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Background: Accumulating evidence has shown significant contributions of

the right cerebellum to auditory-motor integration for vocal production.

Whether the left cerebellum is likewise involved in vocal motor control,

however, remains unclear.

Methods: By applying neuronavigated continuous and intermittent theta burst

stimulation (cTBS/iTBS) over the left cerebellar lobule VII (Crus I), the present

event-related potential (ERP) study investigated whether the left cerebellum

exerts causal effects in modulating auditory feedback control of vocal pitch

production. After receiving cTBS, iTBS, or sham stimulation over the left

cerebellum, a group of fifteen young adults produced sustained vowels while

hearing their voice unexpectedly shifted in pitch upwards or downwards by

200 cents. The effects of cerebellar stimulation were assessed by measuring

the vocal and ERP (N1/P2) responses to pitch perturbations across the

conditions.

Results: When compared to sham stimulation, cTBS or iTBS over the

left cerebellar lobule VII (Crus I) led to no systematic changes in vocal

compensations for pitch perturbations in auditory feedback. Also, the cortical

N1/P2 responses did not vary significantly across the three stimulation

sessions.

Conclusion: These findings present the first neurobehavioral evidence

suggesting that the left cerebellum is not causally associated with auditory

feedback control of vocal production. Together with previously reported

causal effects of the right cerebellum in modulating vocal pitch regulation,

the present study lends support to the hypothesis that there is a functional

lateralization of the cerebellum in vocal motor control though auditory

feedback.
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Introduction

The integration of auditory feedback and motor systems
is one fundamental aspect of speech production, supporting
the generation of the desired speech accurately through
the online detection and correction of mismatches between
intended and actual vocal output (Hickok et al., 2011). By
perturbing fundamental frequency (f o) or formant frequency
(F1) in auditory feedback during vocal/speech production,
a growing body of literature has shown that auditory-
vocal integration receives significant contributions from the
cerebellum, one substructure that has been long considered to be
essential in coordinating limb movement and motor functions
(Manto et al., 2012). For example, increased cerebellar activity
has been identified during the generation of compensatory
speech responses to F1 perturbations in healthy individuals
(Tourville et al., 2008). Clinical studies on patients with
spinocerebellar ataxia (SCA) have shown abnormally reduced
adaptive responses to predictable speech F1 perturbations
but enhanced corrective responses to unexpected vocal pitch
perturbations (Parrell et al., 2017; Houde et al., 2019; Li
et al., 2019). More recently, two non-invasive brain stimulation
studies provide causal evidence that supports cerebellar
contributions to vocal motor control through auditory feedback,
as reflected by increased vocal compensations for pitch
perturbations in healthy individuals following cerebellar anodal
transcranial direct current stimulation (tDCS) (Peng et al.,
2021) and decreased vocal compensations in patients with
SCA following cerebellar continuous theta burst stimulation
(cTBS) (Lin et al., 2022). These findings have implicated an
essential role for the cerebellum in auditory-motor integration
for speech/vocal production.

Nevertheless, one important question that remains open is
whether the cerebellum is unilaterally or bilaterally involved
in auditory-vocal integration. Most of previous studies have
shown functional associations between the right cerebellum
and speech/language production. Neuroimaging studies have
revealed activation of the right cerebellum during verbal
generation tasks (Riecker et al., 2000; Stoodley, 2012), verbal
working memory (Riva and Giorgi, 2000), voiced speech (Schulz
et al., 2005), and compensatory adjustment of speech F1

(Tourville et al., 2008). More importantly, a series of tDCS
and cTBS studies have shown a causal relationship between the
right cerebellum and language performance or speech motor
control. For example, applying anodal tDCS and cTBS over
the right cerebellum respectively resulted in increased (Peng
et al., 2021) and decreased (Lin et al., 2022) vocal compensations
for pitch perturbations. Increased speech compensations for F1

perturbations were found when anodal tDCS was applied over
the right cerebellum (Lametti et al., 2018). In addition, cTBS
over the right cerebellum impaired verbal working memory
and reduced accuracy in lexical tasks, whereas cTBS over the

contralateral region did not show the same effect (Argyropoulos,
2011; Tomlinson et al., 2014). Clinically, impaired speech
articulation and planning are generally associated with damage
to the right cerebellum (Silveri et al., 1998; Ackermann et al.,
2007), and anodal and/or cathodal tDCS over this region
coupled with language treatment can improve verbal generation
or picture naming in chronic post-stroke patients with aphasia
(Marangolo et al., 2018; Sebastian et al., 2020).

In contrast, there is limited evidence suggesting that
the left cerebellum may be also involved in speech/language
production. For example, activation of the bilateral cerebellar
hemisphere was found during sequence syllable production
(Bohland and Guenther, 2006), vocalization of a single pitch
(Perry et al., 1999), and articulatory control tasks (Chen
and Desmond, 2005). Also, previous meta-analysis studies
revealed significant contributions of bilateral cerebellum to
word reading (Turkeltaub et al., 2002; Indefrey and Levelt,
2004). In addition, language deficits including word dysfluency
and sentence formulation were reported in patients with the
left primary cerebellar lesions (Cook et al., 2004; Murdoch
and Whelan, 2007), and motor speech disorders such as
dysarthria resulted more frequently from damage to the left
than right cerebellum (Amarenco et al., 1991). In the context
of speech motor control, activation of bilateral cerebellum
was identified when somatosensory feedback was perturbed
during speech production (Golfinopoulos et al., 2011). These
findings suggest that, in addition to the right cerebellum,
the left cerebellum may also be a significant contributor to
sensorimotor control of speech production. Unfortunately,
there is by far no direct causal evidence for this brain-behavior
relationship.

To this end, the present event-related potential (ERP) study
investigated the neurobehavioral correlates of auditory-motor
integration for vocal pitch regulation by modulating activity
of the left cerebellum with cTBS and intermittent TBS (iTBS).
TBS is a specific form of transcranial magnetic stimulation
(TMS), where cTBS generally suppresses neuronal excitability
while iTBS induces the opposite effects (Huang et al., 2011).
After receiving cTBS, iTBS, or sham stimulation over the
left cerebellum, the participants vocalized the vowel sounds
while hearing their voice pitch-shifted using the frequency-
altered feedback (FAF) paradigm (Burnett et al., 1998). The
neurobehavioral effects were assessed by measuring the vocal
and ERP responses (N1 and P2) to pitch perturbations;
these parameters have been successfully used to probe the
causal relationship between certain brain region and vocal
motor control (Liu et al., 2020; Li et al., 2022). Our
results showed no systematic changes of vocal and N1/P2
responses to pitch perturbations across the three stimulation
sessions, suggesting a lack of causal evidence that supports
the involvement of the left cerebellum in auditory-vocal
integration.
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Materials and methods

Subjects

Fifteen right-handed, native-Mandarin speakers (seven
female and eight male; age: 21.06± 1.09 years), who were college
students from Sun Yat-sen University of China, participated
in the present study. They had no history of pregnancy,
speech or hearing disorders, implanted medical device, intake
of psychiatric or neurological medication, or formal musical
training. One female participant was excluded from the final
analyses due to the poor quality of her vocal data. Therefore, the
present study included the data from 14 participants (six female
and eight male; age: 21.43 ± 1.09 years). Written informed
consent was obtained from each participant, and the research
protocol was approved by the Institutional Review Board of The
First Affiliated Hospital of Sun Yat-sen University.

Neuronavigated transcranial magnetic
stimulation

Prior to the TMS experiment, all participants underwent
a high-resolution structural MRI in a 3T scanner (Siemens,
Erlangen, Germany) to determine the target site. During
the scanning, a T1-weighted magnetization-prepared
rapid gradient-echo (MPRAGE) sequence was used with
the following parameters: repetition time = 2300 ms,
echo time = 2.19 ms, slice thickness = 1 mm, field of
view= 256× 256 mm2, flip angle= 9.

Transcranial magnetic stimulation was administered with a
7 cm-outer-diameter figure-of-eight coil connected to a CCY-
I TMS instrument (YIRUIDE Co., Wuhan, China). Single-
pulse TMS was applied over the right primary motor cortex
to determine active motor threshold (AMT), defined as the
lowest intensity inducing motor-evoked potentials (MEPs) of at
least ≥200 µV in 5 out of 10 trials during 10% of maximum
contraction of the left first dorsal interosseous muscle (Rossi
et al., 2009). In the present study, TMS was delivered to the
target site at 80% of AMT (Lin et al., 2022). Neuronavigated
TMS was performed to localize the target site and monitor the
coil position using a neuronavigation software (Visor2, ANT
Neuro, Netherlands) with a Polaris Spectra motion tracking
system (NDI, Canada). The target site was localized using the
mean Montreal Neurological Institute (MNI) coordinates of the
left cerebellar lobule VII (Crus I) (x: −32, y: −64, z: −32)
(see Figure 1), contralateral to the right cerebellar lobule VII
(Crus I) that was found to be involved in auditory feedback
control of vocal production (Lin et al., 2022). These coordinates
were slightly modified based on individual brain anatomical
landmarks if necessary.

The present study included three stimulation sessions: cTBS
over the left cerebellum, iTBS over the left cerebellum, and sham

cTBS/iTBS over the left cerebellum. A standard TBS protocol
was applied over the target site for each participant, where cTBS
consisted of three-pulses bursts at 50 Hz repeated every 200 ms
for 40 s while iTBS consisted of three-pulses bursts at 50 Hz
repeated every 200 ms for a total of 600 pules (Huang et al.,
2011). The plane of the coil was tangent to the scalp during
active stimulation, while the place of the coil was perpendicular
to the tangent plane of the target site with the edge of the
coil touching the scalp during sham stimulation. Half of the
participants received sham cTBS over the left cerebellum and
the other half received sham iTBS over the left cerebellum. The
three stimulation sessions were conducted in a counterbalanced
manner across all participants, occurring on separate days at
least 7 days apart.

Frequency-altered feedback
experiment

An FAF-based vocal production experiment was conducted
immediately following active or sham left cerebellar TBS
for all participants to maximize the after-effects. They were
instructed to vocalize the /u/sound at their habitual pitch and
loudness levels and maintained it steady for approximately
5-6 s, during which their voice was pseudo-randomly pitch-
shifted five times by +200 cents or −200 cents (100 cents
equal to one semitone) for 200 ms (see Figure 2). The first
perturbation was presented with a random delay of 1200–
1500 ms relative to the vocal onset, and the succeeding
perturbations occurred with an inter-stimulus interval of 700–
1,000 ms. The manipulation of the timing and direction of the
pitch perturbations was to reduce the potential effects of implicit
expectation on the neurobehavioral responses (Korzyukov et al.,
2012). As well, previous studies showed directional effects of
pitch perturbations on the vocal and/or ERP responses (Chen
et al., 2007; Liu et al., 2011). Prior to initiating the next
vocalization, the participants were required to take a break of
2–3 s to avoid the vocal fatigue. Each participant produced 40
consecutive vocalizations, leading to 200 trials that included 100
trials for+200 cents perturbations and 100 trials for−200 cents
perturbations.

Vocal and EEG data acquisition

The vocal production experiment was conducted in a
sound-attenuated booth. The voice signals were picked up by
a dynamic microphone (DM2200, Takstar Inc., Guangzhou,
China) and amplified by a MOTU Ultralite Mk3 Firewire
audio interface (Cambridge, MA). Then, they were sent to
an Eventide Eclipse Harmonizer and pitch-shifted using a
custom-developed MIDI software program (Max/MSP v.5.0 by
Cycling 74, Walnut, CA, USA). This program also generated
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FIGURE 1

The site of theta burst stimulation (TBS) stimulation located in the left cerebellar lobule VII (Crus I), which was identified on individual MRIs in
coronal, axial, and sagittal views of the brain with the help of a neuronavigation system.

FIGURE 2

Overview of the frequency-altered feedback (FAF) paradigm. From top to bottom: voice fo contour in cents, auditory feedback containing pitch
perturbations in cents, and transistor-transistor logic (TTL) control pulses that signaled the onset of upward and downward pitch perturbations.

the transistor-transistor logic (TTL) control pulses to mark
the onset of each perturbation. Finally, the pitch-shifted voice
signals were amplified by an ICON NeoAmp headphone
amplifier (Middleton, WI) and fed back to participants through
insert earphones (ER-1, Etymotic Research Inc., Elk Grove
Village, IL). The original and pitch-shifted voice signals as
well as the TTL pulses were digitized by a PowerLab A/D
converter (ML880, AD Instruments) and recorded at 10 kHz
using LabChart software (v.7.0, AD Instruments, New South
Wales, Australia).

The electroencephalography (EEG) signals were also picked
up from the participant’s scalp using a 64-electrode Geodesic
Sensor Net (Electrical Geodesics Inc., Eugene, OR, USA). After
amplification by a Net Amps 300 amplifier (Electrical Geodesics
Inc.), they were recorded at 1 kHz using NetStation software
(v.4.5, Electrical Geodesics Inc.). The impedance levels of
individual sensors were adjusted to be kept below 50 k�, since
this amplifier allows the EEG data to be collected with high
scalp-electrode impedances (40–60 k�) (Ferree et al., 2001).
During the online recording, the EEG signals were referenced to
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the vertex (Cz) across all channels (Ferree et al., 2001). The TTL
control pulses were sent to the EEG recording system via a DIN
synch cable for synchronization of the voice and EEG signals.

Vocal and EEG data analysis

As previously described (Li et al., 2019; Lin et al., 2022),
a custom-developed IGOR PRO software program (v.6.0 by
Wavemetrics Inc., Portland, OR, USA) was used to analyze
the vocal responses to pitch perturbations. Briefly, the voice
f o contours in Hz were extracted from the acoustic signals
and converted to cents according to the following formula:
cents= 10× (12× log2[f o/reference]) [reference= 195.997 Hz
(G3 note)]. The voice f o contours in cents were then segmented
into epochs ranging from −100 to +700 ms relative to the
perturbation onset and visually inspected to remove those trials
that contained artifacts arising from signal processing errors
or unexpected voice stops. Finally, all artifact-free trials were
averaged and baseline-corrected (−100 to 0 ms) to generate an
overall vocal response. The peak magnitude of a vocal response
was defined as the maximum or minimum value of the voice
f o contour in cents after the perturbation onset, and the peak
time was measured as the time in milliseconds when the voice
f o contour reached its peak value.

The EEG signals were analyzed offline using NetStation
software. They were band-pass filtered at 1–20 Hz, segmented
into epochs ranging from −200 to +500 ms relative to the
perturbation onset, and inspected using an artifact detection
procedure. The trials were marked bad and excluded from
further analysis if they exceeded ±55 µv of the moving average
over an 80 ms window or contained more than 10 bad
channels. An additional visual inspection was performed to
ensure that all bad trials were appropriately rejected. Finally,
all artifact-free trials were re-referenced to the average of the
electrodes on each mastoid, averaged, and baseline-corrected
(−200 to 0 ms) to generate an overall ERP response. Three
regions of interest (ROI) that included 24 electrodes were
defined for statistical analysis (Liu et al., 2020; Lin et al.,
2022): frontal area, including AF3, AFz, AF4, F5, F3, F1,
Fz, F2, F4, F6; fronto-central area, including FC5, FC3, FC1,
FCz, FC2, FC4, FC6; central area, including C5, C3, C1, Cz,
C2, C4, C6. The amplitudes and latencies of the N1 and P2
components were defined as the negative and positive peak
values and times in the time windows of 80–180 and 160–
280 ms and extracted from the averaged ERPs for each ROI,
respectively.

Statistical analysis

The values of vocal and ERP (N1 and P2) responses
were analyzed using repeated-measures analysis of variances

(RM-ANOVAs) in SPSS (v.20.0). The peak magnitudes and
times of vocal responses were subjected to two-way RM-
ANOVAs, including factors of perturbation direction (+200
and −200 cents) and stimulation session (cTBS, iTBS, and
sham). The amplitudes and latencies of the N1 and P2
responses were subjected to three-way RM-ANOVAs, including
factors of stimulation session, perturbation direction and
electrode site (frontal, frontal-central and central). Bonferroni
adjustment was used in the post-hoc analyses for multiple
comparison corrections. Greenhouse-Geisser corrected p-values
were reported when the assumption of Mauchly’s test was
violated. Differences across the conditions were considered
significant when p < 0.05.

Results

Behavioral findings

Figure 3 shows the grand-averaged voice f o contours
across all participants in responses to pitch perturbations
of ±200 cents following cTBS, iTBS and sham stimulation
over the left cerebellar lobule VII (Crus I). A two-way RM-
ANOVA conducted on the peak magnitudes of vocal responses
revealed no significant main effects of stimulation session
[F(2, 26) = 0.510, p = 0.606] and perturbation direction
[F(1, 13) = 0.274, p = 0.609] as well as their interaction
[F(2, 26) = 0.544, p = 0.587] (see Figure 4A). Similarly, the
peak times of vocal responses did not vary significantly as a
function of stimulation session [F(2, 26) = 1.104, p = 0.347]
and perturbation direction [F(1, 13) = 0.306, p = 0.589]
(see Figure 4B). Their interaction was not significant either
[F(2, 26)= 0.294, p= 0.747].

ERP findings

Figure 5 shows the grand-averaged ERP waveforms across
all participants in response to pitch perturbations of±200 cents
as a function of electrode site following cTBS, iTBS, and sham
stimulation over the left cerebellar lobule VII (Crus I). A three-
way RM-ANOVA conducted on the N1 amplitudes revealed no
significant main effects of stimulation session [F(2, 26) = 1.697,
p = 0.212], perturbation direction [F(1, 13) = 0.009, p = 0.928]
and electrode site [F(2, 26)= 3.830, p= 0.056] (see Figure 6A).
None of the interactions among any of three factors were found
to be significant (p > 0.1). For the N1 latencies, the main
effects of stimulation session [F(2, 26) = 0.061, p = 0.941],
perturbation direction [F(1, 13) = 2.110, p = 0.170], and
electrode position [F(2, 26) = 0.331, p = 0.626] as well as
their interactions (p > 0.07) did not reach significance (see
Figure 6B).
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FIGURE 3

Grand-averaged voice fo contours across all participants in responses to pitch perturbations of ±200 cents following continuous theta burst
stimulation (cTBS) (blue), intermittent theta burst stimulation (iTBS) (red), and sham (black) stimulation over the left cerebellar lobule VII (Crus I).
Time 0 represent the onset of pitch perturbations. CB, cerebellum.

FIGURE 4

Violin plots of the peak magnitudes (A) and times (B) of vocal responses to ±200 cents produced by all participants across the conditions. The
shape of the violin shows the kernel density estimate of the data. The white dots and box plots represent the medians and ranges from first to
third quartiles of the data sets. The blue, red, and black dots represent the individual vocal responses to pitch perturbations following cTBS, iTBS,
and sham stimulation over the left cerebellar lobule VII (Crus I). CB, cerebellum.

A three-way RM-ANOVA conducted on the P2 amplitudes
revealed no significant main effects of stimulation session
[F(2, 26) = 0.240, p = 0.788] and perturbation direction
[F(1, 13)= 2.540, p= 0.135] (see Figure 6C). A significant main
effect of electrode site [F(2, 26) = 6.201, p = 0.020) was found,
indicating larger P2 amplitudes at the frontal-central electrodes
than at the frontal (p= 0.032) and central electrodes (p< 0.001).
The interactions among the three factors were not significant
(p > 0.1). Regarding the P2 latencies, there was a significant
main effect of perturbation direction [F(1, 13) = 12.398,
p = 0.004], showing faster P2 responses to upward pitch
perturbations than to downward pitch perturbations. However,
the main effects of stimulation session [F(2, 26) = 2.119,
p = 0.162] and electrode site [F(2, 26) = 3.790, p = 0.059] did
not reach significance (see Figure 6D). In addition, there were
no significant interactions among the three factors (p > 0.3).

Discussion

By applying neuronavigated cTBS or iTBS over the left
cerebellar lobule VII (Crus I), the present study investigated
the functional association between the left cerebellum and
auditory-vocal integration in a causal manner. When compared
to sham stimulation, cTBS or iTBS over the left cerebellar
lobule VII (Crus I) led to no systematic changes in vocal
compensations for pitch perturbations. Likewise, the cortical
N1 and P2 responses to pitch perturbations in voice auditory
feedback did not vary as a function of cerebellar TBS modality.
These findings provide the first neurobehavioral evidence
that the left cerebellum is not causally involved in auditory
feedback control of vocal production, suggesting that this
region may not be a significant contributor to auditory-
vocal integration.
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FIGURE 5

Grand-averaged event-related potential (ERP) waveforms across all participants in responses to pitch perturbations of ±200 cents in the frontal,
fronto-central, and central regions following cTBS, iTBS, and sham stimulation over the left cerebellar lobule VII (Crus I). Time 0 represent the
onset of pitch perturbations. CB, cerebellum.

Multiple lines of evidence have demonstrated cerebellar
involvement in a variety of language functions (Justus, 2004;
Durisko and Fiez, 2010; Lesage et al., 2012), and the majority
of these studies have shown a right-lateralized linguistic
cerebellum (Marien et al., 2014). A growing body of literature
has also shown significant contributions of the right cerebellum

to speech production (Riecker et al., 2000; Riva and Giorgi, 2000;
Tourville et al., 2008; Stoodley, 2012; Ziegler and Ackermann,
2017). In particular, increased activity in the right cerebellum
was found during the production of compensatory speech
responses to F1 perturbations (Tourville et al., 2008). More
recently, a number of tDCS and cTBS studies provide causal
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FIGURE 6

Violin plots of the amplitudes and latencies of the N1 (A,B) and P2 (C,D) responses to pitch perturbations of ±200 cents produced by all
participants across the conditions. The white dots and box plots represent the medians and ranges from first to third quartiles of the data sets.
The blue, red, and black dots represent the individual vocal responses to pitch perturbations following cTBS, iTBS, and sham stimulation over the
left cerebellar lobule VII (Crus I). The asterisk indicates a significant difference in the P2 latency between +200 and −200 cents perturbations.
CB, cerebellum.

evidence that links the right cerebellum to auditory feedback
control of vocal production (Lametti et al., 2018; Peng et al.,
2021; Lin et al., 2022). For example, following cTBS over
the right cerebellar lobule VII (Crus I), patients with SCA
exhibited smaller vocal compensations for pitch perturbations
paralleled by larger P1 and P2 responses and smaller N1
responses when compared to sham stimulation (Lin et al.,
2022). In contrast, only a few studies reported activation
of the left cerebellum during speech production (Chen and
Desmond, 2005; Bohland and Guenther, 2006) and simple
singing (Perry et al., 1999). As well, increased activation of
bilateral cerebellum was found when perturbations of jaw
movement prompted the generation of compensatory speech
motor commands (Golfinopoulos et al., 2011). In the present
study, however, we did not find systematic changes in the vocal
or N1/P2 responses to pitch perturbations following cTBS or
iTBS over the left cerebellar lobule VII (Crus I), indicating the
lack of a causal link between the left cerebellum and auditory-
vocal integration. Along with previous findings showing a
causal role of the right cerebellum for vocal pitch regulation
(Peng et al., 2021; Lin et al., 2022), our findings lend support
to a hypothesis that the cerebellum may contribute to the

functioning of the neural mechanisms that support auditory
feedback control of vocal production in a hemispheric-specific
manner. In line with this hypothesis, other studies found that
cTBS over the right cerebellum led to impaired verbal working
memory and reduced accuracy in lexical tasks whereas cTBS
over the contralateral region did not (Argyropoulos, 2011;
Tomlinson et al., 2014).

Notably, the cerebellum is anatomically subdivided into a
discrete set of regions (lobules I-X) that are associated with a
diverse set of motor and cognitive tasks (King et al., 2019),
suggesting a lobule-specific relationship between cerebellar
tissues and behavioral performance. During speech/language
processing, for example, it has been suggested that the superior
cerebellum (lobule VI and Crus I) is involved in articulatory
control while the inferior posterior cerebellum (lobules VIIb
and VIII) is involved in verbal working memory (Chen
and Desmond, 2005; Frings et al., 2006). In the context
of speech motor control, activity in the right-lateralized
cerebellar lobule VIIIA was identified when speech F1 was
perturbed in auditory feedback (Tourville et al., 2008), while
somatosensory perturbations to jaw movements activated the
bilateral cerebellar lobule VIII during speech production
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(Golfinopoulos et al., 2011). The absence of modulatory effects
of cTBS or iTBS over the left cerebellar lobule VII (Crus I) on
vocal pitch regulation observed in the present study, therefore,
cannot rule out the possibility that the left cerebellum may
be involved in auditory-vocal integration in a lobule-specific
manner. Stimulating other cerebellar regions such as the lobule
VI or VIII, which has been implicated in speech production
(Perry et al., 1999; Golfinopoulos et al., 2011), is warranted
to elucidate the potential role of the left cerebellum in vocal
feedback control in the future studies.

On the other hand, different types of TMS coils such
as the figure-of-eight, double cone, and batwing coils have
been chosen to probe cerebellar functions according to the
depth of cerebellar tissues (Hardwick et al., 2014; Vinas-
Guasch et al., 2022). Hardwick et al. (2014) compared the
effectiveness of cerebellar stimulation across the three coil
designs and found that the double-cone and batwing coils, but
not the figure-of-eight coil, effectively stimulated the cerebellar
lobules V and VIII for eliciting cerebellar-brain inhibition.
In light of this finding, it is suggested to stimulate the
superficial cerebellar tissues using the figure-of-eight coil and
the deeper-lying targets using the double cone or batwing
coil (Hardwick et al., 2014). However, there is evidence for
the use of the figure-of-eight coil to effectively stimulate the
lobule VI (Tomlinson et al., 2014) or VIII (Popa et al.,
2010). Therefore, further investigations should be careful to
choose coil designs suitable for stimulating cerebellar tissues
with different depths. Note that increased depth of cerebellar
stimulation with the double cone or batwing coil is achieved
at the expense of focality (Deng et al., 2013), which is in
contrast with the precise stimulation of cerebellar regions using
the figure-of-eight coil guided by the neuronavigation system
(Hurtado-Puerto et al., 2020).

Two limitations in the present study should be
acknowledged. First, the present study used sham stimulation
as a control condition, which potentially allows participants
to distinguish between sham and active stimulation due to
non-specific sensory effects of TMS (e.g., click sounds, skin
sensation) (Duecker and Sack, 2015). Future studies are thus
needed to compare the sham approach with other control
conditions such as stimulating the vertex (Cattaneo et al.,
2014; Jung et al., 2016) or a site that is unrelated to the task
(Gatti et al., 2020; Ramos Nunez et al., 2020) to determine the
optimal control strategy. On the other hand, the data from
participants following cTBS, iTBS, and sham stimulation over
the contralateral right cerebellum were not obtained, which
would be helpful to determine whether there is a cerebellar
lateralization in vocal motor control. Despite these limitations,
the present study presents the first evidence that the left
cerebellar lobule VII (Crus I) does not exert a causal influence
on vocal pitch regulation, offering a starting point to investigate
the role of the left cerebellum in vocal motor control.
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