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The study aimed to investigate the neurovascular coupling abnormalities

in Leber’s hereditary optic neuropathy (LHON) and their associations with

clinical manifestations. Twenty qualified acute Leber’s hereditary optic

neuropathy (A-LHON, disease duration ≤ 1 year), 29 chronic Leber’s

hereditary optic neuropathy (C-LHON, disease duration > 1 year), as well

as 37 healthy controls (HCs) were recruited. The neurovascular coupling

strength was quantified as the ratio between regional homogeneity (ReHo),

which represents intrinsic neuronal activity and relative cerebral blood flow

(CBF), representing microcirculatory blood supply. A one-way analysis of

variance was used to compare intergroup differences in ReHo/CBF ratio with

gender and age as co-variables. Pearson’s Correlation was used to clarify

the association between ReHo, CBF, and neurovascular coupling strength.

Furthermore, we applied linear and exponential non-linear regression models

to explore the associations among ReHo/CBF, disease duration, and neuro-

ophthalmological metrics. Compared with HCs, A_LHON, and C_LHON

patients demonstrated a higher ReHo/CBF ratio than the HCs in the bilateral

primary visual cortex (B_CAL), which was accompanied by reduced CBF

while preserved ReHo. Besides, only C_LHON had a higher ReHo/CBF

ratio and reduced CBF in the left middle temporal gyrus (L_MTG) and left

sensorimotor cortex (L_SMC) than the HCs, which was accompanied by

increased ReHo in L_MTG (p < 1.85e−3, Bonferroni correction). A-LHON

and C-LHON showed a negative Pearson correlation between ReHo/CBF

ratio and CBF in B_CAL, L_SMC, and L_MTG. Only C_LHON showed a weak

positive correlation between ReHo/CBF ratio and ReHo in L_SMC and L_MTG

(p < 0.05, uncorrected). Finally, disease duration was positively correlated with

ReHo/CBF ratio of L_SMC (Exponential: Radj2 = 0.23, p = 8.66e−4, Bonferroni
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correction). No statistical correlation was found between ReHo/CBF ratio

and neuro-ophthalmological metrics (p > 0.05, Bonferroni correction). Brain

neurovascular “dyscoupling” within and outside the visual system might be an

important neurological mechanism of LHON.

KEYWORDS

Leber’s hereditary optic neuropathy, mitochondrial disease, arterial spin labeling,
regional homogeneity, neurovascular coupling, cerebral blood flow, functional
magnetic resonance imaging

1. Introduction

Leber’s hereditary optic neuropathy (LHON) is an inherited
genetic disorder caused by mutations in mitochondrial DNA
(mtDNA), leading to severe bilateral continuous painless loss
of vision, especially in young males (Chinnery et al., 2000).
Previous research reported some pathological changes in
the anterior visual pathway, such as degeneration in retinal
ganglion cells (RGCs), progressive thinning of the retinal
nerve fiber layer (RNFL) thickness, the axonal loss of the
optic nerve as well as the loss of nerve fibers in the central
part (Savini et al., 2005; Balducci et al., 2016; Wang et al.,
2017; Asanad et al., 2019). Besides, a case report identified
diffuse histopathological brain white matter changes in LHON
mimicking gliomatosis cerebri (Saruta et al., 2021). Recent
studies have reported widespread brain involvement using
advanced neuroimaging techniques such as high-resolution
structural magnetic resonance imaging (sMRI), diffusion tensor
imaging (DTI), and functional magnetic resonance imaging
(fMRI). For example, white matter integrity impairment was
found both within (Barcella et al., 2010; Milesi et al., 2012; Rizzo
et al., 2012; Manners et al., 2015; Wang et al., 2017; Jonak et al.,
2020a) and outside the visual pathways (Wang et al., 2021)
in LHON patients and even in asymptomatic carriers (Long
et al., 2019). Similarly, reduced gray matter volume (GMV)
in the primary visual cortex (Barcella et al., 2010; Tian et al.,
2022), thickening of extrastriate cortex thickness (d’Almeida
et al., 2013; Mateus et al., 2016), an enlarged ventricular system
(Jonak et al., 2020b), and changes in the hippocampus sub-fields
volume (Grochowski et al., 2020) were also identified in LHON.
In addition, some researchers also found decreased spontaneous
neural activity in the associated visual areas (Rocca et al., 2011;
d’Almeida et al., 2013; Jonak, 2020), and brain regions outside
the visual cortex both showed increased (Rocca et al., 2011; Tian
et al., 2022) or decreased brain activity (Jonak, 2020). These
results suggested that the brain’s impairment was not confined
to the visual system.

The LHON mtDNA mutation occurs in the gene encoding
mitochondrial complex I of the electron transport chain, also
known as the nicotinamide adenine dinucleotide dehydrogenase
subunit (ND1). ND1 produces adenosine triphosphates (ATPs)

under aerobic conditions (Hirst, 2013). LHON mutation
changes in a single amino acid of ND1 that exhausts the
energy in neuron cells and in turn causes the death of neurons
(Kirches, 2011). In a previous study, all three types of LHON
mutation-carrying cell cultures detected a rapid decrease in ATP
concentration (Kogachi et al., 2019). In addition to the decrease
in ATPs’ production, the damage to the glutamate transport
system and elevating oxidative stress also lead to RGC loss in
LHON (Zhuo et al., 2012). The activity of brain tissue relies on
the aerobic oxidation of oxygen and glucose for energy. It is
well known that increased neuronal activity is accompanied by
increased regional metabolic rate and cerebral blood flow (CBF),
indicating the close coupling between neuronal activity and
microcirculatory blood supply (termed neurovascular coupling)
(Iadecola et al., 1993; Chaigneau et al., 2003). The blood-
brain barrier separates blood from brain tissue, but blood
vessel cells, neighboring neurons, and astrocytes can still
communicate interactively via the neurovascular unit (NVU)
(Iadecola, 2017), which plays a bridge role in information
transmission (Harder et al., 2002; Lopez-Bayghen and Ortega,
2011; Santello et al., 2012). By synthesizing and releasing
vasoactive substances, NVU can effectively dilate or contract
blood vessels and cause CBF changes (Zonta et al., 2003).
Previous studies have shown that multi-modal neuroimages
comprising both regional CBF and fMRI can provide a more
comprehensive picture of neurovascular coupling abnormalities
in patients, such as end-stage renal disease (Jin et al., 2020),
neuromyelitis optica (Guo et al., 2019), type 2 diabetes mellitus
(Hu et al., 2019a; Yu et al., 2019, Zhang et al., 2021b), chronic
migraine (Hu et al., 2019b), and schizophrenia (Zhu et al.,
2017). As mentioned above, in LHON patients, early studies
have reported abnormal spontaneous neural activity (Rocca
et al., 2011; Vacchiano et al., 2019; Jonak, 2020) and mtDNA-
induced energy reduction in RGC (Zhang et al., 2021a) from a
unimodal perspective. However, to our knowledge, no studies
have attempted to investigate the relationship between abnormal
brain activity and brain metabolism in LHON. Elucidating
this issue would deepen our understanding of the neurological
mechanisms of LHON-related brain injury and provide a
potential basis for early clinical intervention.
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This study aims to elucidate whether the neurovascular
coupling was disrupted in both acute and late LHON. The
neurovascular coupling index was quantified as the ratio
between regional homogeneity (ReHo) and relative CBF (Li
et al., 2012; Guo et al., 2019). ReHo is a resting-state fMRI
(rfMRI) measure that quantifies the consistency of the time
series between a single voxel and its adjacent voxels (Zang
et al., 2004), which is frequently applied to represent regional
spontaneous neuronal activity. CBF derived from a non-invasive
arterial spin labeling (ASL) technique is a microcirculatory
blood supply measure that quantifies the blood flow change in
unit brain tissue within a certain period (Detre et al., 2012; Alsop
et al., 2015). Early studies have shown differences in structural
abnormality between the acute and chronic LHON (Wang et al.,
2021; Zhang et al., 2021a). Thus, we split the LHON patients
into acute and chronic sub-groups and applied voxel-based
statistics to explore the possible ReHo/CBF ratio abnormality
in each LHON sub-group and the difference between them.
Furthermore, we studied the corresponding changes in CBF and
ReHo in brain regions with abnormal ReHo/CBF ratios. Finally,
linear and non-linear regressions were used to investigate the
potential relationship among ReHo/CBF ratio, disease duration,
and neuro-ophthalmological metrics.

2. Materials and methods

2.1. Participants

We initially recruited 55 LHON patients diagnosed in
Zhengzhou University People’s Hospital from May 2012 to
December 2016. These participants have also been involved
in several previous studies (Long et al., 2019; Wang et al.,
2021; Zhang et al., 2021a; Tian et al., 2022). Briefly, the
inclusion criteria were: (1) carrying LHON mtDNA mutations;
(2) no history of other ophthalmic, neurological, psychiatric,
major medical conditions, or substance abuse; (3) no visible
brain lesions (Supplementary Figures 1, 2); (4) no MRI
contraindications. All patients had idebenone treatment during
the acute phase for 1 week to 3 months before MRI examination.
The LHON patients covered a wide range of disease duration
spanning the acute and chronic phases (from 3 weeks to
422 months). Thus, we further separated them into 23 acute
Leber’s hereditary optic neuropathy (A-LHON, disease duration
≤ 1 year) and 32 chronic Leber’s hereditary optic neuropathy
(C-LHON, disease duration > 1 year) patients based on the
duration (Wang et al., 2021). It should be noted some of the
patients overlapped with early studies by our team (Wang et al.,
2017; Wang et al., 2021; Zhang et al., 2021a; Tian et al., 2022),
but the contents of this study were independent of these early
works.

Three A-LHON were excluded due to no neuro-
ophthalmological examination (1 case) and poor CBF image

quality (2 cases). Three C-LHON were excluded due to a missing
T1 image for normalization (1 case), poor CBF image quality
(1 case), and severe head motion on rfMRI (1 case). Thus, this
study finally enrolled 20 qualified A-LHON (ages ranging from
10 years to 57 years old, 18 males, 14 cases of m.11778G > A,
1 case of m.3460G > A, and 5 cases of m.14484T > C) and
29 C-LHON (ages from 13 years to 53 years old, 19 males, 23
cases of m.11778G > A, 2 cases of m.3460G > A, and 4 cases of
m.14484T > C). We also recruited 37 gender and age coarsely
matched healthy controls (HCs, ages 11 years to 44 years old,
27 males) with the same enrollment criteria except for no visual
impairment and mtDNA mutations.

The research was approved by the Ethics Committees of
Henan Provincial People’s Hospital and was carried out in
compliance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Written informed
consent was obtained from all subjects or their legal guardians.

2.2. Neuro-ophthalmological
examination

The logarithm of the minimum angle of resolution
(logMAR) was used to evaluate the corrected visual acuity.
Octopus perimeter 101G2 program TsOP Strategy (Interzeag
AG, Haig-Streit Schlieren, Switzerland) was used to examine
the visual field represented by the mean defect (MD), mean
sensitivity (MS), and loss of variance (LV). The peripapillary
retinal nerve fiber layer (RNFL) thickness was measured by
optical coherence tomography (Carl Zeiss Meditec, Dublin, CA,
USA) with a preset diameter of 3.45 mm.

2.3. MRI data acquisitions

MRI data were obtained by a 3.0T MR scanner (Discovery
MR750, GE Healthcare, Waukesha, WI, USA). Resting-state
perfusion data were acquired by a pseudo-continuous ASL
(pcASL) sequence with a 3D fast spin-echo acquisition
and background suppression. The ASL scanning parameters
included: repetition time (TR) = 4632 ms; echo time
(TE) = 10.5 ms; post-labeling delay (PLD) = 1525 ms; flip
angle (FA) = 111◦; field of view (FOV) = 230 mm × 230 mm;
matrix = 128 × 128; slice thickness = 4 mm; 36 continuous
slices; resulting in a voxel size of 1.8 mm × 1.8 mm × 4 mm.
High-resolution three-dimensional T1-weighed images (T1WI)
were obtained using a fast-spoiled gradient echo sequence with
the following parameters: TR = 8.2 ms; TE = 3.2 ms; inversion
time (TI) = 450 ms; FA = 12◦; FOV = 256 mm × 256 mm;
matrix = 256 × 256; slice thickness = 1 mm; 176 continuous
slices; voxel size = 1 mm × 1 mm × 1 mm. RfMRI data were
acquired using a gradient-echo echo-planar imaging sequence
with the following parameters: TR = 2000 ms; TE = 30 ms;
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FA = 90◦; FOV = 240 mm × 240 mm; matrix = 64 × 64; No.
time points = 210; slice thickness = 4 mm; 33 slices; no gap; voxel
size = 3.75 mm × 3.75 mm × 4 mm.

2.4. Data preprocessing and
neurovascular coupling quantification

The ASL images of each subject were coregistered to
his/her T1 images after skull stripping. Then T1 images of
each subject were segmented and normalized into Montreal
Neurological Institute (MNI) space based on the algorithm
named diffeomorphic anatomical registration through the
exponentiated Lie algebra (DARTEL). Next, the CBF map
(automatically generated during the scan) was transformed
into the MNI space using the DARTEL parameters and was
resliced into a voxel size of 2 mm × 2 mm × 2 mm.
After that, the normalized CBF images were skull-stripped
and scaled by the global mean CBF value of the brain.
Finally, the scaled CBF map was spatially smoothed with a
Gaussian kernel of 6 mm × 6 mm × 6 mm full-width at
half maximum (FWHM).

The first 10 time points were discarded to allow for
magnetization equilibrium. Then the remaining 200 volumes
of rfMRI images were undergone slice time correction, motion
correction, spatial normalization (like ASL based on DARTEL),
nuisance covariate regression [including the linear trend, the
average signals of the white matter, cerebrospinal fluid, motion
parameters based on the Friston-24 model, and spike volume
with framewise displacement exceed 0.5 mm (Power et al.,
2012)], and band-pass filtering (0.01–0.10 Hz). The ReHo
map was calculated using the preprocessed rfMRI data by
the Kendall harmony coefficient (KCC) of a voxel with its
26 neighbors and was scaled by his/her brain’s global mean
(Zang et al., 2004). Finally, the ReHo map was smoothed with
an isotropic Gaussian kernel of 6 mm × 6 mm × 6 mm
FWHM.

We calculated the neurovascular coupling index as the ratio
between each subject’s preprocessed ReHo map and his/her CBF
map voxel-by-voxel (Li et al., 2012; Guo et al., 2019). These steps
were carried out using a self-coded pipeline developed based on
SPM121 and DPABI V2.3.2

2.5. Statistical analysis

A voxel-based one-way ANOVA was used to compare
ReHo/CBF ratio differences between the three groups with

1 http://www.fil.ion.ucl.ac.uk/spm

2 http://rfmri.org/DPABI

age and gender as covariates [voxel-wise p < 1.00e−3, cluster-
wise family wise error (FWE) corrected p < 0.05 (cluster size
> 1147 voxels)]. Then we extracted the average ReHo/CBF ratio,
ReHo value, and CBF value of the region of interest (ROI)
with voxels that survived in voxel-wise ANOVA and performed
post hoc analyses (p < 0.05/3 ROIs/3 measures/3 comparison
pairs = 1.85e−3, Bonferroni corrected). Moreover, we conducted
Pearson’s Correlation to clarify if the strengths of ReHo or
CBF were associated with the neurovascular coupling strength
(p < 0.05/3 ROIs/2 groups/2 metric pairs = 4.17e−3, Bonferroni
corrected).

A Chi-square test was used to inter-group sex differences.
In addition, one-way ANOVA (among three groups) or two-
sample t-tests (between two groups) were used to compare
the intergroup differences in continuous variables, including
age, disease duration, and neuro-ophthalmological metrics
(p < 0.05).

To investigate the potential association between
neurovascular coupling index and clinical measures, we applied
several linear and non-linear exponential regressions analyses
between ReHo/CBF ratio and clinical measures such as disease
duration and neuro-ophthalmological measures, respectively,
after regressing covariates of gender and age (p < 0.05/3 ROIs/5
measures/2 models = 1.67e−3, Bonferroni correction).

The voxel-wise statistic was conducted using SPM12.3 All
table data (demographics, clinical measurements, and ROI-wise
data) underwent statistics by SPSS19.0.4

3. Results

3.1. Demographic data and clinical
variables

The demographic and clinical characteristics are
summarized in Table 1. No intergroup differences were
found in age (F = 1.86, p = 1.62e−1) and gender (Chi-square
test, χ2 = 4.72, p = 9.51e−2). ANOVA revealed significant
differences in MD (F = 48.76, p = 3.11e−14), MS (F = 54.39,
p = 4.74e−15), LV (F = 21.74, p = 4.12e−8), and peripapillary
RNFL thickness (F = 72.55, p = 4.46e−18) among the A-LHON,
C-LHON, and HCs. Post hoc test demonstrated A-LHON
had higher MD (p = 1.10e−7), higher LV (p = 1.03e−3) and
lower MS (p = 1.84e−7) than HCs. C-LHON patients had
higher MD (p = 8.80e−15), higher LV (p = 7.43e−9), lower MS
(p = 1.13e−15), and thinner RNFL thickness (p = 3.87e−16)
than HCs. No significant difference was found in the mtDNA
mutation distribution between the acute and chronic LHON
(Fisher’s exact test, p = 6.77e−1).

3 https://www.fil.ion.ucl.ac.uk/spm/software/download

4 https://www.ibm.com/analytics/spss-statistics-software
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TABLE 1 Demographic and clinical characteristics of this study.

Acute
LHON

Chronic
LHON

HCs Total effects A-LHON vs.
HCs

C-LHON vs.
HCs

A-LHON vs.
C-LHON

F/T/χ2 p p p p

Age (years) 21.55 ± 11.28 27.76 ± 12.04 24.96 ± 10.16 F = 1.86 p = 1.62e−1 – – –

Gender (male/female) 18/2 18/11 27/10 χ2 = 4.72 p = 9.51e−2 – – –

Duration (months) 4.72 ± 4.01 121.79 ± 129.04 – t = -4.04 – – – –

MD (dB) 13.35 ± 9.27 18.10 ± 7.99 1.49 ± 1.11 F = 48.76 p= 3.11e−14* 1.10e−7* 8.80e−15* 2.13e−2*

MS (dB) 15.83 ± 8.07 10.92 ± 8.15 27.60 ± 1.18 F = 54.39 p= 4.74e−15* 1.84e−7* 1.13e−15* 1.91e−2*

LV (dB2) 24.91 ± 25.29 37.14 ± 25.27 4.045 ± 1.97 F = 21.74 p = 4.12e−8* 1.03e−3* 7.43e−9* 5.23e−2

RNFL thickness (µm) 104.53 ± 25.21 60.20 ± 11.08 100.23 ± 6.99 F = 72.55 p= 4.46e−18* 3.29e−2* 3.87e−16* 1.98e−15*

mtDNA.11778G > A 14 23 – p = 6.77e−1# – – –

mtDNA.14484T > C 5 4 – – – –

mtDNA.3460G > A 1 2 – – – –

Data were reported as mean ± SD, and significant differences were labeled with asterisks (*). #Fisher exact test. LHON, Leber’s hereditary optic neuropathy; A-LHON, acute Leber’s
hereditary optic neuropathy; C-LHON, chronic Leber’s hereditary optic neuropathy; HCs, healthy controls; MD, mean defect; MS, mean sensitivity; LV, loss of variance; RNFL, retinal
nerve fiber layer.

FIGURE 1

ReHo, CBF, and ReHo/CBF ratio maps and intergroup differences in ReHo/CBF ratio. Average CBF (A), ReHo (B), and ReHo/CBF ratio (C) maps
are present for A-LHON (left), C-LHON patients (middle), and HCs (right). (D) Represents one-way analysis of variance for intergroup differences
in ReHo/CBF ratio between the three groups (p < 1.00e-3, family wise error corrected at the cluster level). CBF, cerebral blood flow; ReHo,
regional homogeneity; A-LHON, acute Leber’s hereditary optic neuropathy; C-LHON, chronic Leber’s hereditary optic neuropathy; HCs, healthy
controls.
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3.2. ReHo/CBF ratio changes in LHON
patients

The average ReHo, CBF, and their derived ReHo/CBF
ratio maps for each group are shown in Figures 1A–C.
LHON patients demonstrated abnormal ReHo/CBF ratio
in the bilateral calcarine fissure and surrounding cortex
(B_CAL), left sensorimotor cortex (L_SMC), and left
middle temporal gyrus (L_MTG) (voxel-wise p < 1.00e−3,
FWE corrected cluster size > 1147 voxels) (Figure 1D
and Table 2). Post hoc analyses identified a higher
ReHo/CBF ratio in A_LHON and C_LHON patients than
the HCs in the B_CAL. Besides, C_LHON patients had a
higher ReHo/CBF ratio in L_SMC and L_MTG than the
A_LHON and HCs (p < 1.85e−3, Bonferroni correction)
(Figure 2A).

3.3. CBF and ReHo changes in LHON
patients

To explore the separate contributions of CBF and ReHo
on the neurovascular coupling abruptions in LHON, we also
compared intergroup differences in CBF and ReHo values of
these regions. Both A-LHON and C-LHON showed lower
CBF than the HCs in the B_CAL, while only C-LHON
demonstrated lower CBF than the HCs in the L_SMC and
L_MTG (p < 1.85e−3, Bonferroni correction). C-LHON
showed lower CBF than A-LHON in L_SMC (p < 1.85e−3,
Bonferroni correction) and L_MTG (p < 0.05, uncorrected),
and a weak higher CBF than the A-LHON in B_CAL
(p < 0.05, uncorrected) (Figure 2B). Moreover, C-LHON
showed a higher ReHo than the HCs and A-LHON in
L_MTG (p < 1.85e−3, Bonferroni correction), and a weak
higher ReHo than the A-LHON in the B_CAL and L_SMC
(p < 0.05, uncorrected). There were no differences in
ReHo value between the A-LHON and HCs (p > 0.05)
(Figure 2C).

TABLE 2 Brain regions showing altered ReHo/CBF ratio among
A-LHON, C-LHON, and HCs.

Brain
regions

Cluster
voxel size

Peak
F-value

Peak MNI
coordinates

(mm)

x y z

B_CAL 2524 20.78 10 –100 0

L_SMC 1517 16.40 –68 –34 2

L_MTG 1147 14.72 –58 12 26

B_CAL, bilateral calcarine fissure and surrounding cortex; L_MTG, left middle temporal
gyrus; L_SMC, left sensorimotor cortex; MNI, Montreal Neurological Institute; CBF,
cerebral blood flow; ReHo, regional homogeneity; A-LHON, acute Leber’s hereditary
optic neuropathy; C-LHON, chronic Leber’s hereditary optic neuropathy; HCs,
healthy controls.

FIGURE 2

Differences in ReHo/CBF ratio, CBF, and ReHo values between
each pair of groups. *Survival under a nominal p < 0.05,
**survival under a Bonferroni-corrected p < 0.05 (equal normal
p < 1.85e-3). CBF, cerebral blood flow; ReHo, regional
homogeneity; A-LHON, acute Leber’s hereditary optic
neuropathy; C-LHON, chronic Leber’s hereditary optic
neuropathy; HCs, healthy controls; B_CAL, bilateral calcarine
fissure and surrounding cortex; L_MTG, left middle temporal
gyrus; L_SMC, left sensorimotor cortex.

3.4. Correlation between ReHo/CBF
and neurovascular coupling in A-LHON
and C-LHON patients

To quantify which measure (ReHo or CBF) contributes
primarily to the neurovascular coupling strength, Pearson’s
correlation analysis demonstrated that ReHo/CBF ratio is
significantly negatively correlated with CBF in all identified
brain regions in both the acute and chronic LHON (p< 4.17e−3,
Bonferroni corrected). Besides, a weak positive association
between ReHo/CBF ratio and ReHo was identified in only
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the L_SMC and L_MTG in C-LHON patients (p < 0.05,
uncorrected) (Table 3).

3.5. Correlation between
neurovascular coupling and clinical
variables

A significantly positive exponential correlation was
identified between the ReHo/CBF ratio of L_SMC and disease
duration (Radj2 = 0.23, p = 8.66e−4, Bonferroni correction)
(Table 4 and Figure 3). A weak positive exponential correlation
was also identified between the ReHo/CBF ratio of L_MTG
and disease duration (Radj2 = 0.14, p = 1.12e−2, uncorrected).
There was no association between the ReHo/CBF ratio of
B_CAL and disease duration in either the linear or non-linear
model (p > 0.05, Bonferroni correction) (Table 4). There was
no statistical correlation between ReHo/CBF ratio and neuro-
ophthalmological metrics (p > 0.05, Bonferroni correction),
though some uncorrected nominal significant findings were
identified (Table 4).

4. Discussion

To our knowledge, this is the first study that reported the
neurovascular coupling abnormality in LHON. We found that
both the acute and chronic LHON patients had abnormally
higher neurovascular coupling strength in the primary visual

TABLE 3 Correlation between ReHo, CBF, and ReHo/CBF ratio in
A-LHON and C-LHON patients.

Group Pearson’s correlation Brain regions

B_CAL L_SMC L_MTG

A-LHON ReHo/CBF
ratio-CBF

r –0.86 –0.77 –0.88

p 8.84e−7** 7.30e−5** 2.33e−7**

ReHo/CBF
ratio-ReHo

r –0.17 0.04 0.28

p 0.47 0.87 0.23

C-LHON ReHo/CBF
ratio-CBF

r –0.88 –0.89 –0.86

p 1.16e-10** 6.50e-11** 1.72e-9**

ReHo/CBF
ratio-ReHo

r 0.35 0.45 0.49

p 6.40e−2 1.23e−2* 5.71e−3*

**Multiple comparisons were corrected by a Bonferroni method with a corrected
threshold of p < 0.05/3 ROIs/2 groups/2 metric pairs = 4.17e−3 ; *nominal p < 0.05.
B_CAL, bilateral calcarine fissure and surrounding cortex; L_MTG, left middle temporal
gyrus; L_SMC, left sensorimotor cortex; CBF, cerebral blood flow; ReHo, regional
homogeneity; A-LHON, acute Leber’s hereditary optic neuropathy; C-LHON, chronic
Leber’s hereditary optic neuropathy.

cortex, which was accompanied by reduced CBF while
preserved ReHo. Besides, only chronic LHON showed an
abnormally higher neurovascular coupling strength in the
sensorimotor and auditory areas with a dramatically reduced
CBF and weak increased ReHo. Finally, we found that
neurovascular coupling in the sensorimotor cortex was
exponentially correlated with disease duration. These findings
suggested that brain neurovascular “dyscoupling” within and
outside the visual system may be an important neurological
mechanism for LHON.

The primary visual cortex is one of the major involved
areas not only for LHON but also for other patients with
visual impairment. Previous structural studies have shown
that visual impairment (including LHON) could induce
secondary gray matter (Barcella et al., 2010; Qin et al., 2013;
Tian et al., 2022) and white matter (Milesi et al., 2012;
Wang et al., 2013; Manners et al., 2015; Wang et al., 2021)
impairment in the primary visual cortex. In contrast to the
structural impairment, we found an increased neurovascular
coupling strength in the primary visual cortex. Furthermore,
the increased neurovascular coupling was accompanied by
decreased CBF and preserved intrinsic neuronal activity and
had a negative correlation between CBF and neurovascular
coupling in C-LHON and A-LHON; moreover, a weak
correlation was identified between neurovascular coupling
and ReHo in only the non-visual areas in chronic LHON,
indicating the changed neurovascular coupling was primarily
caused by a reduced blood supply. LHON’s decreased
CBF in the primary visual cortex was consistent with
early studies showing reduced glucose metabolism in this
area of late-onset blindness (Veraart et al., 1990). The
increased neurovascular coupling in the primary visual cortex
indicated that its spontaneous neuronal activity per unit
of CBF was more efficient in LHON than in the sighted
controls.

Combined with the findings that LHON patients had no
significant changes in regional intrinsic neuronal activity in
the primary visual cortex, we speculated that the increased
neurovascular coupling might reflect the compensatory
plasticity in response to visual loss. This hypothesis was
supported by early studies showing strengthened functional
connectivity in the atrophied primary visual cortex in chronic
LHON (Rocca et al., 2011; Tian et al., 2022) and in other visual-
deprived people (Qin et al., 2015; Ma et al., 2016; Liu et al.,
2017). Moreover, early studies reported that the primary visual
cortex of visual-deprived subjects participated in processing
non-visual information, such as auditory information (Arno
et al., 2001; Poirier et al., 2006; Voss et al., 2008; Renier et al.,
2010; Collignon et al., 2011), somatosensory information
(Wittenberg et al., 2004; Sadato, 2005; Kupers et al., 2011),
and more complex cognitive activities (Burton et al., 2002;
Sadato et al., 2002; Amedi et al., 2003), suggesting that the
atrophied primary visual cortex after visual impairment also
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TABLE 4 Correlation between ReHo/CBF ratio and clinical measures.

X Model B_CAL L_SMC L_MTG

Disease duration Linear Radj2 0.02 0.04 0.07

p 1.75e−1 8.62e−2 3.63e−2*

Fit Eq. Y = -0.60e−3x + 1.91 Y = 4.31e−4x + 1.16 Y = 0.50e−3x + 1.01

Exponential Radj2 0.05 0.23 0.14

p 1.18e−1 8.66e−4** 1.12e−2*

Fit Eq. Y = 0.45−0.42x + 1.81 Y = -0.27−0.08x + 1.28 Y = -0.21−0.06x + 1.12

MS Linear Radj2 0.10 –3.12e−3 –0.01

p 2.98e−2* 3.51e−1 4.75e−1

Fit Eq. Y = -0.02x + 2.04 Y = -3.03e−3x + 1.26 Y = -2.17e−3x + 1.09

Exponential Radj2 0.12 –0.02 –0.02

p 3.02e−2* 5.91e−1 5.28e−1

Fit Eq. Y = 0.574e−0.22x + 1.75 Y = 0.11e−0.09x + 1.17 Y = 0.13e0.20x + 1.03

MD Linear Radj2 0.11 3.94e−4 –2.16e−3

p 1.53e−2* 3.18e−1 3.43e−1

Fit Eq. Y = 0.01x + 1.64 Y = 3.46e−3x + 1.15 Y = 3.41e−3x + 1.00

Exponential Radj2 0.15 –0.02 –0.03

p 1.02e−2* 6.01e−1 6.44e−1

Fit Eq. Y = 6.09e−3e0.15x + 1.74 Y = -0.15e0.04x + 1.29 Y = -4.58e6.13e−4x + 5.59

LV Linear Radj2 –0.02 0.02 –0.01

p 7.23e−1 1.87e−1 5.90e−1

Fit Eq. Y = 6.98e−4x + 1.85 Y = 2.37e−3x + 1.16 Y = 6.43e−4x + 1.04

Exponential Radj2 –0.04 0.19 0.16

p 7.85e−1 5.09e−3* 1.03e−2*

Fit Eq. Y = -0.14e−0.07x + 1.91 Y = -0.52e−0.19x + 1.26 Y = -0.49e0.21x + 1.10

RNFL thickness Linear Radj2 –0.02 0.10 0.09

p 8.79e−1 1.92e−2* 2.51e−2*

Fit Eq. Y = 0.30e−3x + 1.86 Y = -1.96e−3x + 1.39 Y = -2.21e−3x + 1.23

Exponential Radj2 –0.05 0.18 0.07

p 9.88e−1 5.42e−2 8.24e−2

Fit Eq. Y = 0.86e4.41e−4x + 0.10 Y = 0.70e−0.02x + 1.07 Y = -0.24e0.01x + 1.43

**Multiple comparisons were corrected by a Bonferroni method with a corrected threshold of p< 0.05/3 ROIs/5 clinical measures/2 regression models = 1.67e−3 ; *nominal p< 0.05. CBF,
cerebral blood flow; ReHo, regional homogeneity; A-LHON, acute Leber’s hereditary optic neuropathy; C-LHON, chronic Leber’s hereditary optic neuropathy; HCs, healthy controls; MD,
mean defect; MS, mean sensitivity; LV, loss of variance; RNFL, retinal nerve fiber layer; B_CAL, bilateral calcarine fissure and surrounding cortex; L_MTG, left middle temporal gyrus;
L_SMC, left sensorimotor cortex.

preserve functions flexible to other sensory modalities. In
summary, our findings provide a potential explanation for
the compensatory plasticity of the primary visual cortex in
response to visual loss: on the one hand, some neurons undergo
secondary degeneration caused by the deafferentation of visual
inputs; on the other side, the remaining occipital neurons
undergo compensatory plasticity to process information via
other modalities by strengthening the neurovascular coupling
to improve the processing efficiency of these spared neurons.

Interestingly, the strengthened neurovascular coupling was
also identified in the non-visual sensory areas (such as the
sensorimotor and auditory systems) but only in chronic LHON
patients. Besides, the strengthened neurovascular coupling in

these non-visual sensory areas was accompanied by dramatically
reduced CBF and a weak enhanced spontaneous neuronal
activity, which was also confirmed by the negative correlation
between CBF and neurovascular coupling and the positive
correlation between ReHo and neurovascular coupling in non-
visual areas of C-LHON. Early studies had reported blind people
demonstrated strengthened tactile and auditory perception
(D’Angiulli and Waraich, 2002; Fieger et al., 2006; Collignon
et al., 2009), non-visual task-evoked activity in the temporal
and sensorimotor cortex (Burton et al., 2003), and corticospinal
tract integrity (Yu et al., 2007; Wang et al., 2013). Similar
findings were also shown in LHON patients. For example, one
recent study reported the betweenness centrality of the left
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FIGURE 3

Correlation between neurovascular coupling strength and disease duration of LHON. CBF, cerebral blood flow; ReHo, regional homogeneity;
A-LHON, acute Leber’s hereditary optic neuropathy; C-LHON, chronic Leber’s hereditary optic neuropathy; B_CAL, bilateral calcarine fissure
and surrounding cortex; L_MTG, left middle temporal gyrus; L_SMC, left sensorimotor cortex.

precentral gyrus in LHON became more important, suggesting
that the sensorimotor area became more important as a
network hub (Jonak et al., 2021). Besides, Rocca et al. (2011)
reported enhanced functional connectivity in the auditory
network and a higher number of clusters in the right auditory
cortex in LHON patients. Thus, the strengthened neurovascular
coupling of these non-visual sensory areas might explain
the experience-dependent plasticity of these regions in more
efficiently processing non-visual signals, as LHON patients have
to rely on more somatosensory/auditory inputs to access the
outside world.

On the association between strengthened neurovascular
coupling and disease duration, we found that the visual and non-
visual areas exhibit completely different patterns: the non-visual
areas (both sensorimotor cortex and associated auditory areas)
demonstrated a positively exponential correlation between the
neurovascular coupling and disease duration, but the primary
visual areas showed no correlation. One possible explanation for
these dissociation patterns is the different plasticity underpins
the deprived and spared sensory areas. For the deprived visual
cortex, we speculated a “suppression unmasking” theory might
predominantly drive the plasticity of this area after LHON
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(Pascual-Leone et al., 2005; Lewis et al., 2010; Qin et al.,
2015), which hypothesized that visual deprivation “unmasks”
the existing suppressed synaptic connections between the
occipital and other sensory and higher-tier areas. This theory
was supported by many studies showing a rapid shift of the
visual areas in processing non-visual signals (rapid cross-modal
plasticity) after several days of blindfolding (Merabet et al., 2008;
Radziun et al., 2022). The unmasking-driven rapid cross-modal
plasticity can explain why we did not observe an association
between enhanced neurovascular coupling and disease duration.

In contrast, for the spared non-visual sensory areas, their
basic functions (i.e., tactile perception for SMC) are formed by
long-term development and stay relatively stable after maturity.
Therefore, the potential of experience-driven plasticity of these
matured cortices is limited and slow (Desai et al., 2002; Kral,
2013), and should be stimulated by stronger and longer inputs
after LHON, just like what happens in long-term blind people
(D’Angiulli and Waraich, 2002; Fieger et al., 2006; Collignon
et al., 2009), tax drivers (Maguire et al., 2000; Wang et al., 2015),
musicians (Elmer et al., 2013), and opera experts (Zhao et al.,
2020). However, we could not exclude the possibility of other
compensatory mechanisms (i.e., unmasking) of these regions in
response to direct damage to the non-visual systems, as some
scholars have reported that LHON patients also suffer auditory
and sensorimotor dysfunctions, such as hearing impairment
(Ceranic and Luxon, 2004; Rance et al., 2012; Leng et al., 2015),
myoclonic epilepsy (La Morgia et al., 2008), dystonia (Saracchi
et al., 2013), cerebellar ataxia (Funakawa et al., 1995), and
psychomotor regression (Grazina et al., 2007), etc.

Some limitations should be mentioned. First, to control
for the inaccurate absolute CBF quantification caused by the
variabilities in labeling efficiency using single labeling delay
time across subjects and voxels, we used a relative CBF by
dividing by the brain global mean of that subject. Although
this strategy is commonly used in the voxel-wise analysis in
early CBF studies (Zhu et al., 2015; Zou et al., 2015), it is
preferable to use a precise absolute CBF based on multiple
labeling strategies to measure the dose relationships between
CBF and neuronal activity. Second, although we observed
neurovascular coupling differences between acute and chronic
LHON, a longitudinal design is preferable to sketch the dynamic
evolution of neurovascular coupling of this disease.

In summary, LHON patients demonstrated abnormally
higher brain neurovascular coupling in both the visual area and
non-visual sensory areas, indicating increased CBF utilization
rates in these areas for spontaneous neuronal activity in LHON.
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