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Macro-expressions are widely used in emotion recognition based on

electroencephalography (EEG) because of their use as an intuitive external

expression. Similarly, micro-expressions, as suppressed and brief emotional

expressions, can also reflect a person’s genuine emotional state. Therefore,

researchers have started to focus on emotion recognition studies based on

micro-expressions and EEG. However, compared to the effect of artifacts

generated by macro-expressions on the EEG signal, it is not clear how

artifacts generated by micro-expressions affect EEG signals. In this study, we

investigated the effects of facial muscle activity caused by micro-expressions

in positive emotions on EEG signals. We recorded the participants’ facial

expression images and EEG signals while they watched positive emotion-

inducing videos. We then divided the 13 facial regions and extracted the

main directional mean optical flow features as facial micro-expression image

features, and the power spectral densities of theta, alpha, beta, and gamma

frequency bands as EEG features. Multiple linear regression and Granger

causality test analyses were used to determine the extent of the effect of

facial muscle activity artifacts on EEG signals. The results showed that the

average percentage of EEG signals affected by muscle artifacts caused by

micro-expressions was 11.5%, with the frontal and temporal regions being

significantly affected. After removing the artifacts from the EEG signal, the

average percentage of the affected EEG signal dropped to 3.7%. To the best

of our knowledge, this is the first study to investigate the affection of facial

artifacts caused by micro-expressions on EEG signals.
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Introduction

Emotion is a vital element in the daily lives of human beings,
and personal emotional states may become apparent through
subjective experiences and internal/external expressions
(LeDoux and Hofmann, 2018), which have an important impact
on various aspects of human social interaction (Huang et al.,
2017), behavioral regulation (Dzedzickis et al., 2020), and
mental health (Inwood and Ferrari, 2018). Therefore, research
on emotion recognition has important theoretical and practical
implications. Previous research has primarily focused on the
analysis of human facial expressions (Abdat et al., 2011; Li
et al., 2019a), behaviors, and physiological signals (Zheng
et al., 2017; Shu et al., 2018; Egger et al., 2019), such as facial
images, electroencephalography (EEG), galvanic skin response
(GSR), and heart rate (HR), which can be used to effectively
evaluate personal emotional states. Among them, EEG signals
are used extensively in emotion recognition studies because
of their objective realism and high temporal resolution. As
an external expression of emotion, facial macro-expressions
are used as one of the most reliable emotion indicators (Tan
et al., 2021). Therefore, researches on emotion recognition
based on macro-expressions and EEG signals have attracted
significant attention (Matlovic et al., 2016; Huang et al.,
2019).

Micro-expressions, as suppressed emotional expressions, are
typically very brief, involuntary facial expressions that occur
when a person is trying to hide, fake, or suppress their genuine
emotions, and last around 1/25–1/2 s (Ekman and Friesen,
1969; Ekman, 2009). Studies have shown that micro-expressions
contain a significant and effective quantity of information about
the true emotions, which is useful in practical applications
such as lie detection, justice, and national security (Frank
et al., 2009; Ten Brinke et al., 2012; Yan et al., 2013). With
the development of computer vision technology, research on
image-based micro-expression recognition has made significant
progress. For example, Huang et al. (2016) proposed spatio-
temporal completely local quantized patterns (STCLQP) and
Xia et al. proposed a recurrent convolutional network (RCN)
(Xia et al., 2020b) as well as a spatio-temporal recurrent
convolutional network (STRCN) (Xia et al., 2020a), which
achieved favorable recognition performance for spontaneous
micro-expression recognition. Research on emotion recognition
based on micro-expressions and EEG signals is currently
underway (Kim et al., 2022; Saffaryazdi et al., 2022; Wang
et al., 2022). However, EEG signals are contaminated by facial
muscle activity, which is termed “muscle artifacts” (Barlow,
1986; Fatourechi et al., 2007; Whitham et al., 2007; McMenamin
et al., 2011). These artifacts can cover the power spectrum of
EEG signals and affect their ability to detect the functional state
of the brain.

Goncharova et al. (2003) investigated the spectral and
topographical characteristics of the facial artifacts caused by

contractions of the frontalis and temporalis muscles over
the entire scalp. They found that facial artifacts affect the
EEG signal, where contractions of the temporal and frontal
muscles significantly affect the temporal and frontal regions
(Whitham et al., 2007; Yong et al., 2008). Similarly, Soleymani
et al. (2015) supported this view in their study, using
EEG signals and facial macro-expressions for continuous
emotion recognition and analyzing the correlation between
facial expressions and EEG signals. They noted that facial
artifacts significantly affect the EEG signal, mainly affecting
electrodes on the frontal, parietal, and occipital regions,
and that such artifacts are more pronounced in the higher
frequencies (beta and gamma bands), with an average
degree of effect percentage of up to 54%. Compared with
macro-expressions, micro-expressions are weak and short-
term (Porter and Ten Brinke, 2008; Ekman, 2009; Shreve
et al., 2009). Therefore, the artifacts caused by micro-
expressions may affect the EEG signal to a lesser extent. To
explore the degree and mode of effect on the EEG signal
caused by micro-expression artifacts, we proposed a study to
analyze the effect of artifacts caused by micro-expressions on
EEG signals.

In this study, we analyzed the correlation between facial
micro-expressions and EEG signals, aiming to address three
questions: (1) whether facial muscle artifacts caused by micro-
expressions affect EEG signals; (2) in case of an effect, how
much of the facial artifact affects the EEG signals and what
are the main brain regions that are affected; (3) whether the
effects on EEG signals can be eliminated after the artifacts are
removed. In addition, we validated the method by analyzing
the correlation between macro-expressions and EEG signals.
The remainder of this paper is structured as follows: In Section
“Data collection,” the data collection process is described.
Section “Materials and methods” details the analysis of the
correlation between EEG signals and facial micro/macro-
expressions and their relationship. The experimental results are
presented in Section “Results.” Section “Discussion” provides
the discussion of this study. Finally, conclusions are presented
in Section “Conclusion.”

Data collection

Participants

A total of 78 right-handed healthy participants were
recruited for this experiment. None of them had a history of
neurological or psychiatric diagnosis. Of these 78 participants,
10 were excluded owing to ineligibility, and the remaining 68
(age range: 17–22 years, 23 males, 45 females) had valid data.
Written informed consent was obtained from all participants
after all experimental procedures were approved by the Ethics
Committee of Southwest University.
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Material

Emotional elicitation can be achieved using external
stimuli and internal responses. The stimulation methods
commonly used by researchers aim to induce different emotions
in participants through external stimuli, such as pictures
(Mehmood and Lee, 2016), music (Bhatti et al., 2016), and
videos (Li et al., 2019b). In recent years, an increasing number of
emotion recognition studies have started using a combination of
audio-visual stimuli to induce emotions, and widely used micro-
expression datasets currently use videos as emotion-evoking
materials (Davison et al., 2016; Qu et al., 2017). Therefore, in our
experiment, we used video clips with high emotional valence as
stimulus materials to induce emotions in the participants.

Previous studies have shown that happiness is more easily
induced than sadness (Coan and Allen, 2007). Therefore, this
study aimed to induce positive emotions. Considering cultural
differences, we downloaded seven video clips from different
regions of the Internet for emotion expression inhibition, which
were considered highly positive in terms of valence. The length
of the selected videos was approximately 2 min to avoid
visual fatigue, and each video primarily induced a single target
emotion. Before the videos were presented to the participants,
we carefully assessed the valence of these videos and rated the
intensity from 0 to 7, with 0 being the weakest and 7 being the
strongest.

Procedure

The participants were requested to sit in front of a computer
and a webcam. The researcher adjusted the participants’ chairs
to keep their faces facing the webcam and instructed the
participants to keep their head posture as still as possible
throughout the experiment. Before the start of the experiment,
the participants were requested to watch a video to familiarize
them with the entire experimental process, and no EEG data
were collected. After ensuring that both the experimental
equipment and the EEG channel signals were intact, a formal
experiment was conducted.

Throughout the experiment, each run contained one video
and the participants completed seven video views. At the
beginning of each video, a gaze cross appeared in the center
of the screen, and the participants responded accordingly to
the instructions that appeared on the screen. After each video,
the participants were requested to rate their perceived valence
and arousal at that moment. First, we played a neutral video
to ensure that participants were in a calm state. During the
emotion-control task phase, participants were requested to focus
on the video. Additionally, they were required to suppress their
facial expressions while watching the video to avoid revealing
their true emotions. The experimental procedure is shown in
Figure 1.

We added stress to the classical micro-expression paradigm,
such that participants are in a situation of high-intensity
emotional arousal and strong motivation to suppress their facial
expressions. This was done because micro-expressions appear
in high-risk situations (Goh et al., 2020). Participants and
supervisors participated in the experiment simultaneously, with
the participants separated from the supervisors using a curtain
to allow them to concentrate on completing the experiment. The
supervisor observed the participants’ facial micro-expressions
on a monitor. If the supervisor found that the participant did not
suppress his or her facial expressions while watching the video,
a part of the participant’s reward was deducted. This allowed the
participants to hide their true inner emotions better to ensure
the reliability of the micro-expressions.

Signal acquisition

The participants’ facial images were acquired at 100 fps
using a high-speed camera to record their facial expressions.
EEG signals were recorded using a Biosemi Active system
(ActiveTwo Acquisition 125 system, Netherlands) with 128
Ag/AgCl electrodes. The sampling rate was 1,024 Hz. In
addition, to ensure that the EEG signal and facial images
were acquired accurately and synchronously, we used the same
trigger to generate timestamps on both the camera recording
and the Biosemi Active system.

Materials and methods

Dataset construction

Dataset construction is an important step in the data
analysis phase. In general, facial expression dynamics comprises
of three main phases: onset, peak, and offset. These phases
appear in any expression, whether it is macro or micro. The
essential difference between micro-expressions is the duration
of the expression rather than the intensity. Therefore, in this
study, partial or complete facial expressions of ≤500 ms were
considered micro-expressions, whereas facial expressions of
>500 ms were classified as macro-expressions.

To detect the micro-expressions of participants under time-
locked stimuli, we first invited two trained coders to calculate the
time points for all facial expressions (both micro- and macro-
expressions) for all participants. This step was conducted to
detect the time points of participants’ facial responses while
watching the video. The coders determined the approximate
time points of the onset, peak, and offset frames by playing the
recordings frame-by-frame. When the coders did not agree on
the onset, peak, and offset frames of the expression, the average
of the frame values was used.
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FIGURE 1

Example of the experimental process operation.

Subsequently, 2 s segments of the participants’ EEG signals
associated with facial expressions were intercepted using the
moment of occurrence of the peak of all facial expressions as the
midpoint, and the global field power (GFP) (Khanna et al., 2015)
of the intercepted 2 s was calculated. The GFP is the root of the
mean of the squared potential differences at all K channels [i.e.,
Vi(t)] from the mean of instantaneous potentials across channels
[i.e., Vmean(t)]. It is the transient electric field strength of the brain
and is often used to describe rapid changes in brain activity.

GFP=

√√√√( k∑
i

(Vi(t)− Vmean(t))2)/K. (1)

Therefore, we selected the moment of the maximum peak as the
midpoint because the peak of the GFP curve is the maximum
field strength. Ultimately, we selected 1 s data with the largest
peak (calculated by GFP) as the sample.

Finally, we used statistics to determine the point in time
when most participants presented facial expressions (both
micro- and macro-expressions). This constituted the dataset
used in this study, with 806 micro-expression and 393 macro-
expression samples.

Electroencephalography signal

Pre-processing
Electroencephalography signals are weak because they

are susceptible to interference from other noise during the
acquisition process. Pre-processing of EEG signals refers to the
removal of artifacts from the collected EEG signals. In the EEG
signal pre-processing stage of this study, we used a finite impulse
response (FIR) band-pass filter to filter (0.5–60 Hz), notch filter
to remove the 50 Hz power frequency interference and reject
bad electrodes. For a better approximation of the ideal zero
reference, the EEG signals should be referenced to the Reference
Electrode Standardization Technique (REST) using the REST

software (Dong et al., 2017). All the aforementioned steps were
performed using the eeglab toolbox in MATLAB (Brunner
et al., 2013). In addition, we removed artifacts, such as ECG,
electrooculography (EOG), and electromyography (EMG) from
the EEG signal, which was performed to subsequently make a
better comparison of the effects of the removal of artifacts on
the EEG signal.

Feature extraction
Studies have shown that the five frequency bands of EEG,

including the delta, theta, alpha, beta, and gamma bands,
are closely related to various physiological and emotional
states of human beings (Davidson, 2003; Wagh and Vasanth,
2019). Therefore, when extracting EEG frequency-domain
features, many researchers first map EEG signals to these
five frequency bands and then extract the frequency-domain
features corresponding to each band separately (Jenke et al.,
2014; Yin et al., 2017). In this study, 128 electrodes were
used for EEG feature extraction. The power spectral densities
(PSDs) were extracted from theta (4 Hz < f < 8 Hz), alpha
(8 Hz < f < 12 Hz), beta (12 Hz < f < 30 Hz), and gamma
(30 Hz < f ) bands as features, and the PSD was extracted from
a 1 s time window with 20% overlap. The total number of
EEG features from 128 electrodes and 4 frequency bands was
128× 4 = 512 features.

Analysis of facial micro-expressions

First, we used OpenCV and Python to implement a face
detector (Bradski and Kaehler, 2000). The Dlib library uses Dlib’s
pretrained facial landmark point detector to detect and locate
68 facial landmark points (Mohanty et al., 2019). The detection
results for the 68 facial landmarks are shown in the left of
Figure 2.

After 68 facial landmark points were detected, we divided
the facial regions into 13 regions of interests (ROIs) based
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FIGURE 2

(Left) Detection of 68 feature points in facial regions using Dlib. (Right) Partitioning of 13 ROIs.

TABLE 1 Thirteen ROIs and corresponding action unit
(AU) information.

ROIs AUs

ROI1 AU2, AU5

ROI2 AU1, AU4

ROI3 AU1, AU4

ROI4 AU2, AU5

ROI5 AU6, AU13

ROI6 AU6, AU13

ROI7 AU9

ROI8 AU9

ROI9 AU6, AU10, AU12, AU13, AU14, AU15, AU16, AU18

ROI10 AU10

ROI11 AU6, AU10, AU12, AU13, AU14, AU15, AU16, AU18

ROI12 AU16, AU17, AU18, AU20, AU23, AU24, AU26

ROI13 AU16, AU17, AU18, AU20, AU23, AU24, AU26

on the coordinates of the facial landmark points and facial
action coding system (FACS), as shown in the right of
Figure 2. Note that the division of ROIs should not be
significantly compact to avoid introducing redundant and
unwanted information. Similarly, the division of ROIs should
not be significantly sparse to avoid losing potentially useful
information. According to the statistics of Liong et al.’s
(2015) on the occurrence frequency of face regions based
on action units (AUs), it was found that the eyebrows
and mouth were the regions that appeared most frequently
when micro-expressions occurred; therefore, we divided the
mouth and eyebrow regions more carefully. Regions such
as cheeks were divided more sparsely. The 13 ROIs and
corresponding AUs divided in this study are listed in
Table 1.

FIGURE 3

Histogram of oriented optical flow with eight bins.

For a micro-expression video sequence, we then calculated
the optical flow between the first frame f1 and each subsequent
frame fi and denoted it as [ui, vi]T (Zhao and Xu, 2019).
The Euclidean coordinates [ui, vi]T were converted to polar
coordinates (ρi, θi). ρi and θi are the magnitude and
direction of the optical flow vector, respectively. A location
pεRk

i is represented as ϕk
i
(
p
)
=

(
ρk

i
(
p
)
, θk

i
(
p
))

, where
i = 1, 2, 3..., nf is the frame index, in which k = 1, 2, 3..., 13
is the index of the ROIs. The optical flow within each ROI
was divided into eight directional intervals based on the
optical flow direction, as shown in Figure 3. The optical
flow direction histogram (HOOF) was subsequently calculated.
Based on the resulting histogram of optical flow directions,
we selected the bin with the largest number of optical flow
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vectors and calculated its mean value as the feature vector using
Eq. 2:

ϕk
i =

1
|Bmax|

∑
ϕk

i (p)ε Bmax

ϕk
i
(
p
)
. (2)

where Bmax is the set of optical flow vectors that fall into the
largest number in the bin and |.| is the set base.

ϕk
i =

(
ρk

i , θ
k
i

)
, θ

k
i is the main direction of the optical flow

of ROI Rk
i . Therefore, the feature vector of frame i is

σi =
(
ϕ1

i ,ϕ
2
i , ...,ϕ

13
i
)
. (3)

Subsequently, the dimension of the feature vector σi is
13× 2 = 26, where 13 is the number of ROIs.

After the optical flow feature extraction is completed
for each frame, the optical flow feature value for a micro-
expression sequence is U = (σ1, σ2, ..., σi). Among them, i
is the number of frames of the micro-expression sequence. We
first convert all polar coordinates ϕk

i to Euclidean coordinates
ω
(
ϕk

i

)
=

(
xk

i , yk
i

)
, ω (σi) =

(
ω
(
ϕ1

i
)
,ω
(
ϕ2

i
)
, ...,ω

(
ϕ13

i
))

and subsequently calculate its average value as the main
directional mean optical flow (MDMO) feature:

ω (σ) =
1
nf

nf∑
i = 1

ω (σi). (4)

Then, the final MDMO features of the micro-expression
sequence are

σ =
[(

ρ1, θ1
)
,
(
ρ2, θ2

)
, ..,

(
ρ13, θ13

)]
. (5)

Analysis of facial macro-expressions

Macro-expression feature extraction is similar to micro-
expression feature extraction, except for one key difference.
The main difference is that because macro-expressions generate
more facial movements when they appear, which occur over
the whole face, they can cover a large area of the face region.
Therefore, during macro-expression feature extraction, we did
not divide the facial region into 13 sub-regions. Here, we
extracted the MDMO features of the entire facial region as
macro-expression features.

Multiple linear regression analysis

Multiple linear regression analysis is a statistical method
for analyzing data that aims to determine whether two or
more variables are correlated with each other. Soleymani et al.
(2015) analyzed the correlation between EEG signals and facial
expressions using multiple linear regression methods. The
purpose of using multiple linear regression analysis in this study
was to explore how much of the variation in the EEG signal

was correlated with facial movements when micro-expressions
or macro-expressions were present. We estimated EEG features
from facial features, including facial micro-expression and facial
macro-expression features.

Granger causality test

Facial EMG artifacts are a common problem in EEG
recordings, in which facial muscle activity affects EEG signal
recordings to some extent. In this study, we aimed to determine
the extent to which muscle artifacts caused by micro-expressions
or macro-expressions affect the EEG signal. To test the
relationship between the two time series, we used the Granger
causality test (Granger, 1969).

The Granger causality test relies on the variance of the best
least-squares prediction using all information at some point in
the past. Granger states that (Granger, 1969), if adding a time
series x to an autoregressive time series y reduces the variance
of the prediction error of y, then an x Granger causes y (i.e., x
is the cause of y). Given a time series y =

{
y1, y2, ..., yn

}
, the

autoregressive model is described by Eq. 6:

yi =

ky∑
j = 1

ω(ky−j)y(i−j) + εy. (6)

where ky is the model order of the autoregressive time series,
which is calculated using model criteria, such as the Akaike and
Bayesian information criteria, ω(ky−j) are the model coefficients,
and εy is the vector of the white-noise value. The time series x is
as shown in Eq. 7.

xi =

kx∑
j = 1

ω′(kx−j)x(i−j) + εx. (7)

Adding the lag value x to the regression equation for y, that is,
reconstructing y, as shown in Eq. 8:

yi =

ky∑
j = 1

ω(ky−j)y(i−j) +

kx∑
j = 1

ω′′(kx−j)x(i−j) + εxy. (8)

We determine whether Granger causality exists by using the
F-test of the following F-value:

F =

(
ε2

y − ε
2
xy

)
/kx

ε2
xy/
(
n−

(
kx + ky + 1

)) . (9)

Before performing the Granger causality test analysis, we
resampled the EEG signals to 1,000 Hz to match the sampling
rate of the facial expressions. Thereafter, for macro-expressions,
we performed Granger causality tests from the entire facial
region (i.e., for xi as one dimension) to 128 channels of EEG
signals (i.e., for yi as 128 dimensions). For micro-expressions, we
performed Granger causality tests from each of 13 facial regions
ROIs (i.e., for xi as 13 dimensions) to each of 128 EEG signals

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.1048199
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1048199 November 18, 2022 Time: 20:16 # 7

Zeng et al. 10.3389/fnins.2022.1048199

from all the electrodes separately (i.e., for yi as 128 dimensions).
In this study, we used the F-test at an α = 5% level of significance
to determine whether Granger causality exists.

Results

Correlation analysis

In this section, we show the results of the correlation
between micro-expression features for 13 different facial ROIs
and EEG features for these two cases when no artifact removal
was performed on the EEG signal and after artifact removal,
respectively. PSD was extracted as the EEG feature from
different bands and the MDMO features extracted from each
frame and were averaged as facial features. The R2 results of the
EEG features estimated from the micro-expression features of
the 13 different facial ROIs without artifact removal are shown
in Figure 4. The correlation results after artifact removal are
shown in Figure 5. Here, we only show the significant R2 results
when estimating EEG features from the facial features.

As shown in Figure 4, we observed significant R2 results
in the facial ROI2, ROI3, ROI4, ROI9, ROI10, and ROI12
regions when no artifact removal was performed on EEG signals.
This indicated that when micro-expressions occurred, changes
in EEG signals were closely associated with muscle activity
near the eyebrows, mouth, and chin. Notably, there were some
differences in the brain regions where changes in EEG signals
were correlated with the presence of facial muscle activity
in these six ROIs; however, we found that high-frequency
components located mainly in the frontal and temporal regions
were all closely associated with facial muscle activity in these
six regions. In addition, we found that for a few ROIs, namely,
ROI10 and ROI12 (lips, chin), high-frequency components
located in the occipital region were associated with facial muscle
movements elicited when micro-expressions appeared. The
high-frequency components located in the parietal region were
also associated with muscle movements in ROI9 and ROI10
(mouth).

According to Figure 5, we found that when artifacts were
removed from the EEG signals in all six regions, it was mainly
the high-frequency components located in the frontal region
that were correlated with the facial muscle movements caused
by micro-expressions. Moreover, comparing Figures 4, 5, we
found that there was a decrease in the degree of correlation after
artifact removal as compared with when no artifact removal was
performed on the EEG signals.

Analysis of the effect of artifacts

First, we show the results of the average percentage of
positive causality tests for different electrodes when testing for

causality from facial micro-expressions for different EEG signals
(when no artifact removal was performed on the EEG signals).
We found that an average of 11.5% of the causality tests were
positive when we tested whether the EEG signal was Granger-
caused by facial micro-expressions. Muscle activity in the facial
ROI2, ROI3, ROI4, ROI9, ROI10, and ROI12 regions (i.e., the
brow, mouth, and chin regions) had the greatest effect on the
EEG signal by up to 15%, as shown in Figure 6A. In addition,
we found that all electrodes located in the frontal and temporal
regions were significantly affected. The results are shown in
Figure 6B.

After removing artifacts from the EEG signal, we found that
the average percentage of the EEG signal affected by micro-
expressions from 13 different sub-regions was 3.7%, and the
maximum percentage of the degree of effect was 4.6%, as shown
in Figure 7A. All electrodes on the frontal region were affected,
as shown in Figure 7B. Comparing Figures 6, 7, we found that
compared to when the artifacts were not removed, the EEG
signal was affected by muscle artifacts caused by facial micro-
expressions to a lesser extent, and fewer areas were affected when
the artifacts were removed.

Finally, we noted that they were similar to the results of
the correlation analysis. This further reinforces the idea that a
significant part of the variance in the EEG signal was caused
by facial muscle artifacts. Moreover, after artifact removal from
the EEG signal, the EEG signal was much less affected by
muscle artifacts.

Discussion

In this study, we examined the effect of facial muscle artifacts
caused by micro-expressions on EEG signals. First, we recorded
facial expressions and EEG signals of 68 college participants.
We subsequently extracted the MDMO features of facial micro-
expression sequences and EEG features separately. Additionally,
we investigated the correlation between EEG features and facial
MDMO features to find possible cross-model effects of facial
muscle activities. Finally, Granger causality statistical analysis
was performed to determine the extent to which the EEG signal
was affected by facial muscle artifacts (induced by facial micro-
expressions) when micro-expressions were present. The results
showed that the average percentage of EEG signals affected
by muscle artifacts caused by facial micro-expressions was
11.5% (when no artifacts were removed from the EEG signal).
Specifically, the temporal and frontal regions were significantly
affected by muscle artifacts when compared to other brain
regions. Compared to other facial regions, the muscle activity in
the mouth and eyebrow regions had the strongest effect on EEG
signals. When artifacts were removed from the EEG signals, the
average percentage of EEG signals affected by muscle artifacts
caused by facial micro-expressions was 3.7%, with the frontal
region being the most affected.
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FIGURE 4

R2 topography depicts how many electroencephalography (EEG) features can be estimated as a result of facial movements (no artifact removal).

FIGURE 5

R2 topography depicts how many electroencephalography (EEG) features can be estimated as a result of facial movements (artifact removal).
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FIGURE 6

(A) Average percentage of significant causal relationships of facial ROIs for different electroencephalography (EEG) signals. (B) Topography of
affected brain regions (no artifact removal).

FIGURE 7

(A) Average percentage of significant causal relationships of facial ROIs for different electroencephalography (EEG) signals. (B) Topography of
affected brain regions (artifact removal).
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FIGURE 8

(Left) R2 topography of electroencephalography (EEG) features estimated from facial features. (Right) Average percentage of significant causal
relationships of facial ROIs for different EEG signals.

Notably, the results of the present study correlate with those
of Goncharova et al. (2003) and Liong et al. (2015). Liong
et al. (2015) showed that the eyebrows and the mouth were the
most effective facial regions when micro-expressions occurred.
Goncharova et al. (2003) showed that frontal muscle contraction
significantly affected frontal regions and that temporal muscle
contraction significantly affected temporal regions. In our study,
we also found that by observing the facial responses of the
participants, there were changes in muscle activity near the
eyebrows and mouth (in most participants) when micro-
expressions were present, which affects the EEG signal. Thus,
this again confirms our results. That is, the frontal and temporal
regions were significantly affected compared to other brain
regions. Muscle activity in the mouth and eyebrow regions
had a greater effect on the EEG than in other facial regions.
Furthermore, by removing artifacts from the EEG, it was found
that the degree of this effect decreased to 3.7%. The comparison
of the two effect results revealed that the EEG signal was less
affected by facial muscle artifacts after artifact removal.

Since Soleymani et al. (2015) analyzed the effect of muscle
artifacts induced by macro-expressions on EEG signals, they
concluded that the average percentage of facial muscle artifacts
caused by macro-expressions on EEG signals was 54%, with
the frontal, parietal, and occipital regions being significantly

affected. Therefore, in this study, we also analyzed the
experimentally collected macro-expressions and EEG signals;
the results of the correlation and causality analyses are shown
in Figure 8. As shown Figure 8, we observed that high-
frequency components located mainly in the frontal, temporal,
and occipital regions were closely related to the facial muscle
activity elicited when macro-expressions appeared. After further
causality test analysis, it was found that an average of 31% of
the causality tests were positive when testing whether the EEG
signal was Granger-induced by facial macro-expressions, with
the frontal, temporal, and occipital regions being significantly
affected. There were some differences between these results and
the results of the Soleymani et al. (2015).

We believe that the possible reasons for these differences are:
(1) the purpose of the experimental design was different. Our
experiment intended to induce spontaneous micro-expressions
in the participants, who were requested to try their best to
suppress their real emotions during the experiment. Therefore,
the intensity of macro-expressions in this study was lower
than normal macro-expressions. (2) This study only analyzed
the facial responses produced by participants while watching
videos with positive emotions, whereas Soleymani et al. (2015)
analyzed the facial activities produced by participants while
watching videos with different emotions (positive, negative,
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etc.). In addition, we further analyzed the EEG signals after
removing artifacts and found that high-frequency components,
mainly located in the temporal region, were closely associated
with facial muscle activity elicited when macro-expressions were
present. The average percentage of EEG signals affected by
macro-expressions was 9%, and the frontal region was affected.
This indicated that the EEG signal was less affected by artifacts
when they were removed.

Our findings provide a basis for emotion recognition based
on EEG and micro-expressions. In recent years, researchers have
started to use EEG signals and micro-expressions to recognize
emotion, but the degree and scale of contamination by artifacts
on the EEG signal caused by micro-expressions remains unclear.
In our study, the experimental results showed that the EEG
signal was less affected by facial muscle artifacts after artifact
removal than when artifacts were not removed. This suggested
that when artifacts were removed from the EEG signal, the
EEG signal used was mainly generated by neural activity in the
brain and there were limited effects caused by facial muscle
artifacts. The results of this study demonstrate the reliability
of research on emotion recognition based on EEG signals and
micro-expressions, which provide novel insight into emotion
recognition based on EEG signals and micro-expressions.

However, our study has some limitations. First, our
participants were all college students from China, hence, we
did not consider any differences between ethnic groups and
ages. Future studies should consider inviting participants from
multiple ethnic groups and multiple ages to participate in the
experiment to ensure diversity across ethnic groups and ages.
Second, our study only considered one emotion label, namely,
positive emotion, and did not investigate other emotions. This
is because Johnston et al. (2010) argued that smiling required
little preparation and smiling was usually used more frequently
than other emotional expressions. Therefore, future studies can
attempt to induce many different emotions for analysis, such
as anger and sadness. Finally, to the best of our knowledge, the
present study was the first study to explore the effect of micro-
expression-induced artifacts on EEG signals, and future studies
could further validate our results.

Conclusion

In this study, we investigated whether an EEG signal is
affected by facial artifacts caused by micro-expressions by
analyzing the relationship between micro-expressions and the
EEG signal. The results showed that the average percentage
of EEG signals affected by facial artifacts caused by micro-
expressions (when the artifacts were not removed) was 11.5%,
and that the frontal and temporal regions were significantly
affected. The average percentage of EEG signals affected after
artifact removal was 3.7%, and the frontal regions were affected.
The EEG signal was less affected by facial muscle artifacts after

artifact removal than when the artifacts were not removed.
The experimental results demonstrated that the EEG signals
produced by micro-expressions were mainly generated by brain
neural activity and there were limited effects caused by facial
muscles artifacts. This study lays the foundation for emotion
recognition based on micro-expressions and EEG signals.
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