify the shapes

(FAs) and sizes (MDs), respectively, of the microscopic

diffusion tensors. Moments of these distributions may provide

important information about the underlying microstructural

heterogeneity. The first moment of pFA(α) quantifies the

µFA (Lasic et al., 2014) quantifies the average anisotropy of

the microscopic diffusion tensors, while the second moment

(variance) quantifies the shape heterogeneity of these tensors

(please see Supplementary Figure S2).

The 2D µFA − MD correlation spectral amplitude maps in

Figure 7 provide a tally of the joint shape-size characteristics

of the microscopic diffusion tensors of the DTD as a

new means to characterize tissue microstructure. The largest

concentrations of isotropic microscopic diffusion processes

(µFA < 0.18) were observed in the upper cortical layers, and

to a lesser extent, in layer 5. The most anisotropic diffusion

processes (µFA > 0.35) were localized in the mid-cortical

layers and in the subcortical white matter. The signal in

subcortical WM voxels spanned a large range of µFA values,

potentially reflecting diffusion processes with a larger intravoxel

orientational variance (e.g., bending/crossing WM fibers) that

may be inadequately described by the cDTDs. The 1D marginal

distributions of both the microscopic fractional anisotropies

(Figure 7A, top row) and mean diffusivities (Figure 7A, left

column) derived from theµFA−MD spectra show layer-specific

motifs that allow us to distinguish between superficial, mid,

and deep cortical layers. Spectra of MD values in microscopic

water pools show the highest concentration of lowMDprocesses

in WM (Figure 7A, component 3), and a mixture of diffusion

processes with low and high water mobilities in the mid-

cortical layers, potentially indicating important differences in

cellularity between these layers. Meanwhile, spectra of µFA

values revealed predominantly anisotropic diffusion processes in

the mid-cortical layers and more isotropic diffusion processes in

the superficial and deep layers. Figure 7B quantifies the spatial

distributions and concentrations of five distinct microscopic

diffusion components obtained by integrating the 2DµFA−MD

correlation spectra over empirically defined spectral domains

(Figure 7B, color-coded outlines). In Figure 7B, Components 1,
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FIGURE 5

Views of the brain anatomy at the macroscopic scale in a coronal tissue section stained with SMI-32 (A) and the FOD-DEC image in a matched

MRI slice (B) showing the dependence of the principal di�usion direction on the cortical folding geometry. (C,D): Enlarged views of the

mesoscopic scale of the histological image and FOD glyphs corresponding to the yellow outlines in (A,B), respectively. The cortical architecture

shows a laminar pattern of radially coherent cell processes with di�erent densities (labeled cortical layers). (E,F): Enlarged views of the

histological image and FOD glyphs corresponding to the red outline in (C,D). The locally coherent alignment of FOD peaks (F) matches the

microstructural tissue architecture comprising radial and tangential cell processes (E).

3, and 4 are specific to the midcortical layers, while Components

2 and 5 are localized almost exclusively in the superficial/deep

cortical layers and in subcortical WM, respectively. Component

3 in the µFA − MD maps (Figure 7B), shows very high µFA

and likely corresponds in part to the signal from Component 1

in the λr − λt maps (Figure 6B) with a small λr and large λt .

It appears to suggest the presence of a small concentration of

highly anisotropic oblate microscopic diffusion tensors.

It is likely that this component reflects restricted water

diffusion within tangentially oriented tissue and cell processes

(e.g., neurites, neurofilaments) which are powder-averaged

within the plane of the mid-cortical layers (Figure 5E). In this

case, the restricted tangential diffusion processes cannot be

accurately modeled using tensors (e.g., a powder-average of

prolate tensors) and the tangential diffusivities derived with

DTD MRI, in general, do not accurately reflect the water

diffusivities in different pools (e.g., inside or outside the

dendrites). Nevertheless, even if the cDTD-derived diffusivity

and anisotropies spectral components may not be quantitative

(i.e., biased), they could still provide important clinical

information about the density of tangentially oriented neurites

or the transverse tortuosity of the extracellular space.
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FIGURE 6

(A) Spectral component maps of normalized 2D correlation spectra of radial and tangential di�usivities in a section of the cortex from Figure 5A.

Top row: Spectral component maps of the normalized 1D marginal distribution of tangential di�usivity, λt; Left column: Spectral component

maps of the normalized 1D marginal distribution of radial di�usivity, λr . (B) Tissue component maps derived by integrating the 2D cDTD spectral

components over empirically defined spectral regions of interest delineated with di�erent colors show good specificity to cortical layers. (C)

Corresponding FODs. (D) Corresponding SMI-32 stained section.

3.5. Potential sources of errors

The accuracy of the measured cDTD spectra depends

on several experimental factors such as the number of

measurements, the diffusion gradient directions, b-values, as

well as the SNR. During the voxel-wise cDTD reconstruction,

the dMRI signals are decomposed along the axes of the

local frame of reference. Consequently, for the same diffusion

encoding (i.e., same DWI) the effective diffusion weightings

(Equation 6) of the radial and tangential diffusivities, b cos2 φg
and b sin2 φg, respectively, may differ from voxel to voxel. To

prevent biases due to the orientations of the local microstructure

in the reconstructed cDTD maps it is important that the

diffusion encodings uniformly sample the unit sphere for each

b-value and across b-values. Moreover, one could augment the

CORTECS MRI experimental design by adding measurements

with MDE.

Two additional potential sources of errors in the spatial-

spectral mapping of microscopic diffusion processes with

CORTECS MRI in this study may arise from 1. inaccuracies

in estimating the DTI-derived reference frame, and 2.

inconsistencies between the axes of the DTI-derived

reference frames across neighboring voxels due to the

sorting bias of the diffusion tensor eigenvalue decomposition
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FIGURE 7

(A) Spectral amplitude maps of normalized 2D µFA−MD correlation spectra in the section of the cortex from Figure 6. Top row: Spectral

component maps of the normalized 1D marginal distribution of microscopic fractional anisotropy, µFA; Left column: Spectral component maps

of the normalized 1D marginal distribution of the microscopic di�usion tensor mean di�usivities. (B) Tissue component maps derived by

integrating the 2D µFA−MD distributions over empirically defined spectral regions reveal strong contrast in the mid-cortical areas.

(Pierpaoli and Basser, 1996). Both sources of errors become

more prominent when the dMRI voxel signal is more isotropic.

If the signal is isotropic in 3D, the principal diffusion axes are

poorly-defined and the estimated diffusion reference frames

may be inconsistent across adjacent voxels.

In cortical tissues, the DTI and, more generally, the dMRI

signals show little anisotropy within the plane tangent to the

cortical surface, even at high spatial resolutions and high b-

values. As a result, it is difficult to uniquely define orthogonal

principal diffusion axes within the tangential orientation.

Instead, we can use a more economical characterization of

the microscopic diffusion processes using a distribution of

axisymmetric tensors. The resulting 2D cDTDs are determined

by p(λr , λt) and the dominant (radial) diffusion direction

normal to the cortical surface, which can be reliably estimated

in the cortex. The DEC map in Figure 5 shows a continuously

varying radial diffusion orientation along the cortical ribbon.

Despite variations in diffusion anisotropy across cortical layers

the principal axis of diffusion corresponding to the largest DTI

eigenvalue, ǫ1ǫ1
T , can be reliably estimated throughout the

cortex and is consistently oriented normal to the cortical surface.

Moreover, this orientation matches that of the largest FOD

peak in each corresponding voxel. The side peaks of the FODs

are consistently oriented in the tangential plane perpendicular

to the radial direction, supporting the orthogonal alignment

of diffusion processes, in good agreement with findings from

previous high-resolution cortical dMRI studies (Kleinnijenhuis

et al., 2013; Leuze et al., 2014; Aggarwal et al., 2015).

However, more generally, when DTI data is acquired with

lower spatial resolution, low FA values in the cortex can bias

the measurement of the radial direction that determines the

2D cDTD reference frame in each voxel. In this situation, it

may be possible to use higher b-values (or longer diffusion

times) to improve the sensitivity to the orientational features of
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the dMRI signal, and/or to estimate the voxel reference frame

more reliably from the directions of the largest FOD peaks.

Alternatively, one could derive a cortical reference frame from

the curvature of the cortexmeasured using a structural scan with

good GM-WM contrast as a proxy for the diffusion reference

frame (Avram et al., 2020) or use spline interpolation of the

diffusion tensor field (Pajevic et al., 2002) in low FA voxels, to

derive a continuously varying reference frame that is consistent

throughout the cortex.

4. Discussion

The CORTECS framework greatly simplifies the data

acquisition and spectral reconstruction requirements for

high-resolution DTD MRI and subsumes several previously

proposed multi-tensor diffusion models. It provides a practical

and feasible approach to non-parametric quantitation of

microstructural heterogeneity in healthy and diseased tissues.

At its core, the framework relies on the observation that, in

tissues with a consistent well-defined architecture, such as the

cortex, as we increase the spatial resolution from the scale

of a conventional dMRI voxel (≈ 2 mm) to the mesoscopic

scale much smaller than the radius of cortical curvature, the

intravoxel angular dispersion of diffusion processes decreases

rapidly. At the mesoscopic scale of a few hundred micrometers

diffusion processes in distinct tissue microenvironments, e.g.,

associated with myelin, intra-, extra-axonal water, remain

largely coincident along the axes of a common reference

frame determined by the local tissue architecture. At this

length scale, the intravoxel angular dispersion due to cortical

folding is significantly reduced and differences between

subvoxel (microscopic) diffusion processes are primarily

characterized by their principal diffusivities. Correlations

between principal diffusivities explain most of the microscopic

diffusion heterogeneity. They determine the anisotropies and

mean diffusivities of the microscopic diffusion tensors, i.e.,

the shapes and sizes of their diffusion ellipsoids, rather than

their relative orientations, allowing us to constrain the DTD

reconstruction.

4.1. The persistence of the principal
di�usion orientations for various signal
weightings

The basis of constraining cortical diffusion processes to be

oriented along local orthogonal directions in neural tissue has

many lines of support. Direct observations of cortical cyto-

and myelo-architectonic features with optical and 3D electron

microscopy reveal dominant radial and tangential orientations.

Meanwhile, histological validation studies using high spatial

and angular resolution dMRI with a range of mesoscopic

spatial resolutions have repeatedly shown that in neural tissues

the preferential diffusion directions align with the dominant

orientation of the underlying microstructure. Moreover, results

from numerous high-resolution dMRI studies suggest that

when the relative signal contributions (weightings) from specific

water pools are altered using different signal preparations the

principal axes of the diffusion tensors and the orientations

of the dominant FOD peaks in the voxel do not change

(Assaf, 2019). Concretely, the dominant diffusion orientations

do not change significantly in experiments with a wide range

of echo times (T2-weightings) (Avram, 2011; Avram et al.,

2012), repetition times, inversion times (T1-weightings) (Assaf,

2019), b-values (diffusivity weightings) and diffusion times

(chemical exchange and restriction weightings). Furthermore, in

vivo experiments combining diffusion MRI and magnetization

transfer (MT) preparation indicate that in white matter fibers

the principal diffusion directions of myelin water and non-

myelin water pools are coincident (Avram et al., 2010). Similarly,

in vivo diffusion tensor spectroscopy experiments of neuronal-

specific metabolites, such as NAA have shown that diffusion

processes in intra- and extracellular water pools are also aligned

with the diffusion reference frame of the voxel (Ronen et al.,

2013). The persistence of the reference frame under various

signal preparations suggests that the intravoxel orientational

heterogeneity is dominated by the curvature of the macroscopic

anatomy (e.g., cortical folding, fanning/bendingWMpathways),

and that water diffusion in specific microenvironments of

neural tissues can be described adequately with a singular

reference frame defined by the mesoscopic architecture. Finally,

constraining subvoxel cortical diffusion tensor processes to the

local reference frame of the mesoscopic voxel may also be

justified with arguments from developmental biology.

4.2. Orthogonal reference frames in
neurodevelopment

During morphogenesis, diffusion-reaction processes can

establish orthogonal concentration gradients (Turing, 1952;

Gregor et al., 2005) to support the efficient transport of

macromolecules such as growth and inhibitory factors. It is

believed that in early embryogenesis this mechanism (Gregor

et al., 2005; Lefévre and Mangin, 2010) leads to the formation

of the principal axes of embryonic development: rostro-caudal,

medio-lateral, and dorso-ventral (Kingsbury, 1920). Similarly,

during early brain development diffusion-reaction processes

at the microscopic scale, e.g., ≈ 10 − 50 µm, likely guide

the growth of elongated cellular and sub-cellular structures,

such as neurofilaments, axons and dendrites, which in turn,

provide a scaffold for the diffusivemigration and active transport

of macromolecules over longer distances. The progressive

elaboration of the orthogonal reference frame provides a
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plausible explanation for the architecture of cortical columns,

laminae, and capillaries, at the mesoscopic scales of ≈ 100 −
500µm. Diffusion MRI studies in the late stages of fetal

neurodevelopment and newborns have shown a decrease in the

radial coherence of diffusion processes (McKinstry et al., 2002;

Vasung et al., 2010; Takahashi et al., 2011; Dudink et al., 2015;

Khan et al., 2019).

More generally, several theories of brain development

(Van Essen, 1997; Lefévre and Mangin, 2010; Wedeen et al.,

2012; Chen et al., 2013) suggest to different extents, that similar

locally orthogonal reference frames may be observed in WM

at high spatial resolution. The intravoxel angular dispersion in

WM voxels depends on the curvature of the fiber pathways

(e.g., due to bending and fanning) as well as the presence of

fiber crossings. The radii of curvature due to bending (e.g.,

corpus callosum) or fanning (e.g., corticospinal tract) in WM

pathways are typically larger than those of the cortical folding

geometry (e.g., sulci and gyri), even for short-range U-fibers.

Consequently, at the mesoscopic spatial resolutions required for

CORTECS MRI, the residual intravoxel orientational variation

of diffusion processes in WM is due primarily to the crossing

angles of subvoxel fiber populations. CORTECS MRI may be

applicable in regions containing a single homogeneous WM

pathway (i.e., no crossings), such as the corpus callosum, but not

in most WM voxels that contain fiber populations that do not

cross at orthogonal orientations. Nevertheless, the framework

could provide an independent method to test the hypothesized

local orthogonality (Tax et al., 2016, 2017) at various spatial

resolutions.

4.3. The dimensionality reduction of
cDTDs

Current approaches for imaging DTDs and/or their features

require SDE and MDE measurements and include parametric

models using SDE (Jian et al., 2007) and combinations of SDE

and MDE measurements (Lasic et al., 2014; Szczepankiewicz

et al., 2016; Westin et al., 2016; Henriques et al., 2020;

Magdoom et al., 2021) as well as non-parametric methods

(Topgaard, 2017). Parametric DTD models approximate the

solution using analytical functions such as aWishart distribution

(Jian et al., 2007) or a constrained normal tensor-variate

distribution (Magdoom et al., 2021). While such analytical

approximations can estimate DTDs from fewer measurements

and lower SNR levels, they drastically limit the space of

admissible DTDs to those described by a handful of degrees

of freedom (i.e., parameters or coefficients). The reconstructed

DTDs may provide biased assessments in voxels affected by

partial volume contributions from tissues with very different

diffusion properties and may not accurately capture the range

of unknown tissue alterations that occur in disease. Non-

parametric or spectroscopic DTD reconstruction methods

(Topgaard, 2017) can describe an arbitrary range of tissue

compositions but, due to the large spectral dimensionality of

the problem, require many MDE DWIs with high SNR and

computationally intensive statistical reconstruction methods to

enforce positive definiteness of the solution.

For a general, unconstrained non-parametric DTD, the

microscopic diffusion tensors can have arbitrary orientations

(Equation 2). Consequently, the 6-dimensional random variable

of the DTD must support both positive and negative off-

diagonal tensor elements and cannot be analyzed with

conventional ILT methods. To overcome this limitation,

the DTD reconstruction requires computationally intensive

statistical methods (Topgaard, 2017; Magdoom et al., 2021)

to enforce positive definiteness constraints that ensure the

physicality of the microscopic diffusion tensors. Alternatively,

if we describe the DTD using the principal diffusivities,

λ1, λ2, λ3 and the three Euler angles φ,ψ , θ , which define

the orientations of the orthonormal directions ǫ1, ǫ2, ǫ3 in

Equation (1), then φ,ψ , θ create a trigonometric dependence

in the signal equation. The key insight of the CORTECS MRI

framework is that in tissues with well-defined, orthogonal

architectures, sampling the spatial dimensions more densely,

i.e., increasing the spatial resolution, reduces the intravoxel

angular dispersion. This allows us to restrict the 3 degrees

of freedom that determine the orientations of the tensor

random variable, i.e. the three Euler angles, and thus reduce

the domain of the DTD to the orthogonal non-negative 3D

space of principal diffusivity random variables that guarantees

positive definiteness and can be solved with a conventional

ILT reconstruction techniques. This trade-off between spatial

resolution and spectral dimensionality has several important

implications for the clinical translation of non-parametric DTD

MRI.

4.4. Data acquisition requirements for
CORTECS MRI

In general, the SNR requirements for multidimensional

spectral (i.e., non-parametric) reconstruction algorithms scale

exponentially with the dimensionality of the problem. For a 2D

spectral reconstruction, an SNR of 100 allows us to measure

signal attenuated concurrently by a factor of 10 along two

independent spectral dimensions. Meanwhile, to achieve the

same effective dynamic range per dimension for a 4D spectral

reconstruction, we need an SNR of 10,000. While such nominal

SNR levels may be achievable on clinical scanners by using

sufficiently large voxel sizes, the integrity of the data acquired

in vivomay be corrupted (Avram et al., 2019, 2021) by:
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1. Imaging artifacts such as ghosting/aliasing, eddy current

induced distortions, or Gibbs ringing, which typically

represent≈ 1− 2% of the tissue signal; and

2. Partial volume inconsistencies across DWIs due to subject

and physiological motion (e.g., blood flow, pulsations, etc.).

In routine clinical MRI scans, e.g., T1W, T2W, DTI, typical

SNR levels are between 20 and 50, and these signal artifacts on

the order of ≈ 2% are barely visible. However, for an in vivo

SNR = 10,000, these signal instabilities produce an artifact-to-

noise ratio of ≈ 200, potentially biasing the estimation of non-

parametric DTDs in high dimensional spaces (e.g., 4D or 6D)

and rendering them unsuitable for clinical translation.

On the other hand, CORTECS MRI measures 3D or 2D

correlation spectra using efficient diffusion preparations (SDEs),

fewer measurement encodings (data points), and SNR levels

that may be achieved for ultra-high resolution in vivo dMRI

in the near future. Advances in various technologies including

the design of high-field MRI scanners (Feinberg et al., 2021),

high-performance gradient coils (Foo et al., 2020; Feinberg et al.,

2021; Huang et al., 2021), high-density RF coil arrays (Keil et al.,

2013; Hendriks et al., 2019), as well as efficient high-resolution

dMRI pulse sequences (Feinberg et al., 2010; Avram et al., 2014a;

Setsompop et al., 2018), image acquisition and reconstruction

strategies (Feinberg et al., 2010; Setsompop et al., 2018), and

experimental protocols (Avram et al., 2018, 2019; Nilsson et al.,

2020) can be integrated synergistically in state-of-the-art MRI

systems (Foo et al., 2020; Feinberg et al., 2021; Huang et al.,

2021) to achieve the spatial resolution, scanning efficiency, and

diffusion sensitizations required for in vivo CORTECS MRI.

In our experiment, the acquisition of each high-resolution

DWI volume required 52 min. This relatively long duration scan

duration is due to the use of:

1. A large imaging matrix of 375 x 320 x 230 needed for

whole-brain coverage at 200 µm resolution, and

2. 3D diffusion spin echo EPI sequence with segmented k-space

acquisition and a relatively long TR of 650 ms.

The TR was chosen so as to minimize gradient heating

(i.e., limit the gradient duty cycle), and included a 150ms

duration for excitation, diffusion preparation, and EPI readout,

and a 500 ms idle duration. For clinical imaging, both factors

can be significantly reduced. Firstly, using a multi-slice spin-

echo diffusion EPI sequence with multiband capabilities one

could acquire each DWI volume efficiently (negligible idle

duration) in a single TR of 5–10 s, albeit at a lower SNR.

Secondly, it is important to point out that the requirement for

high spatial resolution in CORTECS MRI does not necessarily

imply a prohibitively long scan duration. Unlike dMRI fiber

tractography, CORTECS dMRI does not require whole-brain

data. Using outer-volume suppression, reduced FOV, or ZOOM

EPI one could significantly reduce the imaging matrix size

and scan duration while still maintaining the required spatial

resolution for in vivo scans with human subjects. On the other

hand, the scan duration requirement of conventional non-

parametric DTD methods is inherently limited by the very large

number of encodings needed to sample the high-dimensional

space exhaustively, even when scanning with a reduced FOV.

4.5. Spatial resolution requirements for
CORTECS MRI

The major drawback of CORTECS MRI compared to

conventional (unconstrained) nonparametric DTD methods is

the prerequisite of sufficiently high spatial resolution. The spatial

resolution at which we can adopt a common reference frame

for all subvoxel diffusion tensors depends on the cortical folding

geometry and may vary across the brain. A useful quantity to

characterize the validity of this assumption is the dimensionless

ratio between the voxel size, x, and the minimum radius of

curvature of the macroscopic anatomy (e.g., cortical folding, or

bending/fanning of WM fibers), R. If this ratio is sufficiently

small, we can ignore the orientational variations of subvoxel

diffusion processes. For example, as shown in Figure 1, for a

minimum radius of curvatureR = 5mm in themacaquemonkey

cortex and a voxel size of x = 0.2mm used in this study,

the expected maximum intravoxel angular deviation between

the microstructural and voxel reference frames due to the

continuously varying cortical folding geometry, θmax, given by

Equation (3) is ±1.9◦. This angular deviation is smaller than

even the most ambitious estimates of the angular resolution

limits in diffusion MRI fiber tractography and is unlikely to

bias the estimated cDTD spectra. HARDI experiments using

well-calibrated diffusion phantoms with overlapping, highly

anisotropic coherent structures oriented at different angles

cannot typically resolve diffusion processes due to fibers crossing

at angles < 10◦, even when a large number of gradient

orientations with large b-values and high SNR levels are used

in microimaging or clinical scanners (Perrin et al., 2005; Guise

et al., 2016).

More generally, we can use the analytical relation between

x/R and θmax in Equation (3) as a reference for estimating the

spatial resolution requirements for 2D CORTECS. To achieve

a θmax < 10◦ comparable to the known angular resolution

limits of dMRI we need a value of x/R = 0.2 (Figure 1). The

maximum radius of curvature in the adult human brain is 4 mm

(Van Essen and Drury, 1997). Consequently, a voxel size smaller

than 0.8 mmmay be sufficient for whole-brain 2D CORTECS in

the human brain (Wang et al., 2021). Future clinical feasibility

studies will explore the sensitivity of the reconstruction to the

residual intravoxel orientational dispersion and the possibility of

achieving the desired resolution in human scans using reduced

field-of-view imaging on state-of-the-art MRI scanners (Huang

et al., 2021).
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The high spatial resolution requirement in CORTECS MRI

can lead to significantly longer acquisition time per volume

(i.e., per diffusion encoding), when compared to conventional

(unconstrained) nonparametric DTD MRI methods. These

methods require large imaging voxel volumes to achieve

the very high SNR and signal dynamic range needed

for 6D or 4D DTD reconstructions and can be affected

by signal artifacts. Moreover, these methods also require

a large number of joint (multidimensional) encodings to

comprehensively sample the high-dimensional parameter space,

thereby offsetting potential savings in the total scan duration

that may be gained by imaging a smaller matrix size (i.e.,

larger voxels), when compared to CORTECS MRI. Most

importantly, however, the 6D DTDs measured in voxels of

≈ 3mm do not provide any information about the relative

spatial distribution of subvoxel diffusion tensors, i.e., at length

scales smaller than ≈ 3mm. Due to its high spatial resolution

requirement, CORTECS MRI explicitly measures the relative

spatial distributions (and relative orientations!) of diffusion

tensor processes at much finer length scales, e.g., down to

200 µm in our study, providing significantly more information.

Compared to conventional DTD methods, this higher spatial

resolution in CORTECS MRI may provide a more accurate

localization and improved sensitivity in the detection of subtle

pathological tissue changes, for example in the early stages of

neurodegeneration.

4.6. Potential for quantifying di�usion
time dependence

All DTD MRI methods assume that the voxel can be

viewed as an ensemble of non-exchanging Gaussian (i.e.,

freely diffusing) subvoxel water pools within which the

diffusive motions of spins are described with tensors whose

corresponding ellipsoids have different sizes, shapes, and

orientations. In biological tissues, cellular and subcellular

structures can present microscopic restrictions and hindrances

producing a time-dependent (non-Gaussian) diffusion in

certain water pools. To address this limitation, the MDE-

based DTD frameworks (Topgaard, 2017), can be extended

to include diffusion time dependence (Lundell et al., 2019),

and/or analyzed using parametric models (Henriques et al.,

2020). The characteristics of time-dependent DTDs can

yield important tissue microstructural information about

the distribution of compartment shapes and sizes (Lundell

et al., 2019; Henriques et al., 2020) that classical MDE

experiments sought to measure (Koch and Finsterbusch,

2008; Avram et al., 2013b; Benjamini et al., 2016; Komlosh

et al., 2018). However, it can be troublesome to incorporate

the dependence of diffusion processes on the time-varying

diffusion gradient waveforms into the signal equation, even for

MDE preparations with well-defined diffusion time parameters

such as those using double pulsed field gradients (Mitra,

1995; Avram et al., 2013b), or rotating field gradients (Avram

et al., 2014b). Conversely, the diffusion time dependence

of SDE measurements can provide similar information to

MDE measurements (Jespersen, 2012) and is described by

a well-defined parameter 1, the separation between the

start times of the two diffusion gradient pulses. Moreover,

since the voxel reference frame does not change significantly

with diffusion time (Assaf, 2019), we can directly extend

the CORTECS framework to map time-dependent cDTDs

by repeating the experiment with multiple diffusion times.

Imaging correlation spectra of diffusion-time-dependent

principal diffusivities in microscopic water pools may provide

important pathophysiological information about microscopic

restrictions, chemical exchange, and water transport (Nilsson

et al., 2013).

4.7. Relation to other dMRI methods

The non-parametric cDTD signal representation can be

viewed as a multi-tensor generalization of high-resolution

DTI. It subsumes several dMRI signal representations and

parametric tissue diffusion models, including bi-exponential

decay models (Stanisz et al., 1997), free-water elimination

(Pasternak et al., 2009), multicompartment tissue models

(Stanisz et al., 1997), among others (Panagiotaki et al.,

2012), and enables their cross-validation and harmonization.

Features of cDTDs measured with CORTECS MRI can

inform the design of more efficient dMRI experiments using

SDEs and MDEs to measure parametric DTDs and tensor

mixture models for specific biological and clinical applications.

Moreover, it provides an independent method for deriving

DTD-related quantities, such as the non-parametric distribution

of subvoxel MD values which can be measured efficiently

in a 6 min clinical scan (Avram et al., 2019). In this

way, the proposed framework may help test the validity of

various DTD methods and guide their development toward

achieving higher spatial resolution and greater biological

specificity.

The ability to quantify tissue properties non-parametrically

is crucial to our understanding of disease progression,

tissue regeneration, and neurodevelopment. By quantifying

subvoxel DTDs non-parametrically we can identify the

most prominent spectral features such as the shapes and

peaks or multimodal clusters associated with specific

pathophysiological changes. Once we learn these spectral

signatures, we can model the CORTECS-derived 2D

or 3D cDTDs using analytical functions determined

by only a few parameters. Disease-specific parametric

cDTD could be reconstructed swiftly and efficiently from
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data acquired with lower SNR and a smaller number of

encodings.

4.8. Further improvements in biological
specificity

The correlation spectrum of principal diffusivities may

reveal signal contributions from specific tissue components,

such as intra-axonal, extracellular, or myelin water whose

diffusion tensors may be coincident and are therefore difficult to

disentangle based on orientational diffusion characteristics such

as FODs derived from HARDI data. A further improvement in

biological specificity may be achieved by integrating the cDTD

measurements with multidimensional relaxation MRI methods

(Benjamini and Basser, 2017; Kim et al., 2017) which measure

the net voxel signal as a superposition of contributions from

subvoxel water pools with different joint T1-, T2- and diffusion

properties. However, with the addition of new dimensions

for contrast encoding, most implementations of diffusion-

relaxation correlation MRI on clinical scanners require larger

datasets, higher SNR levels as well as the use of sophisticated

pulse sequences and algorithms to reconstruct five-dimensional

(Reymbaut et al., 2021) or six-dimensional (de Almeida Martins

et al., 2021) correlation spectra. We have recently proposed

a more practical two-dimensional diffusion-relaxation MRI

method for efficiently mapping T1-MD correlation spectra

using isotropic diffusion encoded (IDE) DWIs (Avram et al.,

2021). Similarly, the CORTECS framework adds the minimum

number of dimensions (principal diffusivities) needed to

efficiently combine T1- or T2- relaxation with diffusion tensor

spectroscopic imaging.

4.9. Potential applications to
neuroscience and neuroradiology

Mapping water pools in specific cortical microenvironments

based on their diffusion tensor properties quantitatively

and efficiently could have numerous applications in

neuroradiology and neuroscience. It may improve the

diagnosis of neurodevelopmental disorders and allow us to

specifically disentangle contributions from increased dendritic

arborization and reductions in radial glial fibers to the cortical

microstructural changes observed in newborns. In addition,

it may provide biomarkers for early detection of cortical

microstructural changes occurring in epilepsy (Lampinen

et al., 2020), cancer (Szczepankiewicz et al., 2016), traumatic

brain injury (Komlosh et al., 2018), stroke (Alves et al., 2022),

or multiple sclerosis (He et al., 2021). Mapping correlations

between cortical diffusion processes with CORTECS MRI

could quantify specific cellular/tissue components providing

new parameters for automatic cortical parcellation and

layer segmentation algorithms. Relating these layer-specific

components to input and output signaling in cortical areas

could allow us to study intracortical connectivity and gain

valuable insight into the directionality of information flows

(signaling) in functional networks throughout the connectome

(Olman et al., 2012; Ugurbil et al., 2013). Because it requires

only SDE data, CORTECS MRI can be applied retrospectively

to analyze existing high-resolution diffusion MRI data sets.

Finally, while this study focuses on quantifying diffusion in

cortical gray matter, CORTECS MRI may also be applicable to

other organized tissues with varying degrees of macroscopic

and microscopic diffusion anisotropies such as in white matter,

kidney medulla, heart muscle, skeletal muscle, ligaments,

tendons, etc.

5. Conclusions

This study provides a new framework for empirical and

biologically specific analyzes of subvoxel diffusion heterogeneity

in brain tissue using conventional high-resolution dMRI. From

the non-parametric cDTDs we can derive additional spectral

and scalar parameters, such as the joint size-shape distribution

of microscopic diffusion tensors. Our preliminary results in

the macaque monkey cortex reveal diffusion components that

correlate well with distinct architectonic features. Although

currently feasible mainly for fixed tissue experiments, CORTECS

MRI has the potential to advance the clinical translation of DTD

MRI and its optimization for specific applications in clinical

and basic sciences. Features of cDTD spectra may help better

delineate cortical layers and areas in healthy subjects and may

provide new biomarkers for finding subtle cortical abnormalities

underlying focal dysplasia in epilepsy, microbleeds in traumatic

brain injury, metastatic cancers, etc.
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