
TYPE Original Research

PUBLISHED 13 January 2023

DOI 10.3389/fnins.2022.1050585

OPEN ACCESS

EDITED BY

Gert Cauwenberghs,

University of California, San Diego,

United States

REVIEWED BY

Gina Adam,

George Washington University,

United States

Young-Seok Choi,

Kwangwoon University,

Republic of Korea

*CORRESPONDENCE

Shantanu Chakrabartty

shantanu@wustl.edu

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 21 September 2022

ACCEPTED 28 December 2022

PUBLISHED 13 January 2023

CITATION

Rahman M, Bose S and Chakrabartty S

(2023) On-device synaptic memory

consolidation using Fowler-Nordheim

quantum-tunneling.

Front. Neurosci. 16:1050585.

doi: 10.3389/fnins.2022.1050585

COPYRIGHT

© 2023 Rahman, Bose and

Chakrabartty. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

On-device synaptic memory
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quantum-tunneling
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Introduction: For artificial synapses whose strengths are assumed to be

bounded and can only be updated with finite precision, achieving optimal

memory consolidation using primitives from classical physics leads to synaptic

models that are too complex to be scaled in-silico. Here we report that a

relatively simple di�erential device that operates using the physics of Fowler-

Nordheim (FN) quantum-mechanical tunneling can achieve tunable memory

consolidation characteristics with di�erent plasticity-stability trade-o�s.

Methods: A prototype FN-synapse array was fabricated in a standard

silicon process and was used to verify the optimal memory consolidation

characteristics and used for estimating the parameters of an FN-synapse

analytical model. The analytical model was then used for large-scale memory

consolidation and continual learning experiments.

Results: We show that compared to other physical implementations of

synapses for memory consolidation, the operation of the FN-synapse is near-

optimal in terms of the synaptic lifetime and the consolidation properties.

We also demonstrate that a network comprising FN-synapses outperforms a

comparable elastic weight consolidation (EWC) network for some benchmark

continual learning tasks.

Discussions: With an energy footprint of femtojoules per synaptic update,

we believe that the proposed FN-synapse provides an ultra-energy-e�cient

approach for implementing both synaptic memory consolidation and

continual learning on a physical device.

KEYWORDS

hardware synapse, memory consolidation, quantum-tunneling, neuromorphic,

continual learning

1. Introduction

There is a growing evidence from the field of neuroscience and neuroscience

inspired AI about the importance of implementing synapses as a complex high-

dimensional dynamical system (Fusi et al., 2005; Benna and Fusi, 2016), as opposed to

a simple and a static storage element, as depicted in standard neural networks (Sohoni

et al., 2019). This dynamical systems viewpoint has been motivated by the hypothesis
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that complex interactions between plethora of biochemical

processes at a synapse (illustrated in Figure 1A) produces

synaptic metaplasticity (Abraham, 2008) and plays a key role

in synaptic memory consolidation (Li et al., 2017). Both these

phenomena have been observed in biological synapses (Yang

et al., 2009, 2014) where the synaptic plasticity (or ease of

update) can vary depending on age and task-specific usage that

is accumulated during the process of learning. In literature these

long-term synaptic memory consolidation dynamics have been

captured using different analytical models with varying degrees

of complexity (Amit and Fusi, 1994; Fusi, 2002; Fusi et al.,

2005; Fusi and Abbott, 2007; Roxin and Fusi, 2013; Benna and

Fusi, 2016). One such model is the cascade model (Benna and

Fusi, 2016) which has been shown to achieve the theoretically

optimal memory consolidation characteristic for benchmark

random pattern experiments. However, the physical realization

of cascade models as described in Benna and Fusi (2016) uses

a complex coupling of dynamical states and diffusion dynamics

(an example illustrated in Figure 1B using a reservoir model),

which is difficult to mimic and scale in-silico. Similar optimal

memory consolidation characteristics have been reported in the

context of continual learning in artificial neural networks (ANN)

where synapses that are found to be important for learning a

specific task are consolidated (or become rigid) (Aljundi et al.,

2017; Kirkpatrick et al., 2017; Lee et al., 2017; Zenke et al.,

2017; Chaudhry et al., 2018; Liu et al., 2018). As a result, when

FIGURE 1

On-device memory consolidation using FN-synapses: (A) An illustration of a biological synapse with di�erent coupled biochemical processes

that determine synaptic dynamics (B) physical realization of the cascade model reported in Benna and Fusi (2016) that captures the

consolidation dynamics using fluid in reservoirs uk that are coupled through parameters gkj. (C) Illustration of the FN-synapse dynamics using a

di�erential reservoir model and its state at time-instants t0, t1, and t2; (D) energy-band diagram to show the implementation of the reservoir

model in (C) using the physics of Fowler-Nordheim quantum-mechanical tunneling where a single synaptic element (as show in E) which stores

the weight Wd as the di�erential charge stored between each tunneling junction, i.e., Wd = W+ −W−

2
and the common-mode tunneling voltage

Wc as the average of the individual charges, i.e.,Wc = W+ +W−

2
); (E)micrograph of a single FN-synapse; (F)micrograph of an array of FN-synaptic

devices fabricated in a standard silicon process.

learning a new task the synaptic weight does not significantly

deviate from the consolidated weights, hence, the network seeks

solutions that work well for as many tasks as possible. However,

these synaptic models are algorithmic in nature and it is not

clear if the optimal consolidation characteristics can be naturally

implemented on the synaptic device in-silico. Also, it is not

clear if the consolidation properties of the physical synaptic

device can be tuned to achieve different plasticity-stability trade-

offs and hence can overcome the relative disadvantages of the

EWC models. In this paper, we report that a simple differential

device that operates using the physics of Fowler-Nordheim (FN)

quantum-mechanical tunneling can achieve tunable synaptic

memory consolidation characteristics similar to the algorithmic

consolidation models. The operation of the synaptic device,

referred to in this paper as the FN-synapse, can be understood

using a reservoir model as shown in Figure 1C). Two reservoirs

with fluid levels W+ and W− are coupled to each other using

a sliding barrier X. The barrier is used to control the fluid

flow from the respective reservoirs into an external medium.

The respective flows, which are modeled by functions J(W+)
and J(W−), at time-instant t are modulated by the position of

the sliding barrier X(t) and the level of fluid in the external

reservoir m(t). In this reservoir model, the synaptic weight is

stored as Wd = 1
2 (W

+ − W−) whereas Wc = 1
2 (W

+ +
W−) serves as an indicator of synaptic usage with respect to

time.
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In the Section 3, we show that for a synapse based

on a general differential reservoir model [without making

assumptions on the nature of the flow function J(.)] the synaptic

weight Wd evolves in response to the external input X(t)

according to the coupled differential equation

dWd

dt
= −r(t)Wd + X(t) (1)

where

r(t) =
d2Wc

dt2

(

dWc

dt

)−1

(2)

is a time varying decay function that models the dynamics of the

synaptic plasticity as a function of the history of synaptic activity

(or its usage). The usage parameterWc evolves according to

dWc

dt
= −J (Wc) +m(t) (3)

based on the functions J(.) and m(t). Equations (1)–(3) show

that the weightWd update does not directly depend on the non-

linear function J(.) but implicitly through the common-mode

Wc. Furthermore, Equation (1) conforms to the weight update

equation reported in the EWC model (Kirkpatrick et al., 2017)

where it has been shown that if r(t) varies according to the

network Fisher information metric, then the strength of a stored

pattern or memory (typically defined in terms of signal-to-noise

ratio) decays at an optimal rate of 1/
√
t when the synaptic

network is subjected to random, uncorrelated memory patterns.

In Section 3, we show that if the objective is to maximize the

operational lifetime of the synapse, then equating the time-

evolution profile in Equation (2) to r(t) ≈ O(1/t) (Kirkpatrick

et al., 2017) leads to an optimal J(.) of the form J(V) ∝
V2 exp (−β/V) where β is a constant. The expression for J(V)

matches the expression for a Fowler-Nordheim (FN) quantum-

mechanical tunneling current (Lenzlinger and Snow, 1969)

indicating that optimal synaptic memory consolidation could be

achieved on a physical device operating on the physics of FN

quantum-tunneling.

To verify on-device optimal consolidation dynamics we

fabricated an array of FN-synapses and Figures 1D, E show

the micrograph of the fabricated prototype. In the Section 3,

we show the mapping of the differential reservoir model using

the physical variables associated with FN quantum tunneling

and Figure 1F shows the mapping using an energy-band

diagram. Similar to our previous works (Zhou and Chakrabartty,

2017; Zhou et al., 2019; Rahman et al., 2022), the tunneling

junctions have been implemented using polysilicon, silicon-

di-oxide, and n-well layers, where the silicon-di-oxide forms

the FN-tunneling barrier for electrons to leak out from the

n-well onto a polysilicon layer. The polysilicon layer forms

a floating-gate where the initial charge can be programmed

using a combination of hot-electron injection or quantum-

tunneling (Mehta et al., 2020, 2022). The synaptic weight is

stored as a differential voltage Wd = 1
2 (W

+ − W−) across
two floating-gates as shown in Figure 1F. The voltages on the

floating-gates W+ and W− at any instant of time are modified

by the differential signals ± 1
2X(t) that are coupled onto the

floating-gates. The dynamics for updating W+ and W− are

determined by the respective tunneling currents J(.) which

discharge the floating-gates. In the Supplementary Figure 1, we

describe the complete equivalent circuit for the FN-synapse

along with the read-out mechanism used in this work to

measure Wd. The presence of additional coupling capacitors

in Supplementary Figure 1 provides a mechanism to inject a

common-mode modulation signal m(t) into the FN-synapse.

We will show in the Section 2 that m(t) can be used to tune the

memory consolidation characteristics of the FN-synapse array to

achieve memory capacity similar to or better than the cascade

consolidation models (with different degrees of complexities)

or the task-specific synaptic consolidation corresponding to the

EWCmodel.

2. Results

2.1. FN-synapse characterization

The first set of experiments were designed to understand the

metaplasticity exhibited by FN-synapses and how the synaptic

weight and usage change in response to an external stimulation.

The charge stored on the floating-gates in the FN-synapse were

first initialized according to the procedure described in the

Section 3 and in the Supplementary material. The tunneling

barrier thickness in FN-synapse prototype shown in Figures 1D,

E was chosen to be greater than 12 nm which makes the

probability of direct-tunneling of electrons across the barrier

to be negligible. The probability of FN-tunneling of electrons

across the barrier (as shown in Figure 1F) is reduced to be

negligible by lowering the electric potential of the tunneling

nodes W+ and W− (see Supplementary Figure 1) with respect

to the reference ground to be less than 5 V. In this state the

FN-synapse behaves as a standard non-volatile memory storing

a weight proportional to Wd = W+ − W−. To increase the

magnitude of the stored weight a differential input pulse ± 1
2X

is applied across the capacitors that are coupled to the floating-

gates (see Supplementary Figure 1). The electric potential of the

floating-gate W− is increased beyond 7.5 V where the FN-

tunneling current J(W−) is significant. At the same time the

electric potential of the floating-gate W+ is also pushed higher

but W− > W+ such that the FN-tunneling currents J(W+) <

J(W−). As a result, the W− node discharges at a rate that is

faster than the W+ node. After the input pulse is removed, the

potential of both W− and W+ are pulled below 5 V and hence

the FN-synapse returns to its non-volatile state. Figures 2A–C
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FIGURE 2

Experimental weight evolution of FN-synapse: (A) A random set of potentiation and depression pulses of equal magnitude and duration applied to

the FN-synapse leading to (B) bidirectional evolution of weight (Wd) and (C) the corresponding trajectory followed by the common-mode

tunneling node (Wc).

show the measured responses which shows that an FN-synapse

can store both the weight and the usage history. When a series

of potentiation and depression pulses of equal magnitude and

duration is applied to the FN-synapse, as shown in Figure 2A,

the weight stored Wd evolves bidirectionally (like a random

walk) due to the input pulses (see Figure 2B). Meanwhile, the

common-mode potential Wc decreases monotonically with the

number of input pulses irrespective of the polarity of the input,

as shown in Figure 2C. Therefore, Wc reliably tracks the usage

history of the FN-synapse whereas Wd stores the weight of the

synapse. Figures 3A, B show the measured weight update 1Wd

in response to different magnitudes and duration of the input

pulses. For this experiment the common-modeWc = 1
2 (W

+ +
W−) is held fixed. In Figure 3A, we can observe that for a fixed

magnitude of input voltage pulses (= 4V)1Wd changes linearly

with pulse width. Whereas, Figure 3B shows that the updated

1Wd changes exponentially with respect to the magnitude of

the input pulses (duration= 100ms). Thus, the results show that

pulse width modulation or pulse density modulation provides a

more accurate control over the synaptic updates. Furthermore,

in regard to energy dissipation per synaptic update pulse width

modulation is also more attractive than using pulse magnitude

variation. The energy required to write each time on FN-synapse

can be estimated by measuring the energy drawn from the

differential input source X in Supplementary Figure 1 to charge

the coupling capacitor Cc and is given by

Ewrite =
1

2
Cc(X)

2 (4)

This means that using smaller pulse magnitude accompanied by

longer pulse width is preferable than the other way around in the

context of write energy dissipation for the same desired change

in weight. However, this would come at a cost of slower writing

speed. Therefore, a trade-off exists. For the fabricated FN-

synapse prototype, the magnitude of the coupling capacitor Cc is

approximately 200f F which leads to 400f J for an input voltage

pulse change of 2V across Cc. For the differential input voltage

pulse of 4V a total of 800f J of energy was dissipated for each

potentiation and depression of the synaptic weights. When the

common-modeWc is not held fixed, irrespective of whether the

weightWd is increased or decreased (depending on the polarity

of the input signal) the common-mode always decreases. Thus,
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FIGURE 3

Experimental characterization of a single FN-synapse: (A) Dependence of change in magnitude of weight with change in pulse-width which

follows a linear trajectory defined by y = mx+ c (where m = 0.005136 and c = −6.227× 10−5). (B) Dependence on pulse magnitude of the

input pulse which follows an exponential trajectory defined by y = c× exp(ax+ b)+ d (where a = 1, b = −6.611, c = 0.009959 and

d = −0.0002142). (C) Change in the magnitude of successive weight updates (1Wd) corresponding to repeated stimulus.

Wc serve as an indicator of the usage of the synapse. Figure 3C

shows the metaplasticity exhibited by an FN-synapse where we

measured 1Wd as a function of usage by applying successive

potentiation input pulses of constant magnitude (4 V) and width

(100 ms). Figure 3C shows that when the synapse is modulated

with same excitation successively, the amount of weight update

decreases monotonically with increasing usage, similar to the

response illustrated in Figures 1C, F.

2.2. FN-synapse network capacity and
memory lifetime without plasticity
modulation

The next set of experiments were designed to understand

the FN-synaptic memory consolidation characteristics when

the array is excited using a random binary input pattern

(potentiation or depression pulses). This type of benchmark

experiment is used extensively in memory consolidation

studies (Benna and Fusi, 2016; Kirkpatrick et al., 2017) since

analytical solutions exist for limiting cases which can be used

to validate and compare the experimental results. A network

comprising of N FN-synapses is first initialized to store zero

weights (or equivalently W− = W+). New memories were

presented as random binary patterns (N dimensional random

binary vector) that are applied to the N FN-synapses through

either potentiation or depression pulses. Each synaptic element

was provided with balanced input, i.e., equal number of

potentiation and depression pulses. The goal of this experiment

is to track the strength of a memory that is imprinted on this

array in the presence of repeated new memory patterns. This

is illustrated in Figures 4A, B where an initial input pattern (a

2D image of the number “0” comprising of 10 × 10 pixels)

is written on a memory array. The array is then subjected to

images of noise patterns that are statistically uncorrelated to

the initial input pattern. It can be envisioned that as additional

new patterns are written to the same array, the strength of a

specific memory (of the image “0”) will degrade. Similar to the

previous studies (Benna and Fusi, 2016; Kirkpatrick et al., 2017)

we quantify this degradation in terms of signal-to-noise ratio

(SNR). If n denotes the number of new memory patterns that

have been applied to an empty FN-synapse array (initial weight

stored on the network is zero), then the Section 3 shows that

for the pth update the retrieval memory signal S(n, p) power,

the noise ν(n, p) power and the SNR(n, p) can be expressed

analytically as

S2(n, p) =
1

(n+ γ )2
; ν2(n, p) =

n

N(n+ γ )2
;

SNR(n, p) =
√

N

n
. (5)

where γ > 0 is a device parameter that depends on the

initialization condition, material properties and duration of the

input stimuli.

Equation (5) shows that the initial SNR is
√
N and the

SNR falls off according to a power-law decay with a slope

of 1√
n
. Like previous consolidation studies (Benna and Fusi,

2016) we will assume that a specific memory pattern is retained

as long as its SNR exceeds a predetermined threshold (unity

in this experiment). Therefore, according to Equation (5) the

network capacity and memory lifetime for FN-synapse scales

linearly with the size of the network N when the initial weight

across all synapse is zero. We verified the analytical expressions

in Equation (5) for a network size of N = 100 using

results measured from the FN-synapse chipset. Details of the
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FIGURE 4

Comparison of measured and simulated memory consolidation for an empty FN-synapse network: (A) Set of 10×10 randomized noise inputs

fed to a network of 100 FN-synapses initialized to store an image of the number 0 and (B) the corresponding memory evolution. Comparison of

(C) signal strength, (D) noise strength, and (E) SNR for a network size of 100 synapse measured using the fabricated FN-synapse array shown in

Figure 1F for 25 (for γ1) and 15 (for γ2) Monte-Carlo runs. (F) SNR comparison of the γ1 and γ2 models with the analytical model for 1,000 Monte

Carlo simulations. The legends associated with the plots are specified as (γ , Number of Monte-Carlo runs). All of these results correspond to the

behavior of an empty FN-synapse network.

hardware experiment is provided in the Section 3. Figures 4C–

E show the retrieval signal, noise, and SNR obtained from

the fabricated FN-synapse network for two different values

of γ . We observe that the SNR obtained from the hardware

results conform to the analytical expressions relatively well.

The slight differences can be attributed to the Monte-Carlo

simulation artifacts (only 25 and 15 iterations were carried

out). In the Supplementary Figure 3, we show verification of

these analytic expressions using a behavioral model of the

FN-synapse which mimics the hardware prototype with great

accuracy (as shown in Supplementary Figure 2). Details on the

derivation of FN-synapse model is provided in the Section

3. The simulated results in Figures 4C–E verifies that results

from the software model can accurately track the hardware FN-

synapse measurements for both values of γ when subjected

to the same stimuli. Therefore, FN-synapse and its behavioral

model can be used interchangeably. The results in Figure 4F also

show that when the number of iterations on the Monte-Carlo

simulation is increased (1,000 iterations), the simulated SNR

closely approximates the analytic expression. This verifies that

hardware FN-synapse is also capable of exactly matching the

optimal analytic consolidation characteristics. Figure 3C shows

the measured evolution of weights stored in the FN-synapse

where initially the weights grow quickly but after a certain

number of updates settle to a steady value irrespective of new

updates. This implies that the synapses have become rigid with

an increase in its usage. This type of memory consolidation

is also observed in EWC models which has been used for

continual learning. However, note that unlike EWC models that

need to store and update some measure of Fisher information,

whereas, here the physics of the FN-synapse device itself can

achieve similar memory consolidation without any additional

computation.

2.3. Plasticity modulation of FN-synapse
models

In our next set of experiments, we verified that the plasticity

of FN-synapses can be adjusted to mimic the consolidation

properties of both EWC and steady-state models (such as

cascade models). While the EWC model only allows for the

retention of old memories, steady state/cascade models allow

for both memory retention and forgetting. As a result, these

models avoid blackout catastrophe whereas an EWC network

is unable to retrieve any previous memories or store new
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experiences as the network approaches its capacity. Steady-state

models allow the network to gracefully forget old memories and

continue to remember new experiences indefinitely. For an FN-

synapse network, a coupling capacitor in each synapse (shown

in Supplementary Figure 1) which is driven by a global voltage

signal Vmod(t) (which produces m(t) = dVmod(t)
dt

) can control

the plasticity of the FN-synapse to mimic the characteristics

of a steady-state model. Details of the modified FN-synapse

achieving a steady-state response are provided in the Section 3.

To understand and compare the blackout catastrophe in FN-

synapse models with a steady-state model, e.g., the cascade

model we define the metric #patterns.retained as the total

number of memory patterns whose SNR exceeds 1 at any given

point of time. The #patterns.retained for FN-synapse network

with modulation profiles m0(t), m1(t), m2(t), m3(t), and m4(t)

of size N = 1, 000 is shown in Figure 5A together with those

for cascade models of different levels of complexity (Benna and

Fusi, 2016) (denoted by c = 1, .., 5). In order to calculate

the #patterns.retained the SNR resulting from each stimulus

was calculated and tracked at every observation to determine

the number of such stimuli that had a corresponding SNR

greater than unity. The profiles of m1(t), m2(t), and m3(t) are

produced by changing Vmod(t) at each update as three quarter,

half, and quarter of the average of 1Wd across all the synapses

during the latest update, respectively, while m0(t) is achieved

through a constant voltage signal Vmod(t). We can observe in

Figure 5A that the FN-synapse network with m0(t) forgets all

observed patterns in addition to not forming any new memories

as #patterns.retained goes to zero as the network capacity is

reached starting from an empty network. Whereas, in the case

for FN-synapse under m1(t) and m2(t) modulation profile the

#patterns.retained reaches a finite value similar to that of the

cascade models. This indicates that the FN-synapse network

when subjected to plasticity modulation profiles continues to

form new memory while gracefully forgetting the old ones. For

them3(t) modulation profile the network is slowly evolving and

yet to reach the steady state condition within 2000th update.

The FN-synapse network under the m4(t) modulation profile,

which switches between m0(t) and m1(t) periodically, is in

an oscillatory steady-state with the same periodicity as the

modulation profile itself. However, note that the network does

not suffer from blackout catastrophe and has a variable capacity.

This shows that the capacity of the FN-synapse network can also

be tuned to the specificity of different applications. From the

figure, we also observe that the steady state network capacity for

m2(t) modulation profile is higher than that of cascade models.

Note here that network capacity for cascade models may be

increased by increasing the complexities of the synaptic model.

Nevertheless, we find that network capacity for FN-synapse is

comparable to cascade models of moderate complexities.

In order to understand the plasticity modulation further, we

investigated the SNR for patterns introduced to a non-empty

network. For this experiment, we tracked the 1000th pattern

observed by the network ofN = 1, 000 synapse. Figure 5B shows

the SNR of this pattern underm1(t)−m4(t) modulation profile

along with cascade models of various complexity. Note that the

x-axis now represents the age of the stimulus, i.e., number of

patterns observed after the tracked pattern. For the modulation

profile m1(t) the initial SNR is large, comparable to that of

cascade models, but the SNR falls off quickly indicating high

plasticity. Whereas, for modulation profile m2(t) and m3(t) the

initial SNR is smaller than m1(t) but it falls off at a much later

time similar to cascade models with high complexities. These

SNR profiles for FN-synapse model with modulation m1(t) −
m3(t) are similar to that of a constant weight decay synaptic

model used in deep learning neural network as a regularization

method. On the other hand, the SNR profile for the 1000th

pattern under m4(t) modulation has both high initial SNR and

a large lifetime. However, from Figure 5B, we observe that the

network is in an oscillatory state which indicates that this profile

is specific to the 1000th pattern, and if we tracked any other

pattern the SNR profile would be different (for reference the

SNR tracked for the 750th update is also shown). This is not

the case for the cascade models which would consistently have

similar SNR profiles irrespective of the pattern that is tracked.

Nevertheless, this SNR profile for the FN-synapse model would

repeat itself corresponding to the periodicity of the modulation

profile. This suggests that the amount of plasticity and memory

lifetime for the FN-synapsemodel is readily tunable and depends

on the amount of modulation provided to the network. We have

also verified that the synaptic strength of FN-synapse is bounded

similarly to that of the cascade models. This can be observed

in Supplementary Figure 10 which shows that the variance in

retrieval signal (Noise) of an FN-synapse network with both

constant modulation and time-varying modulations remains

bounded. Furthermore, Supplementary Figure 11 shows that

plasticity modulation indeed introduces a forgetting mechanism

as the SNR for different modulation profiles (when tracked

from an empty network) starts to fall off earlier than the one

without modulation. In addition to different modulation profile,

the plasticity-lifetime tradeoff of the FN-synapse model can

also be achieved by varying the parameter γ as shown in

Supplementary Figure 12. Therefore, our synaptic models can

exhibit memory consolidation properties similar to both EWC

and steady-state models while being physically realizable and

scalable for large networks.

2.4. Continual learning using FN-synapse

The next set of experiments was designed to evaluate the

performance of FN-synapse neural network for a benchmark

continual learning task. A fully-connected neural network

with two hidden layers was trained sequentially on multiple

supervised learning tasks. Details of the neural network

architecture and training are given in Section 3 and in the

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1050585
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rahman et al. 10.3389/fnins.2022.1050585

FIGURE 5

Network capacity and saturation experiments: Comparison of (A) no. of patterns retained by networks composed of 1,000 synapses following

di�erent synaptic models when exposed to 2,000 patterns and (B) steady-state SNR of the 1000th update (p = 1, 000) of networks consisting of

1,000 synapses with various synaptic models when exposed to subsequent updates. For m4(t) modulation SNR profiles for both 450th and 1000th

(p = 450,1000) updates are shown.

Supplementary material. The network was trained on each task

for a fixed number of epochs and after the completion of its

training on a particular task tn, the dataset from tn was not used

for the successive task tn+1.

The aforementioned tasks were constructed from the

Modified National Institute of Standards and Technology

(MNIST) dataset, to address the problem of classifying

handwritten digits in accordance with schemes popularly used

in several continual-learning literature (Hsu et al., 2018). Also

known as incremental domain learning using split-MNIST

dataset, each task of this continual learning benchmark dictates

the neural network to be trained as binary classifier which

distinguishes between a set of two hand-written digits, i.e., the

network is first trained to distinguish between the set [0, 1] as t1

and is then trained to distinguish between [2, 3] in t2, [4, 5] in t3,

[6, 7] in t4, and [8, 9] in t5. Thus, the network acts as an even-odd

number classifier during every task.

Supplementary Figures 7A–E compare the task-wise

accuracy of networks trained with different learning and

consolidation approaches. Note here that the absence of a data-

point corresponding to a particular approach indicates that the

accuracy obtained is below 50%. All the approaches taken into

consideration perform equally well at learning t1 as illustrated

in Supplementary Figure 7A. However, as the networks learn

t2 (see Supplementary Figure 7B), the performance of both

EWC (Kirkpatrick et al., 2017) and online EWC (Liu et al.,

2018) degrade for task t1 as do the networks with conventional

memory using SGD and ADAM. The FN-synapse based

networks on the other hand retain the accuracy of task t1 far

better in comparison. This advantage in retention comes at the

cost of learning t2 marginally poorer than others. This trend

of retaining the older memories or tasks far better than other

approaches continues in successive tasks. Particularly, if we

consider the retention of t1 when the networks are trained on

t3 (see Supplementary Figure 7C), it can be observed that it is

only the FN-synapse based networks that retain t1 while others

fall below the 50% threshold. Similar trends can be observed

in Supplementary Figures 7D, E. There are a few instances

during the five tasks where the EWC variants and SGD with

conventional memory marginally outperform or match the FN-

synapse in terms of retention. However, if the overall average

accuracy of all these approaches are compared (see Figure 6A),

it is clearly evident that both the FN-synapse networks

significantly outperform the others. It is also worth noting

here that even when a network equipped with FN-synapse is

trained using a computationally-inexpensive optimizer such as

SGD, it shows remarkably superior performance than highly

computationally-expensive approaches such as ADAM with

conventional memory and ADAM with EWC variants.

The only drawback of the FN-synapse based approach is

that its ability to learn the present task slightly degrades with

every new task. This phenomenon results from the FN-synapses

becoming more rigid and can be seen in Figure 6B which shows

the evolution of plasticity of weights in the output and input

layer of the network with successive tasks with respect to Wc.

As mentioned earlier, Wc keeps track of the importance of
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FIGURE 6

Continual learning benchmarks results and insights: (A) Overall average accuracy comparison of SGD and ADAM with FN-synapse, ADAM with

EWC and Online EWC, SGD, and ADAM with conventional memory. (B) Distribution of the usage profile of weights in the output layer and the

input layer of the FN-synapse neural network. Overall Average Accuracy comparison of incremental-domain learning scenarios on the

Permuted MNIST dataset using (C) ADAM with EWC, ADAM with FN-Synapse and ADAM with conventional memory and (D) ADAGRAD with

conventional memory and ADAGRAD with FN-synapse.

each weight as a function of the number of times it is used.

The higher the Wc of a particular weight, the less it has been

used and therefore, the more plastic it is and sensitive to

change. On the other hand, a more rigid and frequently used

weight has a lower value of Wc. Suppose the output layer is

considered from Figure 6B. In that case, it can be observed

that with each successive task the Wc of the weights of the

network collectively reduces, leading to more consolidation and

consequently leaving the network with fewer plastic synapses to

learn a new task. In comparison, the majority of the weights

in the input layer remain relatively more plastic (or less spread

out) owing to the redundancies in the network arising from the

vanishing gradient problem (see Section 4 for more details). In

Supplementary Figure 5, we show that the ability of the network

to learn or forget new tasks is a function of the initial plasticity

of the FN-synapses and can be readily adjusted.

In addition to the split-MNIST benchmark, the performance

of FN-synapse based network was compared with EWC for

the permuted MNIST benchmark. These incremental-domain

learning experiments were carried out by randomly permuting

the order of pixels of the images in the MNIST dataset in

accordance with Hsu et al. (2018) to create new tasks. The

overall average accuracy for 10 Monte Carlo simulations when

using ADAM as the optimizer with EWC, FN-Synapse and

conventionalmemory are depicted in Figure 6C.We can observe

from Figure 6C that despite not being as retentive as EWC in this

particular scenario, the network equipped with FN-synapse as

the memory element performs better than the network without

any memory consolidation mechanism, thereby exhibiting

continual learning ability. Furthermore, when compared to a

network with traditional memory employing an optimizer like

ADAGRAD, which has been shown to be suitable for this

learning scenario (Hsu et al., 2018), the FN-synapse network

with ADAGRAD exhibits marginal improvements without any

drop in performance with respect to the former as shown in

Figure 6D.

3. Materials and methods

The main methods are described in this section of the

paper while Supplementary material includes additional details,

supporting information, and figures.

3.1. Weight update for di�erential
synaptic model

Consider the differential synaptic model described by

Figure 1C where the evolution of two dynamical systems with
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state variablesW+ andW− is governed by

dW+

dt
= −J(W+)+

1

2
X(t)+

1

2
m(t) (6)

dW−

dt
= −J(W−)−

1

2
X(t)+

1

2
m(t) (7)

where J(.) is an arbitrary function of the state variables,

+ 1
2X(t) or − 1

2X(t) are differential time varying inputs and

m(t) is a common mode modulation input. In this differential

architecture, we define the weight parameter Wd as Wd =
1
2 (W

+ −W−) which represents the memory and the common-

mode parameter Wc as Wc = 1
2 (W

+ + W−) which represents

the usage of the synapse. Applying this definition to (6) and (7),

we obtain:

d(Wc +Wd)

dt
= −J(Wc +Wd)+

1

2
X(t)+

1

2
m(t) (8)

d(Wc −Wd)

dt
= −J(Wc −Wd)−

1

2
X(t)+

1

2
m(t) (9)

Now, adding and subtracting (8) and (9), we get:

dWc

dt
= −

(

J(Wc +Wd)+ J(Wc −Wd)

2

)

+m(t) (10)

dWd

dt
= −

(

J(Wc +Wd)− J(Wc −Wd)

2

)

+ X(t) (11)

Assuming thatWc >> Wd, applying Taylor series expansion on

(10) and (11) leads to

dWc

dt
= −J (Wc) +m(t) (12)

dWd

dt
= −J′ (Wc)Wd + X(t). (13)

This means that the modulation input impacts the usage of the

synapse. Therefore, the plasticity of the synapse can be tuned

using m(t) when needed. Now we first look into the trivial case

when a constant modulation input is provided, i.e., m(t) = c

where c is any arbitrary constant. In this scenario the plasticity

of the synapse is solely dependent on the usage of the synapse

asm(t) does not change with time. Substituting the derivative of

Wc from (12), whenm(t) is constant, into (13), the rate of change

inWd can be formulated as:

dWd

dt
= −

[

d2Wc

dt2

(

dWc

dt

)−1
]

Wd + X(t) (14)

Please refer to the Supplementary material for detailed

derivation. Equation (14) shows that the change in weight 1Wd

is directly proportional to the curvature of usage while being

inversely proportional to the rate of usage.

3.2. Optimal usage profile

We define the decaying term in (14) as

r(t) = −

[

d2Wc

dt2

(

dWc

dt

)−1
]

(15)

Now, comparing the weight update equation in (14) to the

weight update equation for EWC in the balanced input scenario,

the decay term has the following dependency with time for

avoiding catastrophic forgetting.

r(t) = O

(

1

t

)

(16)

Now, the usage of a synapse is always monotonically increasing

and since Wc represents the usage, it too needs to monotonic.

At the same time Wc also needs to be bounded, therefore

Wc has to monotonically decrease with increasing usage while

satisfying the relationship in Equation (16). It can be shown that

Equations (16) and (15) can be satisfied by any dynamical system

of the form

Wc =
1

f (log t)
(17)

where f (.) ≥ 0 is anymonotonic function. Substituting Equation

(17) in Equation (15) we obtain the corresponding usage profile

as follows

r(t) =
1

t

(

1+
2f ′(log t)

log t
−

f ′′(log t)

f ′(log t)

)

(18)

where f ′(log t) and f ′′(log t) are derivatives of f (log t) with

respect to log t. While several choices of f (.) are possible, the

simplest usage profile can be expressed as

Wc =
β

log(t)
(19)

where β is any arbitrary constant. The corresponding non-linear

function in this model is determined by substituting Equation

(19) in Equation (12) to obtain

J (Wc) =
1

β
W2

c exp

(

−
β

Wc

)

. (20)

The expression for J(.) in Equation (20) bears similarity with the

form of FN quantum-tunneling current (Lenzlinger and Snow,

1969) and Figures 1D–F show the realization of Equations (6)

and (7) using FN tunneling junctions.
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3.3. Achieving optimal usage profile on
FN-synapse

For the differential FN tunneling junctions shown

in Figure 1F and its equivalent circuit shown in the

Supplementary Figure 1, the dynamical systems model is

given by

CT
dW+

dt
= −J(W+)+

Cc

2

dvin

dt
(21)

CT
dW−

dt
= −J(W−)−

Cc

2

dvin

dt
(22)

where W+,W− are the tunneling junction potentials, Cc is the

input coupling capacitance, vin(t) is the input voltage to the

coupling capacitance and CT = Cc+Cfg is the total capacitance

comprising of the coupling capacitance and the floating-gate

capacitance Cfg . J(.) are the FN tunneling currents given by

J
(

W+)

=
(

k1

k2

)

(

W+)2
exp

(

−
k2

W+

)

(23)

J
(

W−)

=
(

k1

k2

)

(

W−)2
exp

(

−
k2

W−

)

(24)

where k1 and k2 are device specific and fabrication specific

parameters that remain relatively constant under isothermal

conditions. Following the derivations in the previous sections

and the expression in Equation (19) leads to a common-mode

voltageWc profile as

Wc(t) =
k2

log(k1t + k0)
(25)

where k0 = exp
(

k2
Wc0

)

and Wc0 refers to the initial voltage at

the floating-gate.

3.4. FN-synpase network SNR estimation
for random pattern experiment

Upon following the same procedure used in previous

sections, the weight update equation for an FN-synapse using

Equation (21) and Equation (22) can be expressed as

CT
dWd

dt
= −

[

d2Wc

dt2

(

dWc

dt

)−1
]

Wd + Cc
dvin

dt
(26)

We designed the floating-gate potential and the input voltage

pulses such that the FN-dynamics is only active when there is

an memory update. Therefore, the dynamics in Equation (26)

evolve in a discrete manner with respect to the number of

modulations. Assuming CT = Cc we formulate a discretized

version of the weight update dynamics from Equation (26) in

accordance with the floating-gate potential profile of the device

expressed in Equation (25) as follows

△Wd(n)

△t
= −k1

(

1+
2

log (k1△tn+ k0)

)(

1

k1△tn+ k0

)

Wd(n− 1)+
△vin(n)

△t

(27)

Wd(n) =



1−
(

1+
2

log (k1△tn+ k0)

)





1

n+ k0
k1△t









Wd(n− 1)+ (vin(n)− vin(n− 1))

(28)

where n represents the number of patterns observed and 1t is

the duration of the input pulse. Let us denote the weight decay

term as

α(n) =



1−
(

1+
2

log (k1△tn+ k0)

)





1

n+ k0
k1△t







 (29)

Thus, we obtain the weight update equation with respect to

number of patterns observed as

Wd(n) = α(n)Wd(n− 1)+ (vin(n)− vin(n− 1)) (30)

When we start from an empty network, i.e.,Wd(0) = 0, the

memory update can be expressed as a weighted sum over the past

input as

Wd(n) =
n−2
∑

i=1







(α(i+ 1)− 1)





n
∏

j=i+2

α(j)



 vin(i)







+ (α(n)− 1)vin(n− 1)+ vin(n)

(31)

We define the retrieval signal and the noise associated with it

as per the definition in Benna and Fusi (2016). For a network

comprising of N synapses, each weight in the network is indexed

asWd(a, n) where a = 1, ...,N. Similarly, the input applied to the

ath synapse after n patterns is vin(a, n). Then, the signal strength

for the pth update (where p < n) introduced to the initially

empty network tracked after n patterns can be formulated as:

S(n, p) =
1

N

〈

N
∑

a=1

Wd(a, n)vin(a, p)

〉

(32)

where angle brackets denote averaging over the ensemble of all

of the input patterns seen by the network. If we assume that
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the input patterns are random binary events of ±1 and are

uncorrelated between different synapses and memory patterns

then substituting Equation (31) in Equation (32), we obtain

S(n, p) = (α(p+ 1)− 1)

n
∏

j=p+2

α(j) (33)

Given that in Equation (29), k0 = O(1019) and k1 = O(1016),

the term
(

1+ 2
ln (k1△tn+k0)

)

≈ 1, the signal power simplifies to:

S2(n, p) =
1

(n+ γ )2
(34)

where γ = k0
k1△t

and depends on the pulse-width △t and the

initial condition k0. The above equation shows that the signal’s

strength is a function of the system parameter γ and decays with

the number of memory pattern observed. If we assume that the

weightWd(n) is uncorrelated from the input vin(n) and that the

inputs vin(1), vin(2), ...vin(n) are uncorrelated from each other,

then the corresponding noise power is given by the variance

of the retrieval signal expressed in Equation (32). This can be

estimated as the sum of the power of all signals tracked at n

except for the retrieval signal corresponding to the pth update

we are tracking and is given by:

ν2(n, p) =
1

N

n
∑

i=1,i 6=p

S2(n, i) (35)

However, in order to derive a more tractable analytical

expression for further analysis we added the retrieval signal

as well into the summation which introduces a small error in

the estimation (overestimating the noise by the retrieval signal

term). This leads us to the following estimation of the noise

power:

ν2(n, p) =
n

N(n+ γ )2
(36)

Based on the value of n in comparison to γ , we obtain two trends

for the noise profile. When γ >> n,

ν(n, p) =
1

√
N

(√
n

γ

)

(37)

which implies that noise increases with increase in updates

initially. On the other hand, when γ << n,

ν(n, p) =
√
n

√
Nn

=
1

√
N

(

1
√
n

)

(38)

which implies that noise falls with increase in updates in the later

stages. The signal-to-noise ratio (SNR) of a network of sizeN can

then be obtained as:

SNR(n, p) =

√

S2(n, p)

ν2(n, p)
=

√

N

n
(39)

3.5. FN-synapse with tunable
consolidation characteristics

In the previous sections, we derived the analytical

expressions for the memory retrieval signal, the noise associated

with it, and the corresponding SNR for the case when the

modulation input m(t) was kept constant. This led to a

synaptic memory consolidation which is similar to that of

EWC. However, blackout catastrophic forgetting occurs in

networks with such memory consolidation due to the absence

of a balanced pattern retention and forgetting mechanism. The

forgetting mechanism is naturally present in a steady state model

such as the cascade model which do not suffer from memory

“blackouts". Since the increase in retention is equivalent to an

increase in rigidity and forgetting is tantamount to a decrease

in rigidity, it is necessary to adjust the plasticity/rigidity of the

synapse accordingly. From Figures 2A, B, we notice that without

external modulation Wc decreases monotonically with each

new updates which correspondingly makes the synapse only

rigid. Therefore, to balance the same, the idea is to keep Wc as

steady as possible to keep the synapse plastic as long as possible

by applying a modulation profile m(t) that recovers/restores Wc

after every synaptic update. This results inm(t) of the form

m(t) = m(i)δ(t − iT) (40)

where δ(t) is the Dirac-delta, m(i) is the magnitude of

the modulation increment, and T is the time between each

modulation increment. This increment is determined by the rate

of the differential update to the FN-synapse. Integrating this

form ofm(t) into Equation (12) leads to

dWc

dt
= −J (Wc) +m(i)δ(t − iT) (41)

which implies a tunable plasticity profile for the FN-synapse. An

analytical solution to the differential equation (41) is difficult and

hence we resort to a recursive solution. Due to the nature of the

m(t), it can be seen that the initial condition of the variable Wc

changes at increments of T, whereas between two modulation

increments Wc evolves naturally according to Equation (25).

Thus, the dynamics of Wc in the presence of the modulation

increments can be described as
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Wc(t) =



































Wc0 ; t = 0

Wc(t)+ Vmod(t) ; t = iT

k2

log(k1(t−iT)+exp(
k2

Wc(iT)
))

; iT < t < (i+ 1)T

(42)

where Vmod(t) is an external voltage signal applied to the FN-

synapse as shown in Supplementary Figure 1 and is given by:

Vmod(t) =
∞
∑

i=1

m(i)δ(t − iT) (43)

In this case the change in plasticity of the synapse is determined

by the step-size of the staircase voltage function Vmod(t). Note

that the weight update equation in (13) is still valid sincem(t) is

kept constant during differential input.

Although an analytic expression for the SNR is no longer

tractable in this iterative form, the ability of the modulation

term to regulate the plasticity and induce a more graceful form

of forgetting is shown in the corresponding no. of patterns

retained plot in Figure 5A and the SNR plot Figure 5B for

various modulation input profiles.

3.6. Programming and initialization of
FN-synapses

The potential corresponding to the tunneling nodes W+

and W− can be accessed through a capacitively coupled

node, as shown in Supplementary Figure 1. This configuration

minimizes readout disturbances and the capacitive coupling

also acts as a voltage divider so that the readout voltage is

within the input dynamic range of the buffer. The configuration

also prevents hot-electron injection of charge into the floating

gate during readout operation. Details of initialization and

programming are discussed in Mehta et al. (2020), so here we

describe the methods specific for this work. The tunneling node

potential was initialized at a specific region where FN-tunneling

only occurs while there is a voltage pulse at the input node and

the rest of the time it behaves as a non-volatile memory. This

was achieved by first measuring the readout voltage every 1 s

for a period of 5 min to ensure that the floating gate was not

discharging naturally. During this period the noise floor of the

readout voltage was measured to be ≈ 100µV . At this stage, an

voltage pulse of magnitude 1 V and duration 1 ms was applied at

the input node and the change in readout voltage was measured.

If the change was within the noise floor of the readout voltage,

the potential of the tunneling nodes were increased by pumping

electrons out of the floating gate using the program tunneling

pin. This process involves gradually increasing the voltage at the

program tunneling pin to 20.5 V (either from external source

or from on-chip charge pump). The voltage at the program

tunneling pin was held for a period of 30 s, after which it

was set to 0 V. The process was repeated until substantial

change in the readout voltage was observed (≈ 300µV) after

providing an input pulse. The readout voltage in this region

was around 1.8 V.

3.7. Hardware and software experiments
for random pattern updates

The fabricated prototype contained 128 differential FN

tunneling junctions, which corresponds to 64 FN-synapses.

However, due to the peripheral circuitry only one tunneling

node could be accessed at a time for readout and modification.

Now, since the memory pattern is completely random, each

synapse can be modified independently without affecting

the outcome of the experiment. Therefore, two tunneling

nodes were initialized following the method described in the

aforementioned section. Input pulses of magnitude 4 V and

duration 100 ms was applied to both the tunneling nodes.

The change in the readout voltages were measured, and the

region where the update sizes of both the tunneling node

would be equal was chosen as the initial zero memory point

for the rest of the experiment. The nodes were then modified

with a series of 100 potentiation and depression pulses of

magnitude 4.5 V and duration 250 ms and the corresponding

weights were recorded. This procedure represented the 100

updates of a single synapse. The tunneling nodes were then

reinitialized to the zero memory point and the procedure

was repeated with different random series of input pulses

representing the modification of other 99 synapse in the

network. The first input pulses of each series of modification

forms the tracked memory pattern. To modify the value of γ

the FN-synapses were initialized at a higher tunneling node

potential.

The behavioral model of the FN-synapse was generated by

extracting the device parameters k1 and k2 from the hardware

prototype. The extracted parameters have been shown to capture

the hardware response with an accuracy greater than 99.5% in

our previous works (Zhou and Chakrabartty, 2017; Zhou et al.,

2019). These extracted parameters were fed into a dynamical

systemwhich follows the usage profile described in the hardware

implementation subsection and follow the weight update rule

elaborated in the SNR estimation subsection to reliably imitate

the behavior of the FN-synapse. The behavioral model network

was started with exactly the same initial condition as hardware

synapses and subjected to the exact memory patterns used for

the hardware experiment for the same number of iterations.

The simulation was also extended to 1,000 iterations and the

corresponding responses are included in Figure 4F.
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3.8. Probabilistic FN-synapse model

Adaption of FN-synapse occurs by tunneling of electrons

through a triangular FN quantum-tunneling barrier. The

tunneling current density is dependent on the barrier profile

which in turn is a function of the floating-gate potential. When

W+,W− is around 7 V the synaptic update 1Wd due to

an external pulse can be determined by the continuous and

deterministic form of the FN-synapse model (as described in

the previous sections). Since the number of electrons tunneling

across the barrier is relatively large (≫1), themethod is adequate

for determining 1Wd. However, once W+,W− is around 6

V, each updates occurs due to the transport of a few electrons

tunneling across the barrier and in the limit by a single electron

tunneling across the barrier at a time. In this regime, the

continuous behavioral model is no longer valid. Therefore,

the behavioral model of the FN-synapse has to switch to a

probabilistic model. In this mode of operation, we can assume

that each electron tunneling event follows a Poisson process

where the number of electrons e+(n), e−(n) tunneling across

the two junctions during the nth input pulse is estimated by

sampling from a Poisson distribution with rate parameters

λ+, λ− given by

λ+(n) =
AJ(W+(n))

q
(44)

λ−(n) =
AJ(W−(n))

q
. (45)

q is the charge of an electron, A is the cross-sectional area of the

tunneling junction. Using the sampled values of e+(n), e−(n),
the corresponding discrete-time stochastic equation governing

the dynamics of the tunneling node potentialsW+(n),W−(n) is
given by

W+(n) = W+(n− 1)−
qe+(n)

CT
(46)

W−(n) = W−(n− 1)−
qe−(n)

CT
(47)

where CT is the equivalent capacitance of the tunneling node.

We have verified the validity/accuracy of the probabilistic

model against the continuous-time deterministic model in

high tunneling rate regimes. Supplementary Figure 4A shows

that the output of the probabilistic model matches closely

to the deterministic model and the deviation which arises

due to the random nature of the probabilistic updates

(shown in Supplementary Figure 4B) is within 200µV . Using

the probabilistic model we performed the memory retention

and network capacity experiments (as discussed in the main

manuscript) by initializing the tunneling nodes at a low

potential. In this regime, each updates to the FN synapse results

from tunneling of a few electrons. Supplementary Figures 4C,

D show that even when each update sizes are on the order of

tens of electrons, the network capacity and memory retention

time remains unaffected. However, as the synaptic voltage

is modified by less than ten electrons per update (shown

in Supplementary Figure 4E), the SNR curve starts to shift

downwards and the network capacity along with memory

retention time decreases. The tunneling node potential can

be pushed further down to a region where the synapses

might not even register modifications at times and other times

update sizes drop down to single electron per modification (see

Supplementary Figure 4F). In this regime, the SNR curve shifts

down further, the SNR decay still obeys the power-law curve.

3.9. Neural network implementation
using FN-synapses

TheMNIST dataset was split into 60,000 training images and

10,000 test images which yielded about 6,000 training images

and 1,000 test images per digit. Each image, originally of 28×28

pixels, was converted to 32 × 32 pixels through zero-padding.

This was followed by standard normalization to zero mean with

unit variance. The code for implementing the non-FN-synapse

approaches such as EWC and online EWC were obtained from

the repository mentioned in Hsu et al. (2018). To enforce an

equitable comparison, the same neural network architecture

(as shown in Supplementary Figure 6), in the form a multi-

layered perceptron (MLP) with an input layer of 1024 nodes,

two hidden layers of 400 nodes each (paired with the ReLU

activation function) and a softmax output layer of 2 nodes, has

been utilized by every method mentioned in this work. Based on

the optimizer in use, a learning rate of 0.001 was chosen for both

SGD and ADAM (with additional parameters β1, β2, and ǫ set to

0.9, 0.999, and 10−8, respectively, for the latter). Each model was

trained with a mini-batch size of 128 for a period of 4 epochs.

Similar to the continual learning experiments conducted

on split-MNIST, benchmark incremental-domain learning

experiments were also carried out by randomly permuting the

order of pixels of the images in theMNIST dataset in accordance

with Hsu et al. (2018) which is referred as the Permuted-MNIST.

The architecture of the neural network employed is similar to the

one for the split-MNIST with the exception of being equipped

with 1,000 neurons in each of the two hidden layers instead of

400 and with 10 neurons in the output layer instead of 2. This

essentially means that at each task, the network learns a new set

of permutations of the 10 digits. The network was trained on 10

such tasks for 3 epochs using a learning rate of 0.0001 for ADAM

and 0.001 for ADAGRAD.

Corresponding to every weight/bias in the MLP, an instance

of the FN-synapse model was created and initialized to

a tunneling region according to the initial Wc value. As

demonstrated by the measured results, 1Wd can be modulated

linearly and precisely by changing the pulse-width of the
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potentiation/depression pulses. Therefore, each weight update

(calculated according to the optimizer in use) is mapped as

an input pulse of proportional duration for the FN synapse

instance. Then, every instance of the FN-synapse model is

updated according to Equation (27) and theWd thus obtained in

voltage is scaled back to a unit-less value and within the required

range of the network.

4. Discussion

In this paper, we reported a differential FN quantum-

tunneling based synaptic device that can exhibit near-optimal

memory consolidation that has been previously demonstrated

using only algorithmic models. The device called FN-synpase,

like its algorithmic counterparts, stores the value of the weight

and a relative usage of the weight that determines the plasticity

of the synapse. Similar to algorithmic consolidation models,

an FN-synapse, “protects” important memory by reducing the

plasticity of the synapse according to its usage for a specific

task. However, unlike its algorithmic counterparts like the

cascade or EWC models, the FN-Synapse doesn’t require any

additional computational or storage resources. In EWC models

memory consolidation in continual learning is achieved by

augmenting the loss function using penalty terms that are

associated with either Fisher information (Kirkpatrick et al.,

2017) or the historical trajectory of the parameter over the

course of learning (Chaudhry et al., 2018; Liu et al., 2018).

Thus, the synaptic updates require additional pre-processing of

the gradients, which in some cases could be computationally

and resource intensive. FN-synapse on the other hand, does

not require any pre-processing of gradients and instead can

exploit the physics of the device itself for synaptic intelligence

and for continual learning. For some benchmark tasks, we have

shown an FN-synapse network shows better multi-task accuracy

compared to other continual learning approaches. This leads

to the possibility that the intrinsic dynamics of the FN-synapse

could provide important clues on how to improve the accuracy

of other continual learning models as well.

Figures 6A, B also show the importance of the learning

algorithm in fully exploiting the available network capacity.

While the entropy of the FN-synapse weights for the output

layer is relatively high, the entropy of the weights of the

input layer is still relatively low, implying most of the input

layer weights remain unused. This is an artifact of vanishing

gradients in a standard backpropagation based neural network

learning. Thus, it is possible that improved backpropagation

algorithms (Deng et al., 2016; Tan and Lim, 2019) might be

able to mitigate this artifact and in the process enhance the

capacity and the performance of the FN-synapse network. In

Supplementary Figure 8, we show that FN-synapse based neural

network is able to maintain its performance even when the

network size is increased. Thus, it is possible that the network

becomes capable of learning more complex tasks due to increase

in overall plasticity of the network while ensuring considerably

better retention than neural networks with traditional synapses.

In addition to being physically realizable, the FN-synapse

implementation also allows interpolation between a steady state

consolidation model and the EWC consolidation models. This

is important because it is widely accepted that the EWC model

can potentially suffer from blackout catastrophe (Kirkpatrick

et al., 2017) as the learning network approaches its capacity.

During this phase, the network becomes incapable of retrieving

any previous memory as well as is unable to learn new

ones (Kirkpatrick et al., 2017). Steady-state models such as

the cascade consolidation models and SGD-based continuous

learning models avoid this catastrophe by gracefully forgetting

old memories. As shown in Figure 5A, an FN-synapse network,

through the use of a global modulation factor m(t), is able

to interpolate between the two models. In fact, the results in

Figures 5A, B, show that the number of patterns/memories

retained in an FN-synapse network under modulation profile

m2(t) at steady state is higher compared to that of a high-

complexity cascade model for a network size of N = 1, 000

synapses. Even though we have not used the interpolation

feature for benchmark experiments, we believe that this attribute

is going to provide significant improvements for continuous

learning of a large number of tasks.

The interpolation property of FN-synapse could mimic

some attributes ofmetaplasticity observed in biological synapses

and dendritic spines (Mahajan and Nadkarni, 2019). The role

of metaplasticity, the second-order plasticity of a synapse which

assigns a task-specific importance to every successive task being

learned (Laborieux et al., 2021), is widely accepted as the

fundamental component of neural processes key to memory

and learning in the hippocampus (Abraham and Bear, 1996;

Abraham, 2008). Since unregulated plasticity leads to runaway

effects resulting in previously stored memories to be impaired at

saturation of synaptic strength (Brun et al., 2001), metaplasticity

serves as a regulatory mechanism which dynamically links the

history of neuronal activity with the current response (Hulme

et al., 2014). The FN-synapse mimics the same regulatory

mechanism through the decaying term r(t) that takes into

account the history of usage or neuronal activity to determine

the plasticity of the synapse for future use as well as prevents

runaway effects by making the synapses rigid at saturation.

The on-device memory consolidation in FN-synapse can not

only minimize the energy requirements in continual learning

tasks, additionally, the energy required for a single synaptic

weight update is also lower than memristor-based synaptic

updates for a fixed precision of update. This attribute has been

validated in our previous works (Mehta et al., 2022) where the

update energy was estimated to be as low as 5f J increasing up to

2.5p J depending on the status of the FN-synapse and the desired

change in synaptic weights. Note that the energy required to

change the synaptic weight is derived from the FN-tunneling
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current and not from the electrostatic energy used for charging

the coupling capacitor. Thus, by designingmore efficient charge-

sharing techniques across the coupling capacitors the energy-

efficiency of FN-synaptic updates can be significantly improved.

Furthermore, when implemented on more advanced silicon

process nodes, the capacitances could be scaled which can

improve the energy-efficiency of FN-synapse by an order of

magnitude. Compared to memristor-based synapses, the FN-

synapse can also exhibit high endurance 106−107 cycles without

any deterioration. However, the key distinction lies in terms

of the dynamic range of the stored weights. Generally, a single

memristor has two distinct conductive states (corresponding to

“0” or “1”) which give each device a 1-bit resolution. When used

in a crossbar array, highly-dense designs can reach densities

up to 76.5 nm2 per bit as reported by Poddar et al. (2021)

where a 3-D memristor array was constructed using Perovskite

quantumwires. The dynamic range or resolution of such designs

is determined by the number of memristive devices that can

be packed into the smallest feasible physical form factor. If

we consider multi-level memristors instead, the resolution per

memristor can reach up to 3-5 bits depending on the number

of stable distinguishable conductive states (He et al., 2017; Wu

et al., 2019; Lee et al., 2021). In comparison, the dynamic

range of the FN-synapse (a single device) is considerably

higher as it is determined by the number of electrons stored

on the floating-gates which in-turn is determined by the

FN-synapse form-factor and the dielectric property of the

tunneling barrier. Thus, theoretically, the dynamic range and

the operational-life of the FN-synapse seems to be constrained

by the single-electron quantization. However, at low-tunneling

regimes, the transport of single electrons across the tunneling

barrier becomes probabilistic where the probability of tunneling

is now modulated by the external signals X(t) and m(t). In

the Section 3 and in Supplementary Figure 4, we show that

a stochastic dynamical system model emulating the single-

electron dynamics in the FN-synapse can produce O(1/
√
t)

consolidation characteristics for the benchmark random input

patterns experiment for an empty network. The SNR still follows

the power-law curve and the FN-synapse network continues

to learn new experiences even if the synaptic updates are

based on discrete single-electron transport. A more pragmatic

challenge in using the FN-synapse will be the ability of the read-

out circuitry to discriminate between the changes in floating-

gate voltage due to single-electron tunneling events. For the

magnitude of the floating-gate capacitance, the change in voltage

would be in the order of 100 nV per tunneling event. A more

realistic scenario would be tomeasure the change in voltage after

1,000 electron tunneling events which would imply measuring

100 µV changes. Although this will reduce the resolution of the

stored weights/updates to 14 bits, recent studies have shown that

neural networks with training precisions as low as 8 bits (Sun

et al., 2019) and networks with inference precisions as low as

2–4 bits (Choi et al., 2018, 2019) are often capable of exhibiting

remarkably good learning abilities. In Supplementary Figure 9,

we show that for the split-MNIST task, the performance of the

FN-synapse based neural network remains robust even in the

presence of 5% device mismatch.

Another point of discussion is whether the optimal decay

profile r(t) ≈ O(1/t) can be implemented by other

synaptic devices, in particular, the energy-efficient memristor-

based synapses that have been proposed for neuromorphic

computing (Tuma et al., 2016; Fuller et al., 2019; Pal et al.,

2019a,b; Karunaratne et al., 2020; Mehonic et al., 2020). Recent

works using memristive devices have demonstrated on-device

metaplasticity (Giotis et al., 2022), however, achieving an optimal

decay profile would require additional control circuitry, storage

and read-out circuits. In this regard, we believe that the FN-

synapse represents one of the few, if not the only class of synaptic

devices that can achieve optimal memory consolidation on a

single device.
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