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Introduction: Brain degeneration is commonly caused by some chronic

diseases, such as Alzheimer’s disease (AD) and diabetes mellitus (DM). The

risk prediction of brain degeneration aims to forecast the situation of

disease progression of patients in the near future based on their historical

health records. It is beneficial for patients to make an accurate clinical

diagnosis and early prevention of disease. Current risk predictions of brain

degeneration mainly rely on single-modality medical data, such as Electronic

Health Records (EHR) or magnetic resonance imaging (MRI). However, only

leveraging EHR or MRI data for the pertinent and accurate prediction is

insufficient because of single-modality information (e.g., pixel or volume

information of image data or clinical context information of non-image data).

Methods: Several deep learning-based methods have used multimodal data

to predict the risks of specified diseases. However, most of them simply

integrate different modalities in an early, intermediate, or late fusion structure

and do not care about the intra-modal and intermodal dependencies. A lack

of these dependencies would lead to sub-optimal prediction performance.

Thus, we propose an encoder-decoder framework for better risk prediction

of brain degeneration by using MRI and EHR. An encoder module is one of

the key components and mainly focuses on feature extraction of input data.

Specifically, we introduce an encoder module, which integrates intra-modal

and inter-modal dependencies with the spatial-temporal attention and cross-

attention mechanism. The corresponding decoder module is another key

component and mainly parses the features from the encoder. In the decoder

module, a disease-oriented module is used to extract the most relevant

disease representation features. We take advantage of a multi-head attention

module followed by a fully connected layer to produce the predicted results.

Results: As different types of AD and DM influence the nature and severity

of brain degeneration, we evaluate the proposed method for three-class

prediction of AD and three-class prediction of DM. Our results show that the

proposed method with integrated MRI and EHR data achieves an accuracy of

0.859 and 0.899 for the risk prediction of AD and DM, respectively.
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Discussion: The prediction performance is significantly better than the

benchmarks, including MRI-only, EHR-only, and state-of-the-art multimodal

fusion methods.

KEYWORDS

risk prediction of brain degeneration, multimodal medical data, multimodal learning,
self-attention mechanism, cross-attention mechanism

1. Introduction

With the advent of artificial intelligence (AI), many deep
learning–based methods (Schlemper et al., 2019; Zhang et al.,
2019; Ye et al., 2021) using medical data have emerged as
essential tools for aiding the early identification of disease
severity. Commonly, medical data can be divided into two broad
modalities: image data, such as magnetic resonance imaging
(MRI) and computed tomography (CT), and non-image data,
such as Electronic Health Records (EHR).

Brain degeneration is a chronic brain disease that disturbs
the brain’s normal functioning and further brings a huge
threat to public health (Pratico, 2008). Several research studies
(Nicolls, 2004; Xu et al., 2009; Stanciu et al., 2020; Cheung
et al., 2022) have revealed that adults with chronic diabetes
mellitus (DM), including type 1 diabetes and type 2 diabetes,
have a higher risk of developing AD. The severity and duration
of DM could contribute to brain degeneration (Pruzin et al.,
2018). Thus, AD becomes the most common cause of brain
degeneration and typically begins with impairments in cognitive
functions (Li and Hölscher, 2007). According to the different
development of cognitive degradation, AD is divided into three
stages, including the pre-clinical (e.g., cognitively normal) stage,
mild cognitive impairment (MCI) stage, and dementia stage
(Pratico, 2008). MCI is key to diagnosing the early stage of AD.
Similarly, DM is classified as type 1 diabetes mellitus (T1DM)
and type 2 diabetes mellitus (T2DM) depending on differences
in diabetes mechanisms. Patients with T1DM and T2DM would
present brain degeneration at different levels.

Many deep learning methods (Escott-Price et al., 2015;
Moeskops et al., 2018; Li and Fan, 2019; Xu et al., 2020; Yang
and Liu, 2020; Zhu et al., 2020) have been developed to predict
the risk of brain degeneration from various aspects, e.g., the
transition from MCI to AD in advance, and the cognitive
impairment in patients with T1DM and T2DM. These risk
prediction methods can effectively reduce the incidence rate of
concurrent brain degeneration diseases. Because of a huge data
domain gap between medical images and EHR, the difference
in prediction accuracy is significant when using medical images
or EHR, respectively. The medical images (e.g., MRI) present
the vital anatomical information that non-image data (e.g.,
EHR) lack. EHR is regarded as an important auxiliary for

accurate medical image interpretation, particularly for DM
diagnosis (Biessels and Reijmer, 2014). Therefore, the fusion of
medical images and EHR could provide sufficient information
and improve prediction accuracy. Most deep learning–based
methods (Li et al., 2019; Ljubic et al., 2020; Yang and Liu,
2020; Yiğit and Işik, 2020; Alexander et al., 2021; Zhang et al.,
2021) for predicting the risk of brain degeneration from some
chronic diseases only utilize single-modal data. The learnable
features from single-modal data may suffer from serious biases
of the learning model, which lack imaging or clinical context
information. Several learning-based methods (Spasov et al.,
2018; Li and Fan, 2019; Zhou et al., 2021) using medical
images and EHR data have attempted to predict disease risk
by a multimodal data fusion model. However, very few deep
learning–based methods account for the inter-modal and intra-
modal relationships and have been explored for better accurate
risk prediction of brain degeneration.

Medical imaging datasets account for anatomical
information and are insufficient to train a network alone.
The main reason is the lack of clinical information that is
embedded in the EHR dataset. It may lead to unbalanced classes
and inaccurate prediction (Huang et al., 2020). EHR is a kind
of hierarchical data that stores the historical health status of a
patient in temporal sequences formed by multiple visits (Shickel
et al., 2017). EHR data of a patient are usually represented
by a sparse binary matrix. Only encoding a sparse vector in
the deep learning–based method may cause a lack of diversity
for potential embedding space, thus increasing the challenge
for network training without large volumes of image data (Ye
et al., 2020). Therefore, only leveraging EHR data for the risk
prediction of brain degeneration is also insufficient.

To solve the above limitations, combining medical imaging
with EHR data is necessary for compensating patients’ more
detailed historical health status. More specifically, medical
images, such as MRI, could offer more complex interpretations
of a patient’s health status, thus leading to a more elaborate
embedding space for potential risk-generation tasks. However,
most deep learning–based methods (Shickel et al., 2017; Xu
et al., 2020; Zhang et al., 2021) using multimodal data only
integrate the medical data from different modalities in a simple
manner, such as an early, intermediate, or late fusion structure.
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A lack of deep exploration of the intra-modal and inter-modal
dependencies leads to sub-optimal prediction performance.

The attention mechanism (Vaswani et al., 2017) has emerged
with the coming of transformer architecture. It is an input
processing technique for neural networks that allows the
network to focus on specific parts of a complex input, one at a
time until the entire dataset is processed. Attention can provide
the ability to highlight vital information and suppress irrelevant
information. In the tasks of medical imaging analysis, the
spatial–temporal self-attention mechanism (Schlemper et al.,
2019; Chen and Shi, 2020; Chen et al., 2020; Plizzari et al.,
2021; Yu et al., 2021; Mehta et al., 2022) is often used to
capture the spatial and temporal correlations of the same
image sequences. The cross-attention mechanism (Hou et al.,
2019; Huang et al., 2019; Yu et al., 2021) can capture
the interdependent relationship between two sequences of
single-modal or multimodal data by integrating two separate
embedding sequences with the same dimension asymmetrically.
The attention has been effectively applied to medical image
analysis to achieve promising results. Some deep learning–based
studies (Wang et al., 2018; Jiang et al., 2021) only use simple
concatenation for the combination of multimodal features
after a feed of medical images (e.g., MRI, CT, or X-ray) and
clinical context features (e.g., EHR). The attention mechanism
can provide the ability to emphasis on important information
and suppress irrelevant counterparts of multimodal features.
However, the attention mechanism is scarcely adopted to
capture the correlations between medical images and non-image
data. The goal of this study is to solve the abovementioned
problems. We thus develop a novel attention–based framework
for predicting the risk of brain degeneration by making better
use of medical images and EHR data. First, a spatial and
temporal attention encoder is composed of a set of self-attention
blocks. The encoder is employed to extract the complementary
features information based on multimodal data to achieve the
intra-modal dependencies. This encoder often helps extract
the critical pixel information of MRI. Then, for gaining the
inter-modal dependencies between MRI and EHR data, a cross-
attention mechanism is used to extract the cross-correlation
from these two modalities. After two attention encoders, we
also propose to adopt the multi-head attention decoder for
combining the features of different modalities before the final
fully connected (FC) layer. The decoder can guarantee an
optimal global feature representation depending on its powerful
combination ability in different subspaces.

To sum up, the contribution of this study is two-fold.
First, different from the previous multimodal fusion methods
of varying medical data modalities (Arevalo et al., 2017; Huang
et al., 2020; Jiang et al., 2021; Nagrani et al., 2021), we focus on
extracting the critical complementary information between MRI
and EHR data with the attention mechanisms for the prediction
of brain degeneration. Second, multi-head attention as a disease-
oriented decoder is used to improve the prediction performance
to avoid sub-optimal issues. We perform the experiments on an

available publicly Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset and an internally collected diabetes mellitus
(DM) dataset to evaluate the performance of our proposed
method.

2. Materials and methods

2.1. Materials

2.1.1. Internally collected datasets
All internal data used in the study are collected from

Zhongshan Hospital Affiliated with Dalian University. The
protocol for this retrospective study was approved by the
Ethics Committee of Zhongshan Hospital Affiliated with Dalian
University. The requirement for written informed consent from
study participants was waived.

The dataset includes 396 subjects with T1-weighted MRI
and the corresponding EHR. A patient’s diagnosis in the
internal data is classified as normal control (NC), T1DM,
and T2DM. This study includes 99 NC cases, 135 T1DM
cases, and 162 T2DM cases. The EHR data contain a total
of 17 features [demographic information: age, gender, years
in education; fasting glucose; glycated hemoglobin (HbA1c);
triglyceride (TG); cholesterol (CHO); low-density lipoprotein
(LDL); high-density lipoprotein (HDL); C Peptide; Montreal
Cognitive Assessment (MoCA); clock drawing test (CDT);
verbal fluency test (VFT); trial marking test A (TMT-A); anxiety
level; depression level; and sleep quality]. The MRI data are
directly used for all following experiments in this study to
avoid information loss because of preprocessing operation.
All 17 features of EHR data are considered to use in the
following experiments.

2.1.2. Public datasets
The data used in the evaluation of this study are obtained

from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (Jack et al., 2008) for analyzing the progression of
Alzheimer’s disease (AD). An essential goal of ADNI database
is to evaluate whether medical images, including MRI and PET,
and other modality EHR data including biological markers
and clinical and neuropsychological assessment information,
can be integrated to predict the AD progression from MCI or
pre-clinical stage for accurate diagnosis and early prevention.

We select the training data according to the following
rules (Jiang et al., 2021). For each patient, the first scanned
MRI with description information “multiplanar reconstruction
(MPR); GradWarp; B1 Correction; N3.” A patient’s diagnosis
in the ADNI is typically classified as AD, MCI, and cognitively
normal (CN). In this study, we select the whole data from 969
subjects, containing 288 AD cases, 365 MCI cases, and 316 CN
cases. For each patient, one MRI sequence is accompanied by
corresponding EHR data. The MRI data are also directly used in
this study. The selected EHR data contain a total of 11 features
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FIGURE 1

An illustration of the proposed framework for the risk prediction of brain degeneration. Our framework has two attention encoders and one
decoder. {Ii ∈ R{H×W}

∣∣i ∈ {1,. . .,D}} is an MRI sequence I.{vi ∈ R{H×W}
∣∣v ∈ {1,. . .,D}} is an MRI features representation. {xi ∈ R{H×W}

∣∣x ∈ {1,. . .,D}}
is the corespongding Electronic Health Records (EHR) data of MRI. S and M are the feature representations across spatial-attention and
temporal-attention, respectively. Xd represents the classification query. ŷ is the final prediction label according to the categories of diseases.

[demographic information: age, gender, years in education,
and ethnic and racial categories; biofluids: APOe4 genotyping;
cerebrospinal fluid (CSF) levels; behavioral assessments: clinical
dementia rating (CDRSB); Alzheimer’s disease assessment
scale (ADAS13); the episodic memory evaluations in the Rey
Auditory Verbal Learning Test (RAVLT_immediate); and The
Mini-Mental State Examination (MMSE)]. All 11 features of
EHR data are considered to use in the following experiments.

2.2. Methods

This study develops an end-to-end framework for predicting
the risk of brain degeneration by taking in the complementary
features between MRI and EHR data. The input data of the
network are the paired MRI and EHR data. 3D ResNet-50
(Yu et al., 2021; Mehta et al., 2022) is the backbone network
in the initial stage. Other deeper networks, such as DenseNet
(Huang et al., 2017), also work with our proposed framework.
The output is the prediction result, which is represented as
binary values. To address the issues of the intra-modal and inter-
modal dependencies, two attention mechanisms are deployed
in the two-level encoder module. To be specific, self-attention
as the first-level encoder, which includes spatial and temporal
attention, is utilized to extract the spatial–temporal feature
information for the internal-slice dependencies of the same
MRI sequence. The EHR data and disease representations
from the self-attention output are passed into the second-
level cross-attention encoder. This encoder considers the inter-
modal dependencies by extracting the correlations between
the features from MRI and EHR data. After the encoder,
the multi-head attention mechanism as a decoder aggregates
the information from all dimensions for producing the final
prediction. The overall network architecture of risk prediction
of brain degeneration is shown in Figure 1.

Given the observed history of patient health status
in multiple visits, an available visit is represented by

{I1, I2, . . . , ID, x}, where {Ii ∈ R{H × W}
|i ∈ {1, . . . ,D}}

represents the i-th slice from an MRI sequence, H and W
denote the height and width, respectively. Binary vector set
x ∈ RD is EHR data of each MRI sequence, each element
in x belongs to {0, 1}, where 1 denotes the presence of the
corresponding AD and vice visa. The task needs to predict
the risks of getting K categories of diseases, which could
be represented as ŷ ∈ [0, 1]K . Our framework consists of
two encoders that integrate intra-modal and inter-modal
dependencies in a spatial–temporal manner and a disease-
oriented decoder with multi-head attention to extract the most
relevant disease representations.

2.2.1. Intra-modal encoder
Given medical images, intra-modal dependencies are first

generated by capturing the spatial–temporal relations of MRI
modality in an independent module. Considering the MRI
sequence {I1, I2, . . . , ID}, where D is the number of slices from
one MRI sequence, a ResNet-50 and a spatial average pooling
layer are adopted to extract the disease features representation
{v1, v2, . . . , vD}, where each element is a C-dimensional vector
with shape (1,C). After repeating the above operations for all
MR slices of one visit, C × D vectors are separately processed
by two blocks from spatial and temporal domains. As shown
in Figure 1, one disease representation vi, which stands for the
i-th slice, interacts with other representations in the spatial-
attention block to capture the intra-slice relations. vi interacts
with other representations in the temporal block to compute
the inter-slice variations from the same MR sequence. Based on
the MRI sequence, the relations between two continuous slices
are retrieved with temporal attention, and the relations of pixels
in one slice are retrieved with spatial attention. Both the two
attention mechanisms follow the spatial and temporal structure
as described in Mehta et al. (2022).

As shown in Figure 1, spatial attention is used to capture
intra-slice dependencies. The relationships between each pixel
and other pixels in the slice are computed. These relations
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are passed with dominant intra-frame dependencies. The
illustration of spatial attention is shown in Figure 2A and
mathematically expressed by the following equation:

Sj,i =
exp

(
K (vi)TQ

(
vj
))∑H × W

i exp
(
K (vi)TQ

(
vj
)) . (1)

The disease representation v through ResNet-50 and spatial
average pooling layer is transformed to the key K (vi), query
Q
(
vj
)
, and value V (vi) by using 1 × 1 × 1 convolution

filter. The relationships between pixels are represented by
the spatial dimension (H × W) × (H × W). Sj,i ∈

R{C × D × H × W × H × W} is spatial correlation matrix for
computing the impact of i-th position on j-th position and
obtained by softmax of the inner product of K (vi) and Q

(
vj
)
.

Here, C is the number of channels. The output attention features
across spatial dimensions are written as:

M̂S =

H × W∑
i = 1

V (vi) Sj,i. (2)

Then, M̂S ∈ R{C × H × W × D} is fed into 1 × 1 × 1
convolution filter, which results in the final spatial-attention
features MS with C channels.

The temporal attention captures an MRI sequence’s inter-
slice dependencies and relates the global features between two
slices of the same MRI sequence in the temporal domain. The
illustration of temporal attention is shown in Figure 2B and
mathematically expressed by the following equation:

Tj,i =
exp

(
K (vi)TQ

(
vj
))∑D

i exp
(
K (vi)TQ

(
vj
)) . (3)

The relationships between pixels are represented by the
depth dimension D × D. Tj,i ∈ R{C × D × H × W × D × D} is
a dimensional temporal correlation matrix for computing the
impact of i-th slice on j-th slice. The output attention features
across temporal dimension are written as:

M̂T =

D∑
i = 1

V (vi)Tj,i. (4)

Then, M̂T ∈ R{C × D × H × W} is fed into 1 × 1 × 1
convolution filter, which results in the final temporal-attention
features MT with C channels.

For each spatial and temporal attention block, the final
output is then concatenated along with the spatial dimension
to form D matrices where each one owns the shape of
(D,C). Finally, disease representations of medical images {Mi ∈

RD × C
|i ∈ {1, 2, . . . ,D}} are generated by summing matrices

with the same visit index from different attention blocks.
For the EHR vector sequence {x1,x2, . . . , xD} comprise of D
time points for one MRI sequence, a fully connected layer
is adopted to embed each EHR vector into a C-dimensional
space to capture the overall health information by producing a

FIGURE 2

(A) 3D spatial-attention architecture; (B) 3D temporal-attention
architecture. K (v) is the key, Q (v) is the query and V (v) is the
value.

⊗
is defined as an element-wise multiplication operation.

Noted that spatial or depth is an interchangeable term.

vector with shape (1,C), which results in disease representations
{S1, S2, . . . , SD} of EHR data.

2.2.2. Inter-modal encoder
Inter-modal dependencies between MRI and EHR are

captured through a cross-attention mechanism, which
exchanges the global health status from EHR data and detailed
disease information from MRI in a parallel manner. Given
disease representation {Mt, St} for t-th slice, two cross-attention
modules as shown in Figure 3 are leveraged to compute the
cross-correlation of multimodal features by taking queries
from their own modalities while key and value matrices from
opposite modalities, which results in {M′t, S

′
t}.

To be specific, disease representation via two 1 × 1 × 1
convolution filter produces two feature maps Q and K,
respectively, where {Q,K} ∈ R{C × H × W}. After obtaining Q
and K, the feature attention maps are generated via affinity
operation (Huang et al., 2019) and softmax.

At each position j in the spatial dimension of feature
map Q, a vector Qj∈ RC is obtained. For the total features
set �j∈ R(H × W−1) × C also can be obtained by capturing the
spatial features vectors from feature map K, which are in the
same row with position j. Here, �i,j∈ RC represents the i-th
element of �j. The affinity operation is formulated as follows:

Aff i,j=Qj�i,j
T (5)

where Aff i,j is the correlation degree between Qj and �i,j. Then,
a softmax layer is applied on Aff i,j across each channel to
calculate the attention map A from affinity operation.
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FIGURE 3

The details of cross-attention architecture to extract the cross-correlation of multimodal features. Q, K, and V represent all extracted feature
maps. {Mt,St} is the disease feature representation, and {M′t,S

′

t} is the final representation.

Another 1 × 1 × 1 convolution filter is applied to disease
representation H ∈ {Mt, St} to produce feature map V , the final
representations {M

′

t, S
′

t} is obtained by aggregation operation
(Huang et al., 2019) for achieving the mutual feature gains from
MRI and EHR.

Similarly, at each position j in the spatial dimension of
feature map V , a vector Vj∈ RC and the total features set
�̂j∈ R(H × W−1) × C are obtained. Here, �̂i,j∈ RC represents the
i-th element of �̂j. The aggregation operation is formulated as
follows:

Aggj=
∑
i∈|�̂j|

Ai,j�̂i,j +Hj (6)

where Aggj is a feature vector at position j. Ai,j is scalar data,
which belongs to affinity feature map A. The most relevant
contextual information is added to local disease representation
H to enhance the local features and augment the disease
representation. Thus, these disease feature representations
achieve mutual gains between MRI and EHR data.

After repeating the operations for each slice corresponding
to an independent time point, D updated vectors of EHR
are concatenated into S ∈ RD × C, and a compressed disease
representation of medical images M ∈ RD × C is produced by
concatenating and pooling the {M

′

1, M
′

2, . . . , M
′

D} across the
temporal dimension.

2.3. Disease-oriented decoder

Disease-oriented decoder seeks the most relevant
information in two different modalities for predicting the
risk of brain degeneration. The right part of Figure 1 shows that
the decoder includes two multi-head attention layers and a fully
connected layer. The multi-head attention layer expects disease
representations M, S, and a classification query Xd ∈ RK × C as
input, where K is the number of disease risk categories included
in the task. By conducting the multi-head attention mechanism,
which follows the multi-head attention of the transformer
(Vaswani et al., 2017), the most relevant clinical contextual

information for brain degeneration is updated and stored in the
query. Finally, the outputs of two multi-head attention layers
are added together and transmitted into a fully connected layer
to produce the final prediction result ŷ ∈ RK . Actually, the
prediction risk of brain degeneration is a classification task, and
the cross-entropy loss function is applied at the training stage to
train the model.

3. Experiments and results

3.1. Implementation details

We implement our proposed method on Pytorch to
classify three stages of AD progression, including CN,
MCI, and AD. For the training stage, four Nvidia Tesla
V100 GPUs with 32GB memory are used. We employ a
polynomial learning rate policy where the initial learning
rate is multiplied by 1−( iter

totaliter
)
power with power = 0.9.

The initial learning rate we used is set to 0.01. Momentum
and weight decay coefficients are 0.9 and 0.0001, respectively.
The input size of MRI is 256 × 256 × 170, the batch
size is set to 32. Five-fold cross-validation is performed to
split the training data. We perform 100 epochs of training
for all settings. All the intensities of input MRI images are
normalized to [0,1].

3.2. Results

3.2.1. Evaluation metrics
Four evaluation metrics are calculated to evaluate the

risk prediction performance on the test cases of internally
collected DM datasets and ADNI datasets. These metrics
include sensitivity, accuracy, specificity, and area under the
receiver operating characteristic curve (AUROC). All the
evaluation metrics are reported in the following ablation and
comparison experiments.
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3.2.2. Ablation study for intra-modal and
inter-modal encoders

We employ self-attention mechanisms, including a
spatial-attention mechanism (SAM) and a temporal-attention
mechanism (TAM) for the intra-modal encoder and a cross-
attention mechanism (CAM) for the inter-modal encoder. The
addition of these two encoders can contribute to capturing
the intra-modal and inter-modal dependencies for better
prediction. To verify the encoder module’s performance and
analyze each component’s actual contribution, we conduct
ablation experiments with different settings on both DM and
ADNI datasets in Tables 1, 2.

As shown in Tables 1, 2, the intra-modal and inter-modal
encoders remarkably improve the prediction performance on
internally collected DM and public ADNI datasets. The baseline
method only uses the multi-head attention mechanism, as
shown in the first row of Tables 1, 2. Compared with the
baseline method, employing SAM and TAM in the intra-modal
encoder achieved a significant prediction improvement with an
accuracy of 0.762 on DM datasets and an accuracy of 0.742
on ADNI datasets. The visual attention maps in Figure 4 with
SAM and TAM showed that the attention mechanism in the
intra-modal encoder could capture the critical area (around
the location of the hippocampus) features, which are quite
relevant to brain degeneration. Only employing the CAM in
the inter-modal encoder yields an accuracy of 0.784 on DM
datasets and 0.852 on ADNI datasets, which are higher than
the accuracies of only employing the SAM and TAM in the
intra-modal encoder. Then, in our proposed method, we further
combine the SAM and the TAM in the intra-modal encoder with
the CAM in the inter-modal encoder, and the highest accuracies
of 0.859 on DM datasets and 0.899 on ADNI datasets are
achieved. In particular, on DM datasets, the proposed method
outperforms the method with only an intra-modal encoder
and the method with only an inter-modal encoder by 16.4
and 16.1%, respectively. We also observe that our proposed
method achieves the best results for other evaluation metrics
for both DM and ADNI datasets. Similarly, results substantiated
that multimodal encoders considering intra-modal and inter-
modal dependencies greatly benefit the risk prediction of brain
degeneration based on different disease datasets (e.g., DM
datasets and ADNI datasets).

3.2.3. Evaluation of multi-head attention
decoder

After two encoders, we employ the two multi-head attention
layers as a disease-oriented decoder. The multi-head attention
mechanism with multiple head numbers can focus on the most
relevant features from multimodal representation subspaces to
reach an optimal global representation. We evaluate the multi-
attention decoder in our method with varying head numbers
for a comprehensive comparison. We evaluate the impact of
the head number on the multi-head attention mechanism. As

shown in Figure 5, the accuracy performance of multi-head
attention with head numbers from 1 to 12 is evaluated on both
DM and ADNI datasets. From the observation of Figure 5,
when the head number reaches the optimal head number, the
performance decreases with increasing head number values. It
is observed that the head number is set to six for DM datasets,
and the highest accuracy of risk prediction of brain degeneration
is demonstrated. Similarly, as shown in Figure 5B, the head
number is set to five for our used dataset from the ADNI
database, and the highest accuracy is observed. It implies that
the optimal head number may vary for different data domains
due to the data domain gap (Liu et al., 2021).

3.2.4. Comparison
We compare our method with MRI-only method-3D

DenseNet (Ruiz et al., 2020), EHR-only method-ElasticNet (Zou
and Hastie, 2005), and three typical learning-based multimodal
fusion methods.

The MRI-only method only depends on the pixel
information from MRI data for predicting the outcome.
For our MRI-only method, we use the 3D DenseNet model
(Ruiz et al., 2020), which utilizes MRI and is capable of
considerable risk prediction of brain degeneration. The 3D
DenseNet primarily consists of layers of 3D convolutions with
skip connections.

The EHR-only method only depends on parsing the EHR
data through preprocessing step. More precisely, the EHR data
of a patient are usually denoted by a sparse binary matrix
where each element is an International Classification Disease
code (ICD-9) (Benesch et al., 1997) in a specified visit. Several
learning-based methods (Ma et al., 2018; Zhang et al., 2019; Luo
et al., 2020; Ahuja et al., 2021) have put effort into encoding the
potential temporal relations, especially between distinct visits of
EHR and output the risk prediction of disease through a multi-
task paradigm. For our EHR-only method, we use an ElasticNet
(Zou and Hastie, 2005) model, which takes in a concatenation of
all EHR features.

In clinical practice, pertinent clinical information is vital for
providing accurate diagnostic decisions during medical imaging
interpretations (Boonn and Langlotz, 2009; Zhou et al., 2021).
The fused feature maps from MRI and EHR data in our
compared multimodal fusion methods are performed by (1)
Early fusion (Spasov et al., 2018) based on concatenation; (2)
intermediate fusion (Jiang et al., 2021) based on linear layers
and (3) late fusion (Arevalo et al., 2017) based on single-head
attention strategies.

The concatenation method is implemented by
concatenating the pooled image feature and EHR feature
at the input level. Different from the concatenation method,
linear layers of a conventional neural network (CNN) mainly
adopt a linear transformation for each modality data to obtain
the transformed features with the same size for multimodal
data. These two transformed features from medical image
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TABLE 1 Quantitative results on internally collected diabetes mellitus (DM) datasets for the proposed method with or without the
specified components.

Intra-modal encoder Inter-modal encoder Sensitivity Accuracy Specificity AUROC

SAM TAM CAM

0.562± 0.016 0.596± 0.012 0.742± 0.012 0.714± 0.012
√

0.601± 0.012 0.634± 0.015 0.762± 0.011 0.772± 0.012
√

0.719± 0.012 0.716± 0.013 0.766± 0.012 0.802± 0.012
√ √

0.762± 0.012 0.752± 0.016 0.771± 0.012 0.839± 0.011
√

0.764± 0.012 0.784± 0.014 0.778± 0.012 0.842± 0.014
√ √

0.771± 0.016 0.801± 0.016 0.792± 0.011 0.861± 0.013
√ √

0.834± 0.015 0.823± 0.015 0.816± 0.012 0.887± 0.012
√ √ √

0.887± 0.016 0.859± 0.012 0.867± 0.012 0.916± 0.012

The ‘
√

’ symbol represents the inclusion of components. The results from the proposed method with SAM, TAM, and CAM are highlighted in bold. SAM represents spatial-attention
mechanism, TAM represents temporal-attention mechanism, and CAM represents cross-attention mechanism.

TABLE 2 Quantitative results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets for the proposed method with or without the
specified components.

Intra-modal encoder Inter-modal encoder Sensitivity Accuracy Specificity AUROC

SAM TAM CAM

0.536± 0.011 0.626± 0.013 0.755± 0.012 0.732± 0.012
√

0.588± 0.012 0.726± 0.015 0.772± 0.011 0.791± 0.013
√

0.708± 0.013 0.826± 0.015 0.864± 0.013 0.897± 0.012
√ √

0.742± 0.012 0.833± 0.014 0.872± 0.012 0.909± 0.011
√

0.802± 0.013 0.852± 0.015 0.878± 0.013 0.913± 0.013
√ √

0.841± 0.014 0.866± 0.016 0.893± 0.010 0.931± 0.012
√ √

0.886± 0.015 0.885± 0.016 0.884± 0.013 0.936± 0.012
√ √ √

0.901± 0.014 0.899± 0.013 0.892± 0.012 0.953± 0.013

The ‘
√

’ symbol represents the inclusion of components. The results from the proposed method with spatial-attention mechanism (SAM), temporal-attention mechanism (TAM), and
cross-attention mechanism (CAM) are highlighted in bold.

and EHR are added up to a fused feature. The fusion based
on single-head attention is performed by employing standard
attention as an aggregation strategy before the FC layer.

We use the ResNet-50 as the backbone for all methods
and the same datasets to guarantee a fair comparison. We
benchmark the performance of different methods on the entire
test data using four different evaluation metrics. The results
of the metrics are reported in Tables 3, 4 on DM and ADNI
datasets. For both DM and ADNI datasets, we observe that
the EHR-only method can achieve better performance than the
MRI-only method for the risk prediction of brain degeneration
on all the evaluation metrics. It means that EHR data could
provide informative data for the clinical diagnosis of brain
degeneration. When combining MRI and EHR data, the three
multimodal fusion methods further enhance the prediction
performance compared with the MRI-only and EHR-only
methods. It proves that EHR is crucial for the complementary
interpretation of MR images. Given the results of prediction
performance from Tables 3, 4, late fusion works better for fusing

MRI and EHR data to predict the risk of brain degeneration than
early fusion and intermediate fusion. Unlike these three typical
fusion methods, the proposed method considers the intra-modal
and inter-modal dependencies for learning more modality-
aware mutual and complementary features. These enhanced
features lead to noticeable performance improvement on DM
and ADNI datasets. Thus, the proposed method achieves the
best results on all four evaluation metrics. Especially on ADNI
datasets, the accuracy of 0.899 in our method is much higher
than the accuracy of 0.757 in the worst MRI-only method, with
a significant improvement of 18.7%.

4. Discussion

The main novelty of the proposed method is to incorporate
the correlated features between MRI and EHR data into a
global disease representation in a tightly coupled way, which
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FIGURE 4

The exemplary attention maps (A) with spatial-attention mechanism (SAM) and temporal-attention mechanism (TAM) and (B) without SAM and
TAM on diabetes mellitus (DM) datasets; (C) with SAM and TAM, and (D) without SAM and TAM on Alzheimer’s Disease Neuroimaging Initiative
(ADNI) datasets. The views from the top row to the bottom row are axial, coronal, and sagittal views. The corresponding images from left to
right are the original image, attention map, and image overlayed with the attention map. The value of the attention map from zero to one is
assigned blue to red colors. Noted that attention maps without SAM and TAM may suffer from inaccurate feature extraction, such as high
attention values close to 1 out of the head in panels (A,C).

FIGURE 5

Accuracy of the multi-head attention with the varying head number on (A) diabetes mellitus (DM) datasets and (B) Alzheimer’s Disease
Neuroimaging Initiative (ADNI) datasets.

depends on the attention mechanisms in intra-modal and inter-
modal encoders. To further emphasize the impact of each
attention component, the ablation experiments are performed
by the single addition or the combined addition of different
attention mechanisms to the baseline method. Our proposed
method has the highest predictive ability to distinguish the
three levels of brain degeneration progression, which occur in

DM and AD patients, respectively. This is mainly because our
method preserves the high correlation between MRI and EHR
data by capturing intra-modal and inter-modal dependencies.
Notably, our method adds spatial–temporal attention and cross-
attention to capture the intra-modal dependencies of an MRI
sequence. The intra-modal dependencies provide sufficient
anatomical features and significantly improve the prediction.
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TABLE 3 Performance comparison of the MRI-only method, the Electronic Health Records (EHR)-only method, the early fusion method, the
intermediate fusion method, and the late fusion method on the test diabetes mellitus (DM) dataset.

Methods Sensitivity Accuracy Specificity AUROC

MRI-only 0.674± 0.012 0.763± 0.012 0.772± 0.013 0.742± 0.012

EHR-only 0.745± 0.012 0.818± 0.014 0.822± 0.012 0.832± 0.012

Early fusion 0.789± 0.013 0.825± 0.011 0.826± 0.012 0.841± 0.012

Intermediate fusion 0.827± 0.012 0.831± 0.014 0.839± 0.011 0.853± 0.012

Late fusion 0.841± 0.012 0.833± 0.012 0.851± 0.012 0.867± 0.011

Proposed 0.887± 0.016 0.859± 0.012 0.867± 0.012 0.916± 0.012

The bold values means the best performance among these methods.

TABLE 4 Performance comparison of the MRI-only method, the Electronic Health Records (EHR)-only method, the early fusion method, the
intermediate fusion method, and the late fusion method on the test Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

Methods Sensitivity Accuracy Specificity AUROC

MRI-only 0.658± 0.013 0.757± 0.014 0.853± 0.011 0.843± 0.014

EHR-only 0.786± 0.012 0.829± 0.016 0.866± 0.013 0.903± 0.012

Early fusion 0.806± 0.014 0.852± 0.013 0.877± 0.012 0.913± 0.013

Intermediate fusion 0.815± 0.012 0.851± 0.015 0.875± 0.011 0.910± 0.012

Late fusion 0.873± 0.014 0.882± 0.014 0.886± 0.012 0.928± 0.011

Proposed 0.901± 0.014 0.899± 0.013 0.892± 0.012 0.953± 0.013

The bold values means the best performance among these methods.

The visualization of the different attention maps is shown in
Figure 4. For the DM dataset, we can observe the SAM and TAM
that can emphasize the critical brain area, which implies the
features of the critical area are more relevant to the classification
of DM patients. As for the ADNI dataset, the SAM and TAM can
also focus on the critical brain area, such as the area around the
hippocampus.

In addition to finding a method that can capture the intra-
modal and inter-modal dependencies, there is an important
need to seek the most relevant features to avoid sub-optimal
prediction performance. Following that, we employed two
multi-head attention layers to project the inputs into multiple
different subspaces to a more elaborate embedding space
for the final prediction. Because of different head numbers,
the effectiveness of multi-head attention may vary. To reach
the optimal performance, Figure 5 shows that larger head
numbers do not bring a consistent increase in the prediction
performance.

Although our results on DM and ADNI datasets
demonstrate the great potential for integrating MRI and
EHR data to improve the risk prediction performance of
brain degeneration; however, there are some limitations of the
proposed method.

Considering the inherent bias of DM and ADNI datasets
(Pipitone et al., 2014), it is essential to investigate the
performance of multimodal learning models on diversified data,
such as more than two modalities of data, to generalize the
prediction ability of our method in clinical applications. The
number and diversity of datasets are still critical bottlenecks

for the performance improvement of the proposed learning
model. With a large number of diversified datasets, the
prediction performance gain can be obtained by diversified
feature enhancements. In addition, the internally collected DM
datasets with different patient groups are not well balanced,
which may impact the evaluation of the sensitivity gap. With
limited DM datasets, the proposed method has improved the
prediction of brain degeneration by classifying the three levels of
DM patients. Therefore, more extensive studies will be necessary
to validate the generalization ability of the proposed attention-
based learning model despite our promising preliminary results
from internal DM and public ADNI datasets.

In this study, we only select limited features (e.g., 17 features
of DM patients and 11 features of ADNI patients) to create
the EHR data, the extensive study to rely on MRI image
features to guide the selection of more EHR features needs a
deep exploration.

With the advent of deep transfer learning technology (Grassi
et al., 2019; Bae et al., 2021; Alanazi et al., 2022), the performance
of the proposed framework may be optimized by using other
modalities of data, such as functional MRI and molecular
imaging by mass spectrometry to provide more efficient and
accurate predictions. Our method can aid the early diagnosis
of brain degeneration and improve the diagnosis workflow.
Meanwhile, our proposed method has great potential to be
translated to predict the risk of other diseases. Based on other
modalities of data, it incorporates more data properties to
construct multimodal learning strategies for the prediction of
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other diseases, such as melanoma and multiple sclerosis (Huang
et al., 2020).

5. Conclusion

In this study, we propose a novel attention–based learning
framework by incorporating MRI images and EHR data,
to improve the precision of brain degeneration diagnosis.
Compared to the single-modal features, the optimal global
feature representations extracted from MRI features and EHR
features play an essential role in the final decisions of the
learning model. Through the study, the proposed method is
superior to the MRI-only, EHR-only, and typical multimodal
fusion methods for predicting brain degeneration.

We deployed suitable attention mechanisms for each
module of our framework to extract related information
to improve the performance model, which may also be
applied to other prediction tasks. Meanwhile, we should focus
on the multi-head attention mechanism with different head
numbers, which is usually valuable and practical to enhance
the final elaborating representations from multimodal data.
The designed encoder and decoder modules only depend
on self-attention mechanisms, which are flexible to further
applications and extensions.

In general, the proposed method provides an efficient aid
for clinical diagnosis and early prevention of brain degeneration
by extracting disease-oriented related information based on
medical images and non-image clinical context information.
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