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Background: Previous neuroimaging studies have mostly focused on changes

in static functional connectivity in patients with chronic insomnia (CI).

Features of dynamic brain activity in patients with CI have rarely been

described in detail. The present study investigated changes in dynamic

intrinsic brain activity in patients with CI by dynamic fractional amplitude of

low-frequency fluctuation (dfALFF) analysis.

Materials and methods: A total of 30 patients with CI and 27 healthy controls

(HCs) were enrolled. We compared dfALFF between these two groups, and

examined the correlation between changes in dfALFF and clinical symptoms

of CI. Multivariate pattern analysis was performed to differentiate patients with

CI from HCs.

Results: Compared with HC subjects, patients with CI showed significantly

increased dfALFF in the left insula, right superior temporal gyrus, left

parahippocampal gyrus, right amygdala, and bilateral posterior lobes of

the cerebellum. Moreover, dfALFF values in the left insula and left

parahippocampal gyrus showed a positive correlation with Pittsburgh Sleep

Quality Index scores. A logistic regression model was constructed that

had 96.7% sensitivity, 80.0% specificity, and 83.0% overall accuracy for

distinguishing patients with CI from HCs.

Conclusion: Dynamic local brain activity showed increased instability in

patients with CI. The variability in dfALFF in the limbic system and brain areas

related to sleep/wakefulness was associated with insomnia symptoms. These

findings may provide insight into the neuropathologic basis of CI.
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Introduction

The Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-V) defines chronic insomnia (CI) as
dissatisfaction with sleep quality or quantity, characterized
by one or more of the following symptoms lasting for over
3 months: (1) Difficulty in initiating sleep; (2) difficulty in
maintaining sleep; and (3) early awakening and inability to
return to sleep. Insomnia is a widespread and serious problem
that affects the global population (Morin et al., 2006); the
combination of insomnia and physical exhaustion can lead
to attention deficit and memory loss, which can greatly
affect patients’ work productivity and ability to learn (de
Zambotti et al., 2018; Gierc et al., 2022). Long-term sequelae
of insomnia include endocrine disorders, hypertension, and
other diseases (Khan and Aouad, 2022). Insomnia can also
increase the probability of depression and anxiety disorders
as well as suicide risk (Tucker et al., 2021). However,
the neurobiologic mechanisms of insomnia are not fully
understood.

Advances in neuroimaging technologies have facilitated
the investigation of neural mechanisms underlying insomnia
(Tahmasian et al., 2018; Fasiello et al., 2022). Neuroanatomical
studies have revealed abnormal structural changes in the
orbitofrontal cortex (Stoffers et al., 2012; Xie et al., 2020),
cingulate cortex (Li et al., 2018), insula (Yu et al., 2020),
amygdala (Koo et al., 2017; Emamian et al., 2021), and
cerebellum (Joo et al., 2013). Functional magnetic resonance
imaging (fMRI) has been widely used to explore changes
in brain activation in insomnia (Jiang et al., 2020; Fasiello
et al., 2022). One fMRI study found that insomnia patients
had weakened functional connectivity primarily in the right
dorsolateral prefrontal cortex, left insula, and right cerebellum
anterior lobe (Huang et al., 2017). Regional homogeneity
(ReHo) and amplitude of low-frequency fluctuation (ALFF)
are the most frequently used and reliable parameters for
evaluating local spontaneous neural activity (Zang et al., 2004,
2007). Fractional ALFF (fALFF) reduces physiologic noise and
improves the accuracy of ALFF measurements (Zou et al.,
2008). Abnormal ReHo and ALFF have been observed in
specific brain regions of patients with insomnia including
the fusiform gyrus, prefrontal cortex, insula, cingulate gyrus,
and cerebellum (Dai et al., 2014; Wang et al., 2016; Pang
et al., 2018); and alterations in ALFF were shown to be
correlated with sleep quality and psychological performance
(Zhou et al., 2017; Zhang et al., 2021). Most of these studies
were based on the assumption that brain activity is static
during resting-state fMRI scanning, but there is increasing
evidence that brain activity and function are temporally
dynamic (Hutchison et al., 2013; Allen et al., 2014; Cui et al.,
2020). A dynamic ALFF (dALFF) method involving a sliding
window technique to calculate changes in ALFF over time

(Fu et al., 2018; Liao et al., 2019) has been applied to a
variety of neurologic diseases and mental disorders such as
mild cognitive impairment (Wang et al., 2019), Parkinson’s
disease (Tian et al., 2022), obsessive-compulsive disorder
(Liu et al., 2021), and generalized anxiety disorder. These studies
have demonstrated that analyzing dynamic regional brain
activity can provide insight into the underlying neuropathologic
mechanisms. However, few studies have analyzed changes
in local intrinsic brain activity over time in patients with
CI.

The aim of the present study was to investigate dynamic
local brain activity in patients with CI. Using a sliding window
approach, voxel-wise dynamic fALFF (dfALFF) maps were
calculated and compared between patients with CI and healthy
controls (HCs). Multivariate pattern analysis (MVPA) was
conducted using dfALFF values of brain regions that differed
between the two groups. We hypothesized that patients with
CI would show altered dfALFF patterns that could be used to
distinguish them from HC subjects.

Materials and methods

Study subjects

A total of 30 patients with CI were recruited at Ankang
Hospital of Traditional Chinese Medicine (Shaanxi, China)
from October 2020 to March 2022, and 27 HCs were recruited
from the local community. The inclusion criteria for patients
with CI were as follows: (1) Met the DSM-V criteria for CI;
(2) had experienced difficulties in falling asleep or maintaining
sleep, or early awakening for at least 3 months; (3) aged 25–
65 years; (4) had no other sleep problems such as parasomnia or
restless leg syndrome; (5) free of any psychoactive medication
for at least 2 weeks prior to and during study participation; (6)
insomnia was not caused by other organic diseases or serious
mental diseases such as generalized anxiety disorder; and (7)
right-handed. Exclusion criteria were as follows: (1) Medical
history of severe organic brain disorders or brain surgery;
(2) pregnancy or breastfeeding; (3) contraindications to MRI
scans; (4) history of alcohol dependence or substance abuse; (5)
abnormal conventional brain MRI findings such as tumors or
subdural hematomas.

Healthy controls were recruited from the community and
matched with CI patients on age, sex, and education level.
Inclusion criteria for HCs were as follows: (1) Good sleep
quality; (2) regular sleep habits; (3) no history of substance abuse
or neurologic or psychiatric disorders; and (4) no abnormalities
in conventional brain imaging examination.

The Ankang Hospital of Traditional Chinese Medicine
Ethics Committee reviewed and approved this research.
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All subjects gave written, informed consent before
participating in the study.

Assessment of clinical indices

Each subject underwent a clinical characteristic assessment
during recruitment. We used Pittsburgh Sleep Quality Index
(PSQI) to evaluate subjects’ degree of insomnia; Hamilton
Depression Rating Scale (HAMD) and Hamilton Anxiety Rating
Scale (HAMA) to evaluate depression and anxiety, respectively;
Fatigue Severity Scale (FSS) to assess fatigue; and Mini-Mental
State Examination (MMSE) to assess general cognitive function.

Magnetic resonance imaging
acquisition

Cranial scans were performed on all subjects using an
Ingenia CX 3.0-Tesla MR scanner (Philips, Amsterdam, The
Netherlands) equipped with a 32-channel head coil. Earplugs
and a foam pad were applied to dampen the noise of the
machine and minimize head movement. Subjects were asked to
remain stationary and not to fall asleep. Images with excessive
head movement were excluded after scanning. The scan was
performed by a trained technician. Routine MRI sequences were
first obtained for each subject to exclude organic brain lesions.

An echo-plane imaging sequence was used for resting-state
functional imaging, with the following scanning parameters:
repetition time (TR) = 2,000 ms; echo time (TE) = 30 ms;
48 axial slices; slice thickness = 3.0 mm with no gap
between slices; flip angle (FA) = 90◦; matrix = 80 × 80;
field of view (FOV) = 240 mm × 240 mm; voxel
size = 3 mm × 3 mm × 3 mm; and 200 volumes.

Three-dimensional T1-weighted imaging data were
acquired using a magnetization-prepared rapid gradient-
echo sequence with the following parameters: TR = 6 ms;
TE = 3.27 ms; flip angle = 8◦; number of coronal slices = 190;
slice thickness = 1.0 mm; FOV = 256 mm × 256 mm; and
matrix = 256 × 256.

Data preprocessing

Resting-state fMRI data were preprocessed with the Data
Processing & Analysis of Brain Imaging toolkit (DPABI_V6.1)
(Yan et al., 2016) based on Statistical Parametric Mapping
12.1 The first 10 time points were removed to eliminate the
unstable magnetization effect. The remaining 190 volumes
were corrected for slice-time delay. All other volumes were

1 www.fil.ion.ucl.ac.uk/spm/

realigned to the middle volume to correct for head movement.
Head movement parameters of all subjects were calculated by
estimating the shift in each direction and angular rotation
about each axis for each volume. Any subjects with head
movement that exceeded 3.0 mm or 3.0◦ of axial rotation
were excluded. Framewise displacement (FD), which measures
changes in head position from volume to volume, was also
computed. Each subject’s high-resolution T1-weighted images
were coregistered to functional images. T1-weighted structural
MR images were segmented into gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF). These functional images
were spatially normalized to standard Montreal Neurological
Institute space. Several sources of nuisance signal including
Friston-24 head movement parameters and average blood
oxygenation level-dependent (BOLD) signals of the CSF and
WM were regressed out from the time series. BOLD fMRI signal
of each voxel were linearly detrended.

Calculation of dynamic fractional
amplitude of low-frequency
fluctuation

The dfALFF was calculated by temporal dynamic analysis,
which is incorporated in the DPABI sliding time window
analysis.2 Window lengths used in previous studies ranged from
10 s (Thompson et al., 2013) to 180 s (Gonzalez-Castillo et al.,
2015). A window length of 30–60 s was shown to be sufficient
to detect changes in dynamic functional connectivity (Díez-
Cirarda et al., 2018; Premi et al., 2019). There is currently no
consensus on the optimal window length. In the present study,
a window length of 30TR (60 s) and step size of 1TR (2 s) were
applied to determine dfALFF for each subject according to the
previous studies (Xue et al., 2020). The 190 time points were
divided into 161 windows and the hamming window was used.
The fALFF map within each window was computed, and the
coefficient of variation (CV) of the fALFF at each voxel was
calculated in all windows to assess the variability of fALFF. For
standardization, CV maps were transformed into z-scores by
subtracting the mean and dividing by the standard deviation
of global values. Normalized images were spatially smoothed
with an isotropic 4-mm full-width at half-maximum Gaussian
kernel.

Statistical analysis

We compared the demographic and clinical characteristics
of the CI and HC groups with the chi-squared test, Mann–
Whitney U-test, and 2-sample t-test using SPSS v25.0 software

2 http://rfmri.org/DPABI
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(IBM, Armonk, NY, USA). Intergroup differences in dfALFF
were compared with the 2-sample t-test, with mean FD, age,
sex, and education level as covariates. Multiple comparison
correction was performed for the 2-sample t-test using a voxel-
wise Gaussian random field (GRF) approach (single voxel,
p < 0.001; cluster level, p < 0.05). To further investigate
the relationship between the severity of symptoms in patients
with CI and abnormal dfALFF variability, Pearson correlation
analysis was performed for normally distributed data and
Spearman correlation analysis was used for non-normally
distributed data. Differences with p < 0.05 were considered
statistically significant.

Multivariate pattern analysis

Region of interest-wise MVPA was performed to assess
the utility of abnormal dfALFF for distinguishing between
patients with CI and HCs. Mean dfALFF values in brain
regions with significant intergroup differences were extracted
for each subject and used as input features in the models. The
logistic regression classifier in the sklearn library (Pedregosa
et al., 2011) for Python was used to train the models. The
logistic regression model parameters were that penalty was L2
and C as the inverse regularization strength was one. Ten-
fold cross-validation was used to evaluate the performance of
our classifiers. The accuracy, sensitivity, and specificity were
calculated to assess the classification result.

Validation analysis

To further evaluate the accuracy and reliability of our
results, different window lengths (20TR, 50TR), step size (3TR),
and a 6-mm Gaussian smoothing kernel were applied and
intergroup comparisons were repeated. There is at present
no consensus on whether global signal regression should be
applied in the preprocessing of resting-state fMRI data (Murphy
and Fox, 2017). Another validation analysis was conducted to
ensure that functional images were corrected by global signal
regression.

Results

Demographic and clinical
characteristics of the study population

There were no significant differences in age, sex, education
level, FD score, and MMSE score between CI and HC
groups. However, PSQI, HAMD, HAMA, and FSS scores were
significantly higher in CI patients than in HCs (p < 0.05;
Table 1).

Changes in dynamic fractional
amplitude of low-frequency
fluctuation in patients with chronic
insomnia

Compared to HCs, patients with CI had significantly
increased dfALFF in the left insula, right superior temporal
gyrus (STG), left parahippocampal gyrus, right amygdala, and
bilateral cerebellum_9 (belonging to cerebellum posterior lobe)
(p < 0.05, GRF-corrected; Table 2 and Figure 1).

Correlational analysis

There was a significant positive correlation between PSQI
score and dfALFF in the left insula (r = 0.455, p = 0.011) and left
parahippocampal gyrus (r = 0.433, p = 0.017; Figure 2).

Classification results

We established a logistic regression model that had
a sensitivity of 96.7%, specificity of 80.0%, and overall
accuracy of 83.0% for distinguishing between patients with CI
and HC subjects.

Validation results

We used different sliding window lengths and step size to
validate our primary MRI findings (Supplementary material).
The results obtained with sliding window lengths of 20TR
(Supplementary Figure 1) and 50TR (Supplementary Figure 2)
were similar to those obtained with 30TR. Meanwhile, a sliding
window step size of 3TR (Supplementary Figure 3) yielded a
result similar to 1TR. Additionally, by using a 6-mm Gaussian
kernel to smooth dfALFF maps, the result was similar to
using a 4-mm Gaussian kernel (Supplementary Figure 4).
The result obtained after global signal regression correction
was consistent with the main result without correction
(Supplementary Figure 5).

Discussion

The present study used a dfALFF method to investigate
the temporal variability of local brain activity in CI. Compared
with HC subjects, patients with CI showed higher variability
in dfALFF in the left insula, right STG, part of the subcortical
nucleus, and bilateral cerebellum posterior lobes. This
distinguished CI patients from HCs with an accuracy of 83%,
and the variability in the left insula and left parahippocampal
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TABLE 1 Demographic and clinical information of subjects.

Characteristics Control
(n = 27)

Insomnia
(n = 30)

χ2/t/z P-values

Demographic data

Gender (male/female) 7/20 9/21 0.117 0.733a

Age (years) 49 ± 12 51 ± 13 − 0.402 0.689c

Education level (years) 12 (7) 15 (5) −1.642 0.101b

Clinical scales

PSQI 5 (0) 16 (3) −6.307 < 0.001b*

HAMD 7 (2) 23 (16) −6.092 < 0.001b*

HAMA 4 (3) 8 (17) −4.059 0.001b*

FSS 22 (1) 22 (3) −2.245 < 0.05b*

MMSE 29 (2) 30 (2) −1.090 0.276b

Head motion parameter

Mean FD 0.08 (0.09) 0.09 (0.07) −0.160 0.873b

FD, framewise displacement; PSQI, Pittsburgh Sleep Quality Index; HAMD, Hamilton
Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale; FSS, Fatigue Severity
Scale; MMSE, Mini-Mental State Examination.
aChi-square test; bMann–Whitney U-test; c2-sample t-test (two-tailed).
*p < 0.05.

gyrus were positively associated with symptom severity in CI.
These results imply that the neural mechanisms of CI may
involve pathologic changes in dynamic regional brain activity.

In the present study, patients with CI showed greater
dfALFF variability in the left insula compared with HCs. The
insula is a central hub in the salience network (Menon, 2011).
Using simultaneous EEG and fMRI, it was demonstrated that
patients with insomnia had aberrant activation in the anterior
insula of the salience network (Chen et al., 2014); and a positron
emission tomography-computed tomography study found that
an increase in the relative rate of glucose metabolism in the
right anterior insula during non-rapid eye movement sleep
was related to abnormal sleep onset latency in patients with
insomnia (Kay et al., 2017). Meanwhile, cognitive arousal in
patients with insomnia stimulated the hyperarousal network
during sleep and was associated with longer sleeping latencies,
as observed by 24-h polysomnography (PSG) monitoring

(Kalmbach et al., 2020). In our study, abnormal dfALFF
variability in the insula was associated with reduced sleep
quality, suggesting that it can be a potential biological marker
that reflects the severity of insomnia.

The amygdala is part of the limbic system and an important
subcortical region in the salience network (Menon, 2011) that
plays a key role in emotion processing (Sah, 2017). An fMRI
study found increased activation in the amygdala in response
to negative insomnia-related emotional stimuli in insomnia
(Baglioni et al., 2014), and brain morphometry studies have
revealed atrophy of amygdala GM in patients with CI (Koo et al.,
2017; Emamian et al., 2021). Regional atrophy in the amygdala
has been linked to abnormalities in emotional behavior (Gong
et al., 2019). Additionally, changes in functional connectivity
in the amygdala has been observed in insomnia patients
(Huang et al., 2012; Pace-Schott et al., 2017). Thus, abnormal
variability in local activity in the insula and amygdala may reflect
involvement of the salience network in the pathophysiology of
insomnia.

A recent neuroimaging study of 1,074 adults found a
correlation between sleep quality and hippocampus and
parahippocampal gyrus GM volume in female subjects
(Neumann et al., 2020). The results of a meta-analysis of 28
studies showed that higher activity in the parahippocampal
gyrus was related to dysfunctional emotion regulation (Jiang
et al., 2020). In the present work, aberrant activity in the
parahippocampal gyrus was associated with poor sleep quality,
but was unrelated to emotion scores. The discrepancy between
our results and previous observations may be attributable
to differences in the study population and methodology.
The functional significance of abnormal activity in the
parahippocampal gyrus in CI warrants further examination.

Bilateral posterior lobes of the cerebellum showed increased
dfALFF variability in CI patients. The cerebellum not only
controls motor function (Manto and Oulad Ben Taib, 2013)
but also regulates sleep (DelRosso and Hoque, 2014). It was
reported that CI patients had a significant decrease in static
ALFF in bilateral cerebellum compared with normal subjects

TABLE 2 Regions with changed dfALFF between patients with CI and HCs.

Brain regions L/R Cluster size
(voxels)

Peak MNI coordinates t-values

AAL Brodmann x y z

CI>HC

Insula BA48 L 195 −39.5 5.5 −12.5 5.08

Superior temporal gyrus BA48 R 230 50.5 −2.5 −4.5 5.46

Parahippocampal BA30 L 81 −17.5 −28.5 −18.5 5.20

Amygdala BA34 R 83 24.5 5.5 −18.5 4.89

Cerebelum_9 / L 176 −13.5 −44.5 −48.5 5.11

Cerebelum_9 / R 88 14.5 −34.5 −44.5 4.69

AAL, anatomical automatic labeling; MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere; dfALFF, the dynamic fractional amplitude of low-frequency
fluctuations; CI, chronic insomnia; HC, healthy control.
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FIGURE 1

Dynamic intrinsic brain activity with significant intergroup differences in dfALFF between the CI group and HC group. Cluster-level p < 0.05,
GRF corrected. Red colors indicate significantly increased dfALFF in CI patients. The right color bar indicates t-values from a global
cluster-based 2-sample t-test analysis.

FIGURE 2

Significant positive correlations between the altered dfALFF in the left insula (A), left parahippocampal (B) and PSQI in CI patients. dfALFF, the
dynamic fractional amplitude of low-frequency fluctuation; CI, chronic insomnia; PSQI, Pittsburgh Sleep Quality Index.

(Li et al., 2016). Moreover, cerebellum GM volume was reduced
in CI patients (Joo et al., 2013). These findings provide
evidence that abnormalities in the cerebellum contribute to sleep
dysregulation.

In clinical practice, insomnia is primarily diagnosed based
on self-reported symptoms that can be mistaken for symptoms
of other diseases (Benjamins et al., 2017). Therefore, it is
necessary to develop other objective and reliable approaches
which could be used to assist in the diagnosis of patients with

CI. The logistic regression model generated in the current
work based on differences in dfALFF in various brain regions
between CI patients and HC subjects had a relatively high
accuracy (83%) for distinguishing between the two groups. This
is consistent with the results of previous studies that used MVPA
to differentiate patients with CI from HCs (Dai et al., 2020; Gong
et al., 2022), and suggests that dfALFF is a potential biomarker
for the objective diagnosis of CI.
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There were several limitations to the present study that
should be acknowledged. First, the small size of study population
limited the accuracy of our model. Second, existing scales used
to evaluate sleep quality are relatively subjective. Third, the
cross-sectional study design precluded an exploration of the
causal relationship between altered brain activity and clinical
indices. Therefore, further research is needed with a larger
sample; and using methods such as PSG and sleep actigraphy
can also allow the objective assessment of sleep quality.

Conclusion

The results of this study showed that there was increased
instability in brain activity in multiple brain regions of patients
with CI. Additionally, dynamic regional neural activity in the
insula was associated with insomnia symptoms. Thus, dynamic
regional functional measurements may help to clarify the
underlying neurobiologic mechanisms of CI.
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