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Bayesian multisource data
integration for explainable
brain-behavior analysis

Rong Chen*

Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of

Medicine, Baltimore, MD, United States

Di�erent data sources can provide complementary information. Moving from

a simple approach based on using one data source at a time to a systems

approach that integrates multiple data sources provides an opportunity to

understand complex brain disorders or cognitive processes. We propose a

data fusion method, called Bayesian Multisource Data Integration, to model

the interactions among data sources and behavioral variables. The proposed

method generates representations from data sources and uses Bayesian

network modeling to associate representations with behavioral variables. The

generated Bayesian network is transparent and easy to understand. Bayesian

inference is used to understand how the perturbation of representation is

related to behavioral changes. The proposed method was assessed on the

simulated data and data from the Adolescent Brain Cognitive Development

study. For the Adolescent Brain Cognitive Development study, we found

di�usion tensor imaging and resting-state functional magnetic resonance

imaging were synergistic in understanding the fluid intelligence composite and

the total score composite in healthy youth (9–11 years of age).

KEYWORDS

Bayesian network, brain-behavior analysis, explainable AI, Bayesian inference, data

fusion

1. Introduction

A central topic in neuroscience is understanding the association between the brain

and behavior in normal and diseased states. Neuroimaging provides a non-invasive tool

to study brain structure and function in vivo and is a powerful tool for brain-behavior

analysis. A brain characterization framework is referred to as a data source (“source”

here means the source or cause of a particular data feature). A data source can be an

imaging method such as resting-state functional magnetic resonance imaging (fMRI);

or it can be a kind of feature from an imaging method, for example, structural MRI

can generate four data sources: volume, thickness, surface, and curvature. Most existing

neuroimaging studies focus on a single data source. Many brain disorders are complex

diseases. It’s highly unlikely that one source will be able to fully capture the brain

disorder. Different sources can provide complementary information. Moving from a

simple approach based on using one source at a time to a systems approach that

integrates multiple sources provides an opportunity to identify composite neuroimaging

biomarkers for brain disorders.
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Explainable AI (XAI) aims to develop AI algorithms

in which the processes of action (e.g., predictions or

recommendations) can be easily understood by users.

Explainable models enable users to understand and

appropriately trust the developed models. Interpreting the

decision-making process of models in the biomedical domain is

especially important.

We propose a method, called Bayesian Multisource Data

Integration (BAMDI), to model the interactions among

data sources and behavioral variables. BAMDI generates

a representation from a data source and associates the

representation with behavioral variables. The generated

representation is referred to as embedding. The embedding is

a set of vectors. Each vector is referred to as a factor. BAMDI

has the following features. First, it centers on brain-behavior

analysis. Many data integration methods focus on generating

shared representation and cannot answer the question of how

cross-source interactions are related to the behavior (Geenjaar

et al., 2021; Zhang et al., 2022). In contrast, BAMDI represents

interactions among different sources and behavioral variables

as a Bayesian network. Brain-behavior analysis is the core of

BAMDI. Second, BAMDI is an XAI method. Unlike some black-

box methods, the Bayesian network generated by BAMDI is

transparent and easy to understand. We use Bayesian inference

to understand how the perturbation of a factor is related to the

behavioral change.

Various Bayesian fusion methods for neuroimaging data

have been proposed. Wei et al. developed a Bayesian fusion

method to provide informative (empirical) neuronal priors—

derived from dynamic causal modeling of electroencephalogram

data—for subsequent dynamic causal modeling of fMRI

data (Wei et al., 2020). Kang et al. proposed a Bayesian

hierarchical spatiotemporal model to combine diffusion tensor

imaging (DTI) and fMRI data (Kang et al., 2017). This

method uses DTI-based structural connectivity to construct

an informative prior for functional connectivity estimation.

A parametric Bayesian multi-task learning based approach

is developed to fuse univariate trajectories of neuroimaging

features across subjects (Aksman et al., 2019). This Bayesian

method fuses neuroimaging data across subjects, instead of

modalities. Different from the above methods, the proposed

method centers on modeling the interactions among data

sources and behavioral variables with Bayesian network

modeling, an XAI method.

In what follows, we first describe the overall design of

BAMDI and its constituent modules. Following this, we applied

BAMDI to simulated data to establish face validity. In other

words, to ensure that the proposed scheme can recover the

known brain-behaviormappings used to generate synthetic data.

After this, we applied BAMDI to empirical data—from a publicly

available databank—to characterize the relationship between

MRI data from children, and their behavioral phenotypes as

assessed with a battery of standard neurocognitive instruments.

2. Methods

2.1. Background

One of the foundations of BAMDI is Bayesian network

modeling (Pearl, 1988; Koller and Friedman, 2009). A Bayesian

network B = {G,2} is a probabilistic graphical model, where

G = {V , E} is a directed acyclic graph. A nodeX inV is a random

variable in the problem domain. E is the edge set. A parent node

of X is a node from which there exists a directed edge to X. The

parent set of X is denoted by pa(X). The local distribution is

the conditional distribution P(X|pa(X)). The full specification of

local distribution is the parameterization of the network. 2 is

the set of parameters. The joint distribution can be represented

compactly: P(V) =
∏

i P(Xi|pa(Xi)). In BAMDI, we adopt

the discrete Bayesian network representation and all nodes are

discrete variables because the discrete Bayesian network can

represent any kind of distribution among discrete variables and

has high representation power. In a discrete Bayesian network,

P(Xi|pa(Xi)) is a conditional probability table. For node Xi, the

conditional probability θijk = P[Xi = k|pa(Xi) = j] is the

probability that node Xi assumes state k when the parent set of

Xi assumes state j. If Xi has no parents, then θijk is the marginal

distribution of Xi. 2 = {θijk} is the parameters of discrete

Bayesian network.

Bayesian network structure learning aims to learn G.

Bayesian network parameter learning is the process to estimate

2. Score-based structure learning methods use a score that

reflects how well the data support the structure and search

for a structure that can optimize the fitness score. For discrete

Bayesian networks, a widely used score is the Bayesian Dirichlet

equivalent uniform (BDeu) score (Heckerman et al., 1995).

Bayesian network inference performs queries about

probability distribution once some evidence about variables is

available. The task of inference is to compute P(Y|X = x), the

posterior distribution of the query variables Y, conditioned on

X = x. In this paper, we use the algorithm in Lauritzen and

Spiegelhalter (1988) to solve the inference problem.

2.2. Bayesian multisource data
integration

The basic idea of BAMDI is as follows. In our data

generation model, we imagine that there exist various brain

states that generate a variety of neuroimaging data features.

For example, being in one state or another state determines

the pattern of functional connectivity in regional resting-state

fMRI time courses. To model brain-behavior relationships,

we assume that brain states (i.e., “factors”) cause a particular

behavioral disposition that is reflected in behavioral measures

or scores. That is, the brain states are the parent nodes of

behavioral states which can be measured by behavioral variables.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1044680
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen 10.3389/fnins.2022.1044680

FIGURE 1

The BAMDI algorithm.

There can be many different kinds of brain states that may,

or may not, interact in causing a particular behavioral state.

Similarly, a particular behavioral state can be caused by one or

more brain states. The problem then is to identify the brain-

behavior associations in terms of the structure of a Bayesian

network. This is accomplished using Bayesian network structure

learning, following the identification of brain states using a

clustering algorithm.

BAMDI learns a Bayesian network B from the observed

data D. It includes these main modules: embedding learning,

Bayesian network learning, and inference. The algorithm is

depicted in Figure 1. For source j, the feature set Fj is a

vector with dimension |Fj|, where |Fj| is the cardinality of

Fj. For a study with I subjects, the observed data Sj is an

I × |Fj| data matrix. For a study with J data sources and K

behavioral variables, the whole dataset includes {F1, . . . , FJ} and

the associated behavioral variables B = {B1, . . . ,BK}.

The first module is embedding learning. For each data

source, we use graph-based clustering to generate an embedding.

For Sj, we group subjects into clusters. We normalize variables

in Fj to zero-mean and unit variance. For subjects i1 and

i2, we calculate the Euclidean distance di1,i2 and obtain the

similarity score as 1/(1 + di1,i2 ). For a study with I subjects,

this step generates an I × I similarity matrix that can be

treated as a weighted graph. Then we use the multi-level

modularity optimization algorithm (Blondel et al., 2008) to

detect community structures in the weighted graph. The number

of communities is determined by the algorithm. If subjects i1

and i2 belong to the same community, they are in the same

cluster. Clustering generates a partition of the subject space. We

convert this categorical variable into the embedding with one-

hot encoding. Each cluster is associated with a binary variable

that represents whether a subject belongs to the cluster (0—no,

1—yes). We use C
j
l
to denote the lth factor of the embedding

for source j. Cj = {C
j
1, . . . ,C

j
L}. For example, if the clustering

algorithm generates 5 clusters, then the embedding contains 5

binary factors.

The second module is Bayesian network learning. We

construct a Bayesian network B to describe interactions among

{C1, . . . ,CJ ,B}.We use Bayesian network classifier with inverse-

tree structure (BNCIT) to solve this problem (Chen and

Herskovits, 2005a,b). BNCIT is an efficient Bayesian network

learning algorithm. In BNCIT, the parent set of a node in

B is a subset of {C1, . . . ,CJ}. There are no edges from B to

{C1, . . . ,CJ}. We adopt this kind of Bayesian network structure

because we focus on studying how the embedding will affect

behavioral variables. For a node X in B, we search for a subset

Cs of {C1, . . . ,CJ} which can maximize the BDeu score for

structure Cs → X. That is, the parent set of X is determined

by C∗ = argmaxCs BDeu(Cs → X). This search process runs in

a node-by-node fashion. After structure learning, the parameters

are estimated by the maximum a posteriori method.

The inference module centers on explaining the generated

model. The Bayesian network structure reveals important

brain-behavior patterns. If the parent set of a behavioral

variable includes factors from different data sources, then these

sources are synergistic regarding this behavioral variable. If two

behavioral variables have shared parent nodes, then these two

behavioral variables have a shared brain mechanism. If the

factors from a specific data source j are not associated with any

behavioral variables, then source j provides little information

about behaviors or source j is redundant.

A factor is a binary variable. We use two scores, divergence

and mode change, to quantify how the change of factor C’s state

influences the marginal distribution of behavioral variable B by

comparing P(B|C = 0) and P(B|C = 1). Both P(B|C = 0)

and P(B|C = 1) are discrete probability distributions.

We calculate the Jensen–Shannon divergence which is a

symmetrized and smoothed version of the Kullback–Leibler

divergence (Lin, 1991). For distributions p and q, the Kullback–

Leibler divergence is defined as DKL(p‖q) =
∑

p log
p
q .

The Jensen–Shannon divergence is defined as DKL(p‖m) +

DKL(q‖m), wherem = (p+q)/2 andDKL(p‖m) is the Kullback–

Leibler divergence between p and m. The Jensen–Shannon

divergence is between 0 (identical) and 1 (maximally different)

when the base 2 logarithm is used. For mode change, if the mode

of P(B|C = 0) is different from that of P(B|C = 1), the value of

this score is 1; otherwise, it is 0.

3. Results

3.1. Simulated data

We generated simulated data with three data sources (M1,

M2, and M3) and four behavioral variables (BV1, BV2, BV3,

BV4). Sources M1, M2, and M3 included 10, 10, and 30

variables, respectively. Source M1 included 2 clusters: samples

1–50 and 151–200 were sampled from a multivariate Gaussian

distribution with mean = {3, . . . , 3} and samples 51–150 were
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FIGURE 2

The Bayesian networks for the simulated data. (A) Is the ground-truth Bayesian network model to generate the simulated data and (B) is the

Bayesian network generated by BAMDI. In the ground-truth model, BV1 is associated with M1, BV2 is associated with M2, and BV3 is associated

with both M1 and M2. In the model generated by BAMDI, M1.C1 is factor 1 from source M1. M2.C1 is factor 1 from source M2. Other factors

were not associated with any behavioral variables and were not shown in the figure. The model generated by BAMDI matches the ground-truth

model perfectly.

sampled from a multivariate Gaussian distribution with mean

= {8, . . . , 8}. Source M2 included 2 clusters: samples 1–150

were sampled from a multivariate Gaussian distribution with

mean = {15, . . . , 15} and samples 151–200 were sampled from

a multivariate Gaussian distribution with mean = {18, . . . , 18}.

For source M3, all samples (1–200) were generated from a

multivariate Gaussian distribution with mean= {2, . . . , 2}.

Let M1 be a categorical variable to represent the cluster

structure of source M1. M1 = 0 for samples 1–50 and 151–

200 and M1 = 1 for samples 51–150. M2 = 0 for samples

1–150 and M2 = 1 for samples 151–200. BV1 was a noisy

version of M1 with flipping noise 0.1. BV2 was a noisy version

of M2 with flipping noise 0.1. BV3 was a noisy version of

[M1 OR M2]. BV4 was randomly sampled from {0, 1} and was

not associated with M1 or M2. M3 and BV4 were isolated

variables. M3 was not associated with any behavioral variables

and BV4 was not associated with any sources. We included

them to assess whether BAMDI can handle isolated sources and

behavioral variables.

BAMDI detected two, two, and four clusters for sources

M1, M2, and M3, respectively. There were eight factors in the

generated embedding (two of them from M1, two of them from

M2, and four of them from M3). Figure 2 is the generated

Bayesian network. In this figure, M1.C1 is factor 1 from source

M1. M2.C1 is factor 1 from source M2. Among these factors,

two of them (M1.C1 and M2.C1) were associated with some

behavioral variables. Other factors were not associated with any

behavioral variables and were not shown in the figure. BV4

was not associated with any factors and was not shown in the

figure. There are important brain-behavior patterns that can

be elucidated from the Bayesian network. First, the Bayesian

network revealed that BV1 was associated with source M1, BV2

was associated with source M2, and BV3 was associated with

sources M1 and M2. This is expected. Second, BV1 and BV3 had

a shared brainmechanism becauseM1.C1 was a common parent

node. BV2 and BV3 had a shared brain mechanism because

M2.C1 was a common parent node. Third, sources M1 and M2

were synergistic regarding BV3 becauseM1.C1 andM2.C1 were

jointly predictive of BV3.

3.2. The Adolescent Brain Cognitive
Development study

In this experiment, participant data were obtained from

the baseline Adolescent Brain Cognitive Development (ABCD)

study (release 3.0). 11875 youth (baseline 9–11 years of age)

were recruited. Written informed consents were obtained from

all parents. All children provided assent to a research protocol

approved by the institutional review board at each study site.

Details of ABCD MRI acquisition and sequence parameters are

in Casey et al. (2018).

Our analysis included these MRI modalities: DTI and

resting-state fMRI (rs-fMRI). For DTI, the ABCD database

provides a variable for imaging quality. Low quality DTI data

were excluded from our analysis. For DTI, standard measures

related to white matter microstructural tissue properties were

calculated. We used Fractional Anisotropy (FA) which is a

measure of the degree of anisotropic water diffusion within

a region. FA was averaged across voxels within the Destrieux

region-of-interest (ROI) of sub-adjacent white matter. This

process generated 148 features (2 hemispheres × 74 regions).

The average measures for white matter voxels in the left

hemisphere, right hemisphere, and whole brain were also

calculated to represent global effects. There were 151 DTI-

derived features. To remove batch effects, we used the ComBat

algorithm (Fortin et al., 2018) to harmonize these DTI features.

Head motion is a major problem in rs-fMRI and leads to

spurious findings. For a 4D rs-fMRI volume, the ABCD database

provides information about the total number of frames and the

number of frames with low motion. We generated a quality

score for motion that was defined as the number of frames with

low motion divided by the total number of frames. The quality

score was used as an indicator of the overall motion level. We

selected subjects with at least half of the frames without excessive

head motion (the quality score of motion > 0.5). We excluded

subjects with incomplete data (those with missing values).

For rs-fMRI, the imaging-derived features were correlation

between distributed networks of brain regions (Marek et al.,

2019). Thirteen brain networks were detected, including
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auditory network (“ad”), cingulo-opercular network (“cgc”),

cingulo-parietal network (“ca”), default network (“dt”), dorsal

attention network (“dla”), frontoparietal network (“fo”), “none”

network (“n”), retrosplenial temporal network (“rspltp”),

sensorimotor hand network (“smh”), sensorimotor mouth

network (“smm”), salience network (“sa”), ventral attention

network (“vta”), and visual network (“vs”) (Gordon et al., 2017).

Notice that these brain networks comprised ROIs with positive

correlations, which means that the average signal reflects the

activity of the network. Each network was treated as a node.

Functional connectivity between node A and node B was

measured by calculating the correlation coefficient between

the average signal of A and that of B. There were 78 rs-

fMRI-derived features. Each feature represented functional

connectivity between a brain network pair.

In the ABCD study, the NIH Toolbox cognition measures

were used to assess child cognition (Luciana et al., 2018).

The seven cognitive tasks in the NIH Toolbox included

the dimensional change card sort task to assess cognitive

flexibility (“cardsort”), list sorting working memory task to

assess working memory (“list”), picture sequence memory task

to assess episodic memory (“picture”), pattern comparison

processing speed task to assess processing speed (“pattern”),

picture vocabulary task to measure vocabulary comprehension

(“picvocab”), oral reading recognition task to measure

language/reading decoding (“reading”), and the flanker task to

assess attention and inhibition (“flanker”). The neurocognitive

battery was administrated using an iPad with one-on-

one monitoring by a research assistant. The total time for

administration was about 35 min. Based on the seven task

scores, three composite scores were generated: a total score

composite (“totalcomp”), a crystallized intelligence composite

(“cryst”), and a fluid intelligence composite (“fluidcomp”).

The age-corrected total score composite has a mean of 100

FIGURE 3

The Bayesian network for the ABCD study. Source M1 is DTI and source M2 is rs-fMRI. M1.C1 is factor 1 from DTI. M2.C1 is factor 1 from

rs-fMRI. Other factors were not associated with any behavioral variables and were not shown in the figure.
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FIGURE 4

The divergence and mode change score for the ABCD study.
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and a standard deviation of 15. For measures of cognition,

higher scores represented better cognitive ability. The age-

corrected scores were used as the behavioral variables in this

study. These behavioral variables were binarized based on the

sample median.

For DTI (source 1), BAMDI generated two factors. For

rs-fMRI (source 2), BAMDI generated three factors. Among

these five factors, two of them were associated with behavioral

variables (Figure 3). DTI and rs-fMRI were synergistic regarding

the fluid intelligence composite and the total score composite.

The list sorting, flanker, picture sequence memory, and

pattern comparison processing speed tasks were associated with

DTI. The dimensional change card sort, picture vocabulary,

oral reading recognition tasks, and crystallized intelligence

composite were associated with rs-fMRI.

The divergence and mode change score are depicted

in Figure 4. M1.C1 (factor 1 from DTI) had high

divergence and high mode change score for the fluid

intelligence composite and total score composite. That

is, the change of M1.C1 changed the posterior marginal

distribution of the fluid intelligence composite and total

score composite. M2.C1 (factor 1 from rs-fMRI) had

high divergence and high mode change score for the

fluid intelligence composite, total score composite, and

crystallized intelligence composite. That is, the change of

M2.C1 changed the posterior marginal distribution of the fluid

intelligence composite, total score composite, and crystallized

intelligence composite.

To annotate important factors, we detected imagingmarkers

to characterize factors. For a factor Cj from source j, we

performed analysis of variance (ANOVA) with an imaging

feature Fj as the dependent variable and Cj as the independent

variable. Then we ranked imaging features based on the

effect size and selected the top 10% features as the imaging

markers. The imaging markers are shown in Figure 5. For

DTI, the factor M1.C1 represented a subtype that had lower

FA in the whole brain, right hemisphere, left superior frontal

gyrus, left supramarginal gyrus, left superior parietal lobule,

left precuneus, left lateral aspect of the superior temporal

gyrus, right superior frontal gyrus, right angular gyrus, right

supramarginal gyrus, right lateral aspect of the superior

temporal gyrus, right central sulcus, right intraparietal sulcus

and transverse parietal sulci, and right superior temporal sulcus.

For rs-fMRI, the factor M2.C1 represented a subtype that had

higher functional connectivity between the default network

and auditory network, frontoparietal network and auditory

network, “none” network and auditory network, sensorimotor

hand network and frontoparietal network, and lower functional

connectivity between visual network and auditory network,

visual network and cingulo-opercular network, visual network

and sensorimotor hand network, and visual network and ventral

attention network.

4. Discussion

Data fusion is important for the understanding of inter-

dependencies and relations across heterogeneous types of

data. We propose a data fusion method called BAMDI to

model the interactions among data sources and behavioral

variables. The generated Bayesian network describes brain-

behavior relationships. It is explainable: (1) the structure of

Bayesian network reveals important brain-behavior patterns

such as source synergy; (2) the divergence and mode change

score assess how the change of factor affects the marginal

distribution of behavioral variables.

We assessed the performance of BAMDI in two studies:

simulated data and the ABCD study. For the simulated data,

BAMDI correctly detected the brain-behavior patterns including

BV3 is a noisy version of [M1 OR M2]. For the ABCD

study, the two data sources, DTI and rs-fMRI, were synergistic

regarding the fluid intelligence composite and the total score

composite. The change of M1.C1, a DTI-derived factor that

was characterized by lower FA in many regions, changed

the posterior marginal distribution of the fluid intelligence

composite and total score composite. The change of M2.C1,

a rs-fMRI derived factor characterized by hyper-connectivity

related to the auditory network and hypo-connectivity related to

the visual network, changed the posterior marginal distribution

of the fluid intelligence composite, total score composite, and

crystallized intelligence composite.

Data integration methods can be classified into three

different categories: early integration, intermediate integration,

and late integration. Early integration focuses on combining

data before applying a learning algorithm. An example of

early integration is learning a common latent representation.

Intermediate integration produces a joint model learned from

different sources simultaneously. Late integration methods

model different sources separately, then combines the outputs.

BAMDI is a late integration method. BAMDI is also related to

collective learning. Collective learning (Chen et al., 2004) is a

machine learning framework to learn amodel frommultiple and

diverse datasets by stage-wise learning (local learning and cross

learning). Under this framework, the embedding learning step

in BAMDI is local learning and the Bayesian network learning

step in BAMDI is cross learning.

One of the limitations of BAMDI is that it requires

discrete behavioral variables. Some behavioral variables such

as disease diagnosis (normal controls or Alzheimer’s disease)

are naturally discrete; while others may be continuous. For

continuous behavioral variables, we need to discretize them and

this discretization process may cause a loss of information. We

could extend BAMDI to handle continuous behavioral variables.

In this extension, we adopt the conditional Gaussian Bayesian

network representation and the local distribution P(X|pa(X)) is

a Gaussian mixture. This will be the focus of our future work.
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FIGURE 5

The imaging markers for DTI and rs-fMRI based factors.
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