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Compared with traditional volume space-based multivariate pattern analysis

(MVPA), surface space-based MVPA has many advantages and has

received increasing attention. However, surface space-based MVPA requires

considerable programming and is therefore difficult for people without a

programming foundation. To address this, we developed a MATLAB toolbox

based on a graphical interactive interface (GUI) called surface space-

based multivariate pattern analysis (SF-MVPA) in this manuscript. Unlike

the traditional MVPA toolboxes, which often only include MVPA calculation

processes after data preprocessing, SF-MVPA covers the complete pipeline

of surface space-based MVPA, including raw data format conversion, surface

reconstruction, functional magnetic resonance (fMRI) data preprocessing,

comparative analysis, surface space-based MVPA, leave one-run out cross

validation, and family-wise error correction. With SF-MVPA, users can

complete the complete pipeline of surface space-based MVPA without

programming. In addition, SF-MVPA is designed for parallel computing and

hence has high computational efficiency. After introducing SF-MVPA, we

analyzed a sample dataset of tonal working memory load. By comparison with

another surface space-based MVPA toolbox named CoSMoMVPA, we found

that the two toolboxes obtained consistent results. We hope that through this

toolbox, users can more easily implement surface space-based MVPA.

KEYWORDS

SF-MVPA, surface space-based MVPA, GUI, neural coding difference, fMRI

Abbreviations: STG, superior temporal gyrus; SMG, supramarginal gyrus; PCG, precentral gyrus;
SMA, supplementary motor area; IPL, inferior parietal lobe; EEG, electroencephalography; MVPA,
multivariate pattern analysis; fMRI, functional magnetic resonance imaging; SVM, support vector
machine; GLM, general linear model; BOLD, blood oxygen level dependent; CNN, convolutional
neural network; GUI, graphical interactive interface; PRoNTo, pattern recognition for neuroimaging
toolbox; NDT, the neural decoding toolbox; TDT, the decoding toolbox; dMVPA, the deep-learning-
based multivariate pattern analysis; GPU, graphics processing unit; FWE, family-wise error.
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Highlights

- A surface space-based MVPA toolbox based on a graphical
user interface and parallel computing design is proposed.

- SF-MVPA contains the complete pipeline of surface space-
based MVPA, including raw data format conversion, surface
reconstruction, raw fMRI data preprocessing, surface space-
based MVPA, statistical analysis, leave one-run out cross
validation, and family wise error correction.

- With SF-MVPA, users can perform surface space-based
MVPA from raw fMRI data to statistical results without
programming.

Introduction

Multivariate pattern analysis (MVPA) is a booming
neuroimaging data analysis technology (Mahmoudi et al., 2012;
Kuntzelman et al., 2021). In contrast to traditional univariate
statistical methods that perform calculations on a dependent
variable, such as an Electroencephalography (EEG) channel or
a voxel, MVPA takes into account the information encoded
in the distributed neural activity patterns (Treder, 2020). This
feature enables MVPA to detect neural coding differences. In the
field of functional magnetic resonance (fMRI), MVPA has been
successfully applied in many studies (Lee et al., 2011; Linke et al.,
2011; Haxby et al., 2014; Jacobsen et al., 2015; Galeano Weber
et al., 2017; Ogg et al., 2019; Czoschke et al., 2021; Mamashli
et al., 2021; Putkinen et al., 2021). Most of these MVPA studies
are based on volume space and use a 3D-spherical searchlight.
This approach has several disadvantages (Oosterhof et al., 2011).
First, due to the highly folded nature of the cerebral cortex,
a spherical searchlight might include areas of the brain that
are close in Euclidian space but not adjacent to each other.
Second, a spherical searchlight might contain non-gray matter
structures. Third, when located near the longitudinal fissure, a
spherical searchlight might even collect information from both
hemispheres. These defects might introduce interference into
the local neural patterns.

To address these issues, researchers proposed surface space-
based MVPA methods (Oosterhof et al., 2010; Chen et al.,
2011; Li et al., 2022a,b). These MVPA methods obtain circular
searchlights directly from the surface space (although there are
differences in details of acquiring searchlights). This approach
ensures that the obtained searchlights are from the adjacent
brain regions, and the obtained local neural patterns are from
the activity of the gray matter and the same hemisphere of
the brain (Chen et al., 2011). Because of these advantages,
compared with traditional volume space-based MVPA, surface
space-based MVPA has better spatial specificity and is easier to
visualize (Haynes, 2015). Although surface space-based MVPA
has advantages over volume space-based MVPA, compared

with the large number of toolboxes developed for volume
space-based MVPA, few toolboxes have been developed for
surface space-based MVPA.

Many excellent data analysis toolboxes have been proposed
for volume space-based MVPA, including the MVPA-Light
toolbox (Treder, 2020), MVPANI (Peng et al., 2020), Neurora
(Lu and Ku, 2020), CoSMoMVPA (Oosterhof et al., 2016),
PyMVPA (Hanke et al., 2009), Pattern Recognition for
Neuroimaging Toolbox (PRoNTo) (Schrouff et al., 2013),
the Neural Decoding Toolbox (NDT) (Meyers, 2013), The
Decoding Toolbox (TDT) (Hebart et al., 2015), and the
Deep-learning-based multivariate pattern analysis (dMVPA)
(Kuntzelman et al., 2021). In contrast, few toolboxes have
been developed for surface space-based MVPA. To our
knowledge, CoSMoMVPA is the only toolbox that supports
surface space-based MVPA. Although CoSMoMVPA is an
excellent surface space-based toolbox, it only contains the
pipeline after raw data preprocessing and is not based on a
graphical interactive interface (GUI). Thus, users must program
code when performing surface space-based MVPA, which is
challenging for users without a programming background.

To make the implementation of surface space-based MVPA
more convenient, we developed a GUI-based MALTAB toolbox
named SF-MVPA. In contrast to traditional MVPA toolboxes,
which often only contain calculation processes after data
preprocessing (such as MVPA-Light and CoSMoMVPA), SF-
MVPA contains the complete pipeline of surface space-
based MVPA, including raw data format conversion, surface
reconstruction, raw fMRI data preprocessing, surface space-
based MVPA, statistical analysis, leave one-run out cross
validation, and family wise error correction. Using this toolbox,
by inputting parameters and clicking the mouse, the user can
complete the complete analysis process of surface space-based
MVPA with raw fMRI data.

Unlike volume space-based MVPA, the searchlights of
surface space-based MVPA are surfaces, which makes the
recognition of searchlights actually the recognition of images.
In the field of image recognition, convolutional neural network
(CNN) is a popular classifier and has been proven to have good
image recognition ability. SF-MVPA uses CNN as an optional
classifier and adopts the surface space-based MVPA algorithm
of Li et al. (2022b). The algorithm is different from the other
surface space-based MVPA algorithms in that it uses grid-like
searchlights. Grid searchlights can be easily converted into 2D
images, which makes the algorithm suitable for using CNN for
image recognition. To be consistent with the traditional MVPA
methods, SF-MVPA also includes support vector machine
(SVM) as an optional classifier, which is one of the most
commonly used machine learning algorithms in MVPA (Peng
et al., 2020). To improve computational efficiency, SF-MVPA
adopts the parallel computing design. Parallel computing design
is used in processing processes such as data format conversion,
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surface reconstruction, data preprocessing, general linear model
(GLM) analysis, and surface space-based MVPA.

After introducing SF-MVPA, we analyzed a sample
dataset of tonal working memory load with SF-MVPA and
CoSMoMVPA to make a comparison. We analyzed the neural
coding differences between load 1 and load 4 (the number of
tones held in mind) at the 7th and 11th seconds after stimulus
onset. Although there were some differences, the two toolboxes
obtained consistent results: at the 7th second, significant neural
coding differences existed in the left supramarginal gyrus
(SMG), precentral gyrus (PCG), supplement motor area (SMA),
and bilateral superior temporal gyrus (STG). At the 11th second,
significant neural coding differences existed in the bilateral PCG.

Methods

Requirements

As shown in Figure 1, the calculation pipeline of SF-
MVPA is divided into three parts: fMRI data preprocessing,
contrast analysis (GLM), and surface space-based MVPA
analysis (including statistical analysis and cluster permutation
testing).

Functional magnetic resonance data preprocessing and
contrast analysis need to call the functions of FreeSurfer1 and

1 https://www.freesurfer.net/

FIGURE 1

Schematic diagram of SF-MVPA. In the Preprocess module, the user needs to enter parameters such as the data path, prefix of subject folders,
slice timing file, full width at half maxima (FWHM), and motion correction. After that, the user can click the buttons “1.DICOM to nii,”
“2.Reconstruct Surface,” and “Preprocess” in sequence to convert the raw data format, reconstruct the surface, and preprocess the data. In the
general linear model (GLM) analysis module, parameters such as TR, GLM contrasts, FWE threshold, number of non-null conditions, and
vertex-wise threshold (Threshold) need to be entered before performing GLM analysis. In the multivariate pattern analysis (MVPA) module,
parameters such as MVPA contrasts, cell size, grid size, vertex-wise threshold (Threshold), FWE threshold, time point (the time after stimulus
onset), algorithm, and calculator need to be entered before performing surface space-based MVPA.
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MATLAB.2 Hence, when performing fMRI data preprocessing
and contrast analysis, users need to run SF-MVPA under a
Linux operating system and need to install FreeSurfer and
MATLAB. When executing surface space-based MVPA, SF-
MVPA can run on a Linux or Windows operating system. This is
because, on the one hand, the calculation of surface space-based
MVPA does not need to call the functions of FreeSurfer; thus,
SF-MVPA can run under a Windows operating system when
performing surface space-based MVPA. On the other hand,
some users use the Linux system in the virtual machine, and
this situation may have poor compatibility with the graphics
processing unit (GPU), which may interfere with the calculation
based on the GPU. Because SF-MVPA is a parallel computing
design, that is, each subject occupies a thread for computing,
the hardware requirements are related to the amount of data.
The recommended hardware requirements are that the number
of CPU cores is greater than the number of subjects, and the
available random access memory (RAM) is three times the raw
functional data of subjects. However, SF-MVPA can still run
on computers with lower than the recommended configuration
(e.g., 8 cores and 32 GB RAM), but the computing speed
will be reduced.

Folder structure

SF-MVPA uses a simple folder structure. As shown in
Figure 2A, each subject has a folder (i.e., “Sub01,” “Sub02,”
etc., unlimited naming rules). Users need to create a folder
named “rawdata” under each subject’s folder, and copy all the
raw data, including structural data and functional data, into this
folder (directly copy files, without folder). When performing
raw data conversion, SF-MVPA will automatically create two
folders named “mri” and “bold” and some subfolders under
them under each subject folder. If users need to include slice
timing correction in data preprocessing, they need to add a
delay file in “Subjects_Dir.” The delay file has a single column of
values, one for each slice. Each value is the slice delay measured
as a fraction of the TR and ranges from +0.5 (beginning of the
TR) to −0.5 (end of the TR). Before performing contrast analysis
and surface space-based MVPA, the user needs to add paradigm
files to run folders (i.e., “003,” “004,” etc.) of each subject. The
format of the paradigm files is illustrated in Figure 2B.

Data preprocessing

Data preprocessing of SF-MVPA includes data format
conversion, surface reconstruction, and functional data
preprocessing. These processes should be carried out in
sequence. As illustrated in Figure 1, after specifying the path

2 https://www.mathworks.com/products/matlab.html

of “Subjects_Dir” and the prefix of the subject folders, the user
can click the button “1.DICOM to nii” to realize data format
conversion. In this step, the raw data of the structure image and
function image is automatically detected and converted from
digital imaging and communications in medicine (DICOM)
format (Clunie, 2001) to NII format.3 The converted structural
image data are saved in the “mri” folder, while the converted
functional image data are saved in the “bold” folder. After data
format conversion, the user can perform surface reconstruction
by clicking the button “2.Reconstruct Surface.” The main
surface reconstruction steps include motion correction and
conform, non-uniform intensity normalization, skull stripping,
volumetric labeling, white matter segmentation, smooth, inflate,
spherical registration, surface extraction, cortical parcellation,
etc. (Collins et al., 1994; Dale et al., 1999; Fischl et al., 1999a,b;
Fischl and Dale, 2000). After surface reconstruction, the
user can perform functional image data preprocessing by
clicking the button “3.Preprocess.” Preprocessing stages include
registration template creation, motion correction with motion
parameters, slice-timing correction (if used), functional-
anatomical registration, mask creation, global signal regression,
resampling raw time series to standard spaces, and spatial
smoothing (if used). In this step, there are several options to
choose from. If the user selects “per-run,” motion correction and
registration will use the middle time point of each run. If the
user selects “per-session,” motion correction and registration
will use the first time point of the first run. If the value of full
width at half maxima (FWHM) is set to 0, spatial smoothing
is not performed. If the value of the slice timing file is “None,”
slice-timing correction is not performed. If the user needs to
perform slice-timing correction, then the delay file needs to be
specified.

Contrast analysis

After data preprocessing, users can click the button “4.GLM
analysis” to perform traditional contrast analysis. First-level and
second-level fMRI data analyses were sequentially performed
in this step. First-level analysis includes constructing the
design matrix for each run, fitting the GLM, saving regression
coefficients, and computing contrasts and significances of
contrasts. After that, the analysis results of the first-level of all
the sessions were concatenated into one multi-frame file, which
is suitable for second-level analysis. A random-effects GLM
was then conducted at the second-level analysis. To correct
for multiple comparisons, the data were tested against the pre-
cached simulation results of a Monte Carlo simulation. The
user needs to specify the vertex-wise threshold [−log10(p)] and
cluster-wise threshold (p) in SF-MVPA to correct for multiple
comparisons. In addition, the TR, GLM Contrasts, and number

3 https://nifti.nimh.nih.gov/
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FIGURE 2

Folder structure of SF-MVPA and format of the stimulus paradigm file. (A) The folder structure of SF-MVPA. All data are stored in the folder
“Subjects_Dir” (data path). Each subject has a folder (e.g., “Sub01”). Subject folders must have the same prefix (e.g., Sub). If the user wants to
perform slice timing correction in the preprocessing process, then the user needs to copy the delay file that contains the slice timing
information to “Subjects_Dir.” All raw data, including structural and functional data, need to be copied to the folder “rawdata.” After performing
raw data conversion (by clicking “1.DICOM to nii”), the structural data are stored in the folder “mri” while the functional data are stored in run
folders such as “003,” “004,” which are automatically created by SF-MVAP (the number corresponds to the run number). Before GLM analysis
and multivariate pattern analysis (MVPA), the stimulus paradigm files need to be copied to the run folders. (B) The format of the stimulus
paradigm files. The format has four columns, which are the onset times (seconds) of the stimuli, the stimulus codes (0 represent the baseline
condition), the durations of stimuli (seconds), and the weights of stimuli.

of non-null conditions are also required for contrast analysis.
GLM Contrasts allow formats such as (2 vs. 4), (1 3 vs. 2 4 5)
and multiline input such as (1 vs. 2), another line, (3 vs. 4) to
perform multiple comparative analyses at one time.

Surface space-based multivariate
pattern analysis

SF-MVPA adopts the surface space-based MVPA algorithm
of Li et al. (2022b). The analysis stream is shown in Figure 3. The
algorithm is based on the spherical template space of fsaverage,
which is offered by FreeSurfer and has been included in SF-
MVPA. This template space has a resolution of approximately
0.9 mm (Polimeni et al., 2019), which is much finer than
the typical resolution of 2–3 mm of fMRI data (Lutti et al.,
2013; Goense et al., 2016). Directly performing surface space-
based MVPA in the template space of fsaverage cause repeated
calculations and increase the calculation time. Therefore, the
resolution of the template space is reduced. As illustrated
in Figure 3A, the resolution reduction operation is based
on the segmentation of the icosahedron. The edges of the
icosahedron are divided into 40 equal parts. The corresponding
points are connected to form vertices. These vertices are
mapped onto a sphere and then transplanted to the spherical

fsaverage template. Based on the distance, the vertices on the
fsaverage template are grouped into these transplanted vertices.
By doing this, the fsaverage template is divided into regular
hexagons. These regular hexagons constitute new vertices, and
the resolution of the fsaverage template is therefore reduced. By
reducing the resolution, the number of vertices in the fsaverage
template is reduced from 163,842 to 16,002, a difference of
approximately 10 times. The fsaverage template has a resolution
of approximately 0.9 × 0.9 × 0.9 mm ≈ 0.73 mm3. Reducing
the resolution of the fsaverage template by a factor of 10 results
in a resolution of 7.3 mm3

≈ 1.9 × 1.9 × 1.9 mm, which is still
better than or close to the resolution of typical fMRI images.
Therefore, reducing the resolution of fsaverage does not affect
the spatial accuracy of surface space-based MVPA but reduces
the computational complexity.

SF-MVPA uses grid-like searchlights. As illustrated in
Figure 3B, for each point p (α, β) on the fsaverage template
(reduced resolution), a rotation operation is performed. The
template is rotated so that point p is rotated to point z (0, 0).
After that, a grid around point p (0, 0) is constructed. The user
can set the parameters of the grid [size of the cell, number
of cells of each side (n1)]. The default value is 1/35 radians
per cell and 11 cells per side. BOLD signals within each cell
were averaged and formed an n1 × n1 image. A circle with
a radius of r (half the length of the grid side) was applied to
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FIGURE 3

Surface space-based multivariate pattern analysis (MVPA) stream of SF-MVPA, which is adopted from Li et al. (2022b). (A) Surface dividing
method. The spherical space of fsaverage is divided to avoid repeated calculation. The edges of the icosahedron are divided into 40 parts. The
corresponding points are connected, forming new vertices. The vertices on the divided icosahedron are projected to a sphere and mapped to
the spherical space of fsaverage. The vertices on the spherical space of fsaverage are grouped into the nearest vertices projected from the
divided icosahedron, forming the downsampled spherical space of fsaverage. (B) Surface space-based MVPA streams. For each vertex p (α, β) on
the downsampled spherical space of fsaverage, a rotation operation is performed. Vertex p is rotated to vertex z (0, 0). After that, a grid-like
searchlight is acquired. The BOLD signals of the vertices (from the non-down-sampled fsaverage space) in the cells are averaged, forming an
n1 × n1 image (n1 represents the number of cells of each side of the grid). A circle with a radius of n1/2 is applied to the image, forming a
circular searchlight. The circular searchlight serves as the input data in the following analysis of the CNN stream. In the support vector machine
(SVM) stream, the circular searchlight is converted into a one-dimensional vector and serves as the input data.

the grid (data outside the circle were set to zero), forming a
circular searchlight. After that, there are two surface space-based
MVPA streams: the CNN stream and the SVM stream. In the
CNN stream, a CNN composed of an input layer (n1 × n1),
a convolution layer (n1 × n1, padding n1), a relu layer, a max
pooling layer (2,2), a fully connected layer (equal to the number
of categories to be classified), a softmax layer, and a classification
layer is constructed. The CNN is trained by the training set
and then used to classify the test set. A leave-one-run-out cross
validation strategy is used. In this strategy, one run serves as the
test set, and the remaining runs serve as the training set. Each
run serves as the test set once. The classifying results of each run
are averaged for each vertex of fsaverage (reduced resolution).
After that, the averaged classifying results are compared with
the probability of chance (1/the number of conditions involved)
using a one-tailed t-test. The sizes of the activated clusters

are detected with a recursive algorithm: if an activated vertex
has not been grouped into a cluster, then it is grouped into a
new cluster. If some of its adjacent vertices are also activated
and have not been grouped into a cluster, then this vertex
and these adjacent activated vertices are grouped into the same
cluster. This grouping process is then recursively called by these
activated adjacent vertices. The recursive process automatically
stops when the entire cluster has been traversed. Then, this
recursive process is executed by the remaining activated vertices
that have not been grouped into a cluster. Using this recursive
algorithm, all cluster sizes are obtained.

To correct for multiple comparisons, non-parameter
permutation tests (Nichols and Holmes, 2002; Oosterhof et al.,
2010; Czoschke et al., 2021; Erhart et al., 2021) were performed.
The sign of the t-test result of each vertex is randomly flipped,
and the size of the largest cluster is recorded. This process is
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FIGURE 4

File stream of SF-MVPA. The preprocess module is green and the SF-MVPA module is cyan. Raw fMRI data (.dcm, IMA files, etc.) are stored in
Sub0X/rawdata. After format conversion, structure data are stored in/Sub0X/mri/001.mgz and functional data are stored
in/Sub0X/bold/00X/f.nii. Surface reconstruction produces a lot of files, which are stored in the folder/Sub0X/mri. After data preprocessing,
functional data are stored in/Sub0X/bold/00X/fmcpr.sdf.sm0.fsaverage.l(r)h.nii.gz. The string “fmcpr.sdf.sm0.fsaverage.l(r)h.nii.gz” has meanings:
“mc” means motion correction, “pr” means per-run, “sdf” means that the preprocessing process includes slice timing correction, “sm0” means
do not perform spatial smoothing, “fsaverage” means that the data uses the template of fsaverage. The rotating operation produces two files
(i.e., 35_11_L.mat and 35_11_R.mat), which are stored in the folder/Subjects_Dir/format. Both files contain a 16,002 × 124 cell array. Each row
of the cell array corresponds to a point in the downsampled fsaverage template. The first column contains the spherical coordinates (α, β). The
2∼122 columns (11 × 11 = 121 cells) contain the vertices (of the undownsampled fsaverage template) covered by each cell. The 123th column
contains the vertices (of the undownsampled fsaverage template) covered by the current point. The 124th column contains the adjacent points
of the current point, which are used to determine the sizes of the clusters in the recursive process. Basing on the two cell arrays (lh and rh), the
data of grid-searchlight are extracted from the preprocessed functional data. The data of grid-searchlight are cell arrays of 16,002 × 1, each cell
contains an array of 33(34) × 121. The number 33(34) corresponds to the trials in a run. The file name (35_11_7.mat) of the grid-searchlight data
means that: the cell size is 1/35 radian, each edge of the grid has 11 cells and the time point is the 7th second.

repeated 2,000 times, simulating the largest size of the activated
clusters generated by random data. The largest sizes of the 2,000
times are recorded and sorted in descending order. Then, the
cluster sizes of the surface space-based MVPA are compared
to the 20th simulated size, and only clusters larger than this
simulated size are retained, corresponding to family-wise error
(FWE) < 0.01 (20/2,000 = 0.01). Users can set the vertex-wise
and family-wise thresholds in SF-MVPA.

In the SVM stream, the n1 × n1 image is transformed to
a 1 × n12 vector. This vector serves as the input data in the
training and classifying processes. Except for this, the other
steps, such as the t-test and the permutation tests, are the same
as the CNN stream.

The file stream of SF-MVPA is shown in Figure 4.

Analysis of the sample dataset

An fMRI sample dataset is provided to familiarize users
with and test the toolbox. The dataset is from a tonal working

memory load experiment (Li et al., 2022a). In this experiment,
the subjects were presented with a sequence of tones, and 20 s
later, they were presented with another sequence of tones. The
number of tones is equal, but there is a 50% probability that one
tone is different (a difference of two natural tones). The subjects
were asked to judge whether the two sequences of tones were the
same with two buttons and were instructed to remember the first
sequence of tones as clearly as possible to achieve the highest
possible correct judgment rate. The experimental paradigm is
illustrated in Figure 5.

The sequences of tones have 1–4 tones, corresponding
to tonal working memory loads of 1–4. There was another
condition in this experiment in which no sound was played.
This condition was treated as load 0 and was used as a
baseline condition. Each condition was repeated 20 times and
presented in random order. There were 23 subjects (12 male,
right handed, 18–23 years old) in total and the experiment was
divided into three runs. The fMRI data were collected with
a 3T Siemens Prisma_fit scanner. The T1-weighted structural
data (1 × 1 × 1 mm) and T2∗-weighted functional data
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FIGURE 5

Illustration of sample dataset. A string of tones (0–4 tones) is played. After 20 s, another string of tones is played. The number of tones is equal.
There is a 50% probability that one tone is different. Subjects were asked to judge whether the two strings of tones were the same.

(2.5 × 2.5 × 2.5 mm, TR = 1 s) were collected. For detailed
scanning parameters, please refer to Li et al. (2022a).

For each subject, we copied all structural and functional
raw images into the folder “rawdata.” After that, we copied
the delay file, which contains the information of slice timing,
into the folder “Subjects_Dir” (i.e., the parent folder of the
subject folders, the folder where all the data were stored).
Then, we specify the “Subjects_Dir” (data path), the prefix of
subject folders (to enable SF-MVPA to know which folders
are subject folders), the slice timing file (the delay file in
“Subjects_Dir”), FWHM (0, which means do not perform spatial
smoothing), and motion correction (per-run) in SF-MVPA.
After doing this, we sequentially clicked “1.DICOM to nii,”
“2.Reconstruct Surface,” and “3.Preprocess” to perform data
preprocessing. It is worth mentioning that if a data processing
process is executed, all buttons on the SF-MVPA are disabled,
and the word “calculating” is displayed at the bottom of the SF-
MVPA panel. After data preprocessing, we copied the stimulus
paradigm files to the run folders (i.e., folders named like
“003,” “004,” etc.). Then, we analyzed the local neural coding
difference between load 1 and load 4 at the 7th and 11th
seconds with SF-MVPA. We specified MVPA Contrasts “1 vs.
4” (allowing formats such as “2 3 vs. 1 4” and “0 1 2 3 4”),
Cell size (1/35 radians), Grid size (11), vertex-wise threshold

(3, corresponding to p < 0.001), FWE (0.01), and Time Point
(7 or 11, one number in one time) in SF-MVPA. After that,
we clicked the button “5.MVPA Analysis” to perform surface
space-based MVPA and statistical analysis. In this step, both
SVM and CNN were tested for comparison. To confirm whether
SF-MVPA works properly, we performed the same analyses
using CoSMoMVPA. Since CoSMoMVPA does not contain the
functions of data preprocessing, we used the preprocessed fMRI
data generated by SF-MVPA as the input data. CoSMoMVPA
uses a geodesic distance metric method to construct disk
searchlights (Oosterhof et al., 2010). In this manuscript, SF-
MVPA used a radius of 100 (radius of the spherical space of
fsaverage) × 1/35 × 11/2 ≈ 15.7. To be consistent with SF-
MVPA, in the analysis of CoSMoMVPA, we used a radius of
15. In addition, CoSMoMVPA is also based on icosahedral
segmentation. We used the same segmentation as SF-MVPA in
the analysis of CoSMoMVPA, that is, each edge is divided into
40 equal parts. The analysis stream of CoSMoMVPA followed
the instructions in the official website of CoSMoMVPA.4 The
three-folded cross validation and FWE correction were the same
as those for SF-MVPA.

4 http://www.cosmomvpa.org/matlab/demo_surface_searchlight_
lda.html
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FIGURE 6

Surface space-based multivariate pattern analysis (MVPA) results (load 1 vs. load 4) of CosMoMVPA, SF-MVPA (SVM), and SF-MVPA (CNN).

Results

As illustrated in Figure 6 and Table 1, CoSMoMVPA,
SF-MVPA (SVM), and SF-MVPA (CNN) obtained similar
results. For CoSMoMVPA, in the 7th second, neural coding
differences between load 1 and load 4 existed in the
bilateral STG and left SMG, PCG, and SMA. In the 11th
second, neural coding differences between load 1 and load
4 existed in the bilateral PCG. For SF-MVPA (SVM), in

the 7th second, neural coding differences between load 1
and load 4 existed in the bilateral STG, left PCG, SMG
and SMA. In the 11th second, neural coding differences
between load 1 and load 4 existed in the bilateral PCG.
For SF-MVPA (CNN), in the 7th second, neural coding
differences between load 1 and load 4 existed in the
bilateral STG and left SMG. In the 11th second, neural
coding differences between load 1 and load 4 existed in the
bilateral PCG.
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TABLE 1 Multivariate pattern analysis (MVPA) results of load 1 vs. load 4.

Toolbox Time Peak
intensity

Size of
cluster (mmˆ2)

Region Talairach coordinates

x y z

CosMoMVPA 7 s 6.0 435 Superior temporal gyrus left −59 −14 −2

7 s 5.0 79 Superior temporal gyrus left −47 −39 17

7 s 4.9 147 Superior temporal gyrus left −51 −2 −8

7 s 6.5 103 Supramarginal gyrus left −45 −39 23

7 s 4.2 60 Supplement motor area left −7 −1 56

7 s 6.8 964 Superior temporal gyrus right 56 −16 3

7 s 4.2 20 Superior temporal gyrus right 51 −33 15

7 s 4.0 12 Superior temporal gyrus right 66 −25 5

11 s 5.3 163 Precentral gyrus left −47 3 40

11 s 5.4 53 Precentral gyrus right 50 1 42

SF-MVPA(SVM) 7 s 6.8 1101 Superior temporal gyrus right 52 −11 −1

7 s 7.0 633 Superior temporal gyrus left −60 −16 2

7 s 4.1 65 Precentral gyrus left −46 3 40

7 s 6.3 181 Supramarginal gyrus left −46 −34 25

7 s 5.5 26 Supplement motor area left −11 9 60

7 s 4.8 23 Superior temporal gyrus right 49 −33 15

11 s 5.3 246 Precentral gyrus left −45 0 42

11 s 4.2 54 Precentral gyrus right 52 0 42

SF-MVPA(CNN) 7 s 5.5 346 Superior temporal gyrus left −63 −17 0

7 s 5.1 115 Superior temporal gyrus left −53 2 −7

7 s 5.4 92 Supramarginal gyrus left −47 −36 26

7 s 7.0 888 Superior temporal gyrus right 56 −8 0

11 s 4.9 201 Precentral gyrus left −49 −1 43

11 s 4.0 34 Precentral gyrus right 51 −1 44

Discussion

Surface space-based MVPA has attracted increasing
attention because it can avoid the interference of non-
gray matter tissues and avoid collecting information from
discontinuous brain regions. Some surface space-based MVPA
algorithms have been proposed (Oosterhof et al., 2010; Chen
et al., 2011; Li et al., 2022a,b). However, due to the difficulty of
obtaining searchlight from the surface space, these algorithms
all use complex surface searchlight acquisition methods,
which makes the programming implementation of these
algorithms difficult. In addition, surface space-based MVPA
often involves programming of multiple languages, such as shell
and MATLAB (Li et al., 2022a), which makes it difficult for
neuroimagers without a programming background to realize
surface space-based MVPA. To address this, in this manuscript,
we introduced a GUI and surface space-based MVPA toolbox
named SF-MVPA. The aim of developing SF-MVPA is to reduce
the programming effort of surface space-based MVPA and
make surface space-based MVPA more accessible.

Theoretically, using SF-MVPA, users can realize surface
space-based MVPA without programming, which is very
friendly to users without programming background. A user
of SF-MVPA only needs to place the raw fMRI data and
paradigm files in the specified locations, and then can complete

surface space-based MVPA step by step by inputting parameters
and clicking the mouse. The complete pipeline of SF-MVPA
includes raw data format conversion, surface reconstruction,
raw fMRI data preprocessing, surface space-based MVPA,
statistical analysis, leave one-run out cross validation, and family
wise error correction. Without SF-MVPA, the programming
implementation of these processes will be challenging and time-
consuming.

In addition, due to its parallel computing design, SF-MVPA
has a high computing efficiency. In the step of surface space-
based MVPA, it took approximately 3 h for CoSMoMVPA
to complete the calculation of a subject. Using SF-MVPA,
due to the parallel computing design, the analysis of this
step of all subjects was completed in approximately 3 h,
which greatly shortened the calculation time. In addition to
surface space-based MVPA, in SF-MVPA, other data processing
steps such as data format conversion, surface reconstruction,
data preprocessing, and GLM analysis also adopt a parallel
computing design. When testing SF-MVPA, we found that a
skilled user can complete the analysis of the sample dataset
(from raw data to MVPA results) within 48 h.

In this manuscript, we offered a sample dataset and analyzed
it with SF-MVPA and CoSMoMVPA. The results showed that
these two toolboxes obtained similar results. SF-MVPA (SVM),
SF-MVPA (CNN), and CoSMoMVPA found that in the 7th
second, the bilateral STG, left SMG, and PCG had significantly
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different neural coding for load 1 and load 4, and in the 11th
second, the bilateral PCG had significantly different neural
coding for load 1 and load 4. The differences are: in the 7th
second, CoSMoMVPA and SF-MVPA (SVM) found that the
left SMA and PCG had significantly different neural coding for
load 1 and load 4, while SF-MVPA (CNN) did not locate this
area. Although there are differences, the area of the different
areas is relatively small. Therefore, we argue that SF-MVPA
and CoSMoMVPA have a similar ability to reveal neural coding
differences. It is worth mentioning that SF-MVPA (CNN) does
not achieve better results than SF-MVPA (SVM). In contrast,
SF-MVPA (SVM) found activation of the left SMA and PCG at
the 7th second, but SF-MVPA (CNN) did not. We think this
may be caused by the CNN parameters not being set properly.
In the process of developing SF-MVPA, we focused more on
including the complete pipeline of surface space-based MVPA
into SF-MVPA, and did not spend much time on the research
of CNN parameters. We believe that with the version iteration
of SF-MVPA in the future and the discovery of better and
appropriate CNN parameters, the ability of SF-MVPA (CNN)
to detect neural coding differences will be enhanced.

Conclusion

SF-MVPA is an open source, GUI based MATLAB toolbox
for surface space-based MVPA. It is easy to use and has
high computing efficiency because of its parallel computing
design. Unlike traditional MVPA toolboxes, which often only
contain MVPA related calculations, SF-MVPA contains the
complete pipeline of surface space-based MVPA, including
raw data format conversion, surface reconstruction, data
preprocessing, surface space-based MVPA, and statistical
analysis. With SF-MVPA, the user can complete the from
raw data to statistical results pipeline of surface space-based
MVPA without programming, which reduces the difficulty of
the implementation of surface space-based MVPA.
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