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Mapping white matter structural
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Introduction: Current studies of structural covariance networks were focused

on the gray matter in the human brain. The structural covariance connectivity

in the white matter remains largely unexplored. This paper aimed to build

novel metrics that can infer white matter structural covariance connectivity,

and to explore the predictive power of the proposed features.

Methods: To this end, a cohort of 315 adult subjects with the anatomical brain

MRI datasets were obtained from the publicly available Dallas Lifespan Brain

Study (DLBS) project. The 3D wavelet transform was applied on the individual

voxel-based morphology (VBM) volume to obtain the white matter structural

covariance connectivity. The predictive models for cognitive functions were

built using support vector regression (SVR).

Results: The predictive models exhibited comparable performance with

previous studies. The novel features successfully predicted the individual

ability of digit comparison (DC) (r = 0.41 ± 0.01, p < 0.01) and digit symbol

(DSYM) (r = 0.5 ± 0.01, p < 0.01). The sensorimotor-related white matter

system exhibited as the most predictive network node. Furthermore, the node

strengths of sensorimotor mode were significantly correlated to cognitive

scores.

Discussion: The results suggested that the white matter structural covariance

connectivity was informative and had potential for predictive tasks of brain-

behavior research.
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Introduction

Structural covariance connectivity, also named
morphological connectivity or morphological similarity,
has drawn significant research interests in neuroscience
recently (Bethlehem et al., 2017; DuPre and Spreng, 2017;
Wang et al., 2018b, 2020; Duan et al., 2020; He et al., 2021; Xu
et al., 2021). Compared to group-wise structural covariance
network, the individual structural covariance connectivity
exhibited diagnostic and predictive powers for personalized
evaluation of brain disorders and developments (Wang et al.,
2018a, 2020; Gao et al., 2020; He et al., 2021; Li et al., 2021).
Furthermore, the structural covariance connectivity could
reflect the gene-expression in the human brain (Seidlitz et al.,
2018). However, current studies of structural covariance
connectivity were focused on gray matter using brain
morphological features, the white matter morphological
connectivity remains largely unexplored. The topology of
white matter was always investigated using diffusion tensor
imaging (Wang et al., 2012). There were quite a few studies
that probe white matter connectivity using alternative MRI
protocols (i.e., T1-weighted MRI, T2-weighted fMRI). Given
recent progresses in constructions of white matter functional
connectivity using BOLD fMRI (Gore et al., 2019; Li et al.,
2019; Huang et al., 2020; Wang et al., 2021), the white matter
morphological connectivity based on structural MRI might also
be informative.

The structural covariance connectivity estimators were
always based on feature similarity of morphological measures
(Wang et al., 2020; Li et al., 2021). The key procedure to
construct structural covariance connectivity for single subject
was deriving significant regional morphological features from
T1-weighted brain images. Surface-based morphology (SBM)
can provide vertex-wise morphological measures (i.e., thickness,
volume, area, folding, and curvature) as feature vectors.
However, the classical voxel-based morphology (VBM) can
only produce a volume value for each voxel. To obtain
voxel-wise morphological feature vectors is a challenging
task. Radiomic analysis considered the medical imaging as
digital data, which can yield a significant number of features
(Gillies et al., 2016; Lambin et al., 2017). Radiomic features
have been applied in diagnostic models for brain disorders
(Lui et al., 2016; Sun et al., 2018). To our knowledge,
conventional radiomic features were regional measures rather
than interregional measures. Recently, we proposed a wavelet-
based method to extract voxel-wise structural covariance
networks (Wang et al., 2018b). The wavelet features that
were an important component of radiomic measures contained
both local and global brain structural attributes, which
were beneficial for constructing brain networks (Hackmack
et al., 2012; Canales-Rodriguez et al., 2013; Wang et al.,
2018b). So far, the validity of the white matter structural

covariance connectivity based on the wavelet transform remain
unexplored.

This paper aimed to map the white matter structural
covariance connectivity from individual anatomical MRI, and
to build predictive models for cognitive functions based
on the interregional features. In the section “Materials and
methods,” a group of 315 subjects were obtained from the
Dallas Lifespan Brain Study (DLBS) project. The anatomical
MRI datasets were preprocessed using the standard procedure
of VBM. Then, wavelet transform was applied to the VBM
dataset to obtain regional feature vectors. The white matter
structural covariance connectivity was computed based on the
regional wavelet features. The predictive models for cognitive
functions were solved using feature selection and support vector
regression (SVR). In the section “Results,” the performance
of the predictive models and the predictive patterns were
reported using machine learning. The relationships between
the white matter structural covariance and conventional VBM
features were also compared. In the section “Discussion,” the
performance of the machine learning models and the decoded
predictive connectivity patterns were discussed with previous
evidences. The biological meanings of the proposed metrics
were also discussed. Finally, we made the conclusions that the
white matter structural covariance connectivity was informative
and had predictive powers for brain-behavior tasks.

Materials and methods

Participants and MRI protocols

A cohort of 315 adult subjects were obtained from the DLBS
project, which aimed to investigate the brain cognitive function
across adult life span. The DLBS was a publicly available dataset
which can be used for academical research with the creative
commons license. For each subject, an anatomical MRI dataset
was collected with a scan resolution of 256× 256× 160, field of
view = 204 mm× 256 mm× 160 mm. In addition, the cognitive
functions were investigated using different cognitive tasks. An
amyloid PET volume as well as the APOE gene information
were also obtained for a subgroup of the participants. All
of the 315 subjects were included in this study. There were
117 male subjects (age = 54.49 ± 20.45) and 198 female
subjects (age = 54.69 ± 19.93). The cognitive functions for
each participant were evaluated using several clinical scales
[i.e., Cambridge neuropsychological test automated battery
(CANTAB), letter number sequencing (LNS)]. The detailed
information (MRI parameters, demographical information, as
well as cognitive scores) for this dataset could be found at the
DLBS website.1

1 http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
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Classical gray matter voxel-based
morphology

The raw anatomical MRI datasets were preprocessed using
the standard procedure of VBM, which was carried out using
the FSL package (Good et al., 2001).2 First, the raw MRI
images were brain-extracted using fslvbm_1_bet script and
segmented to obtain the gray matter, white matter as well
as cerebrospinal fluid. Then, the skull-stripped images were
non-linearly registered to the Montreal Neurological Institute
(MNI). standard brain space using FSL’s FNIRT algorithm.
Third, the normalized images were averaged and flipped
between left and right to construct a study-specific brain
template using fslvbm_2_template script. Fourth, the raw gray
matter images as well as white matter images were normalized
to this template using the spatial transformation parameters.
Finally, the normalized gray matter images were multiplied
by the Jacobian of the non-linear deformation field to obtain
the modulated images as the gray matter VBM features using
fslvbm_3_proc script. The modulated images were smoothed
using a Gaussian kernel with sigma = 3 mm. For each voxel,
the gray matter VBM value indicates the voxel-wise volume
of the location (i.e., the coordinates in x–y–z space). In
addition, the white mater VBM features were extracted using
the same pipelines.

Whiter matter structural covariance
connectivity

One of our previous study applied wavelet transform
to obtain voxel-wise brain morphological networks (Wang
et al., 2018b). Here, we extended the aforementioned inter-
voxel features to the interregional measures. The white
matter structural covariance connectivity were computed using
the following steps: (1) obtain the VBM features of the
white matters using the same preprocessing steps in the
section “Classical gray matter voxel-based morphology”; (2)
apply 3D wavelet transform on the individual VBM dataset
according to a previous study (Wang et al., 2018b); (3)
get the 4D volume of wavelet features; (4) segment the
individual wavelet-based volume into 12 white matter networks
(WMNs) using a predefined atlas based on BOLD signal
spatial clustering (Peer et al., 2017); (5) extract the mean
wavelet features in each WMN to obtain the regional feature
vector; (6) calculate the Pearson correlation coefficients of
two wavelet feature vectors between each pair of WMNs; (7)
obtain all Pearson correlation coefficients across WMNs as
individual morphological connectivity matrix. Here, the level-
three decomposition with near symmetric wavelet basis was
applied in the 3D discrete wavelet transform based on Matlab’s

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM

wavedec3 function, since the connectivity features were reliable
across different levels of wavelet decomposition according to
our previous study (Wang et al., 2018b). The 3D volumes of
wavelet decompositions were concatenated together to obtain
the 4D volume of wavelet features. Figure 1 shows the pipeline
of feature extraction. The detailed information of wavelet-based
VBM transform could be found in a public available package.3

The structural covariance connectivity in the gray matter were
extracted using a predefined brain atlas of 17 resting state
networks (RSNs) for comparisons (Yeo et al., 2011). In addition,
the proposed wavelet-based metrics were compared with the
famous KL-divergence similarity (Kong et al., 2014).

Predictive models using machine
learning

The predictive models were solved using SVR based on the
morphological connectivity. Since none of the nine cognitive
variables was significantly correlated to age, the following
equation was used in the predictive models:

Cognitive Score =
66∑

i = 1

wimci

In this equation, the cognitive score means the cognitive score
predicted by machine learning. The mc means the interregional
white matter morphological connectivity. The wi is the weight
of the morphological connectivity. There were 66 interregional
features among the 12 WMNs. The indices and names of
the brain networks could be found in a previous study (Peer
et al., 2017). In this study, the cognitive scores included the
Stockings of Cambridge (SOC), the stop signal task (SST),
the spatial working memory (SWM), the verbal recognition
memory (VRM), the digit comparison (DC), the digit symbol
(DSYM), the ETS advanced vocabulary (ETSV), the ETS letter
sets (ETSLS), and LNS.

In order to test the predictive power of the white matter
morphological connectivity, the predictive models were trained
and tested using 1,000 simulations of 10-fold cross-validations.
In each fold of cross-validation, only features with significant
correlations to cognitive scores (p < 0.05) were selected as
inputs for the SVR training procedure. In each training fold,
the default parameters of SVR were used to build predictive
models with the e1071 package.4 However, the features in each
training models were different from each other according to
the feature selection procedure. Therefore, all of the testing
models were based on the same SVR parameters but with
different features. The onefold validation set is independent
of the ninefolds feature selection and training processes. The
performance of the predictive model was evaluated by the

3 https://github.com/xunhengwang/MCWT

4 https://cran.r-project.org/web/packages/e1071/index.html
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FIGURE 1

Pipelines for white matter structural covariance connectivity extraction. For each subject, the voxel-based morphology (VBM) transform is
performed on the spatially normalized and modulated T-1 weighted white matter images. Then, 3D wavelet transform is performed on the
individual VBM volume. Third, the white matter is assigned to 12 white matter networks (WMNs). Finally, the white matter structural covariance
connectivity is computed based on correlation coefficients of the regional wavelet features. The VBM features, wavelets features and network
features are significantly different from one of our previous study (Wang et al., 2018b).

correlation coefficients with p-values, which represented the
predicting accuracy between the original cognitive scores and
the predicted scores. The final predictive patterns for cognitive
functions were discovered by performing feature selection on
the white matter morphological connectivity of all subjects
measured with cognitive scales.

Correlation analysis

In order to investigate the biological meanings of the
proposed interregional metrics, correlation analysis was
performed between the node strengths of the white matter
morphological connectivity and the cognitive scores. The
weighted brain network was built based on the significantly
positive correlation coefficients (r > 0, p < 0.05) of
the morphological connectivity. Positive and significant
correlations were always used to build brain networks. Negative
and non-significant correlations might be helpful for predictive
models but were hard to explain the node attributes. The node
strength was computed by the sum of connections related to the
brain region. The procedure of node strength computation was
implemented by the Brain Connectivity Toolbox.5

5 www.nitrc.org/projects/bct

Split-half analysis

For each predictive model, the subjects were reassigned into
two groups: younger group (age < mean age) and elder group
(age > mean age). There were 158 subjects in the younger
group (age = 37.29 ± 10.59), and 157 subjects in the elder
group (age = 72.06 ± 9.45). We first trained the nine predictive
models based on the younger group and tested the models
using the elder group. We then reversed the training and testing
samples, and repeated the predicting procedure to investigate
the age effects.

Results

Performance of the predictive models

Figure 2 shows the performance of the predictive models
based on white matter structural covariance connectivity. The
accuracy was indicated by the correlation coefficients between
predicted values and original scores. Nine predictive models
for cognitive scores estimations are established using 1,000
times of cross-validations. Most of the predictive scores are
significantly correlated to original scores (p < 0.01). Table 1
shows the performance of the white matter predictive models.
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FIGURE 2

Performance of the predictive models based on white matter morphological connectivity. The nine cognitive predictive models include the
Stockings of Cambridge (SOC), the stop signal task (SST), the spatial working memory (SWM), the verbal recognition memory (VRM), the digit
comparison (DC), the digit symbol (DSYM), the ETS advanced vocabulary (ETSV), the ETS letter sets (ETSLS), and letter number sequencing (LNS).

The individual abilities of DC [r = 0.41 ± 0.01, p < 0.01, mean
absolute error (MAE) = 10.44± 0.11] and DSYM (r = 0.5± 0.01,
p < 0.01, MAE = 9.73 ± 0.11) are successfully predicted
using the novel features. The SWM can also be predicted
(r = 0.34± 0.02, p < 0.01, MAE = 18.16± 0.21). The predictive
models for ETSV exhibit the lowest performance. However,
the ETSLS can be estimated using the structural covariance
connectivity in the white matter (r = 0.32 ± 0.02, p < 0.01,
MAE = 4.81 ± 0.05). The p-values for the performance of the
predictive were not corrected by false discovery rate (FDR),
since the p-values were computed through 1,000 times of
permutations using the RVAideMemoire package.6

Figure 3 shows the performance of the predictive models
based on gray matter structural covariance connectivity. Nine
predictive models for cognitive scores estimations are also
established using 1,000 times of cross-validations. Most of the
predictive values are significantly correlated to original scores
(p < 0.01). Table 2 shows the performance of the gray matter
predictive models. Similar to the predictive models based on
white matter, the individual abilities of DC (r = 0.43 ± 0.01,

6 https://cran.r-project.org/web/packages/RVAideMemoire/

p < 0.01, MAE = 10.31 ± 0.12) and DSYM (r = 0.46 ± 0.01,
p < 0.01, MAE = 10.04 ± 0.11) are successfully predicted using
the interregional gray matter features. The SWM can also be
predicted (r = 0.38 ± 0.02, p < 0.01, MAE = 16.96 ± 0.19).
The predictive models for ETSV exhibit the lowest performance.
However, the ETSLS can be estimated using the structural
covariance connectivity in the gray matter (r = 0.38 ± 0.01,
p < 0.01, MAE = 4.63± 0.05).

TABLE 1 Performance of white matter models.

Tasks r P-value MAE

SOC 0.24± 0.02 p < 0.01 1.58± 0.02

SST 0.22± 0.02 p < 0.01 41.43± 0.43

SWM 0.34± 0.02 p < 0.01 18.16± 0.21

VRM 0.22± 0.02 p < 0.01 1.63± 0.02

DC 0.41± 0.01 p < 0.01 10.44± 0.11

DSYM 0.5± 0.01 p < 0.01 9.73± 0.11

ETSLS 0.32± 0.02 p < 0.01 4.81± 0.05

ETSV 0.14± 0.02 – 5.8± 0.06

LNS 0.26± 0.02 p < 0.01 2.3± 0.03
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FIGURE 3

Performance of the predictive models based on gray matter morphological connectivity. The nine cognitive predictive models contain the
Stockings of Cambridge (SOC), the stop signal task (SST), the spatial working memory (SWM), the verbal recognition memory (VRM), the digit
comparison (DC), the digit symbol (DSYM), the ETS advanced vocabulary (ETSV), the ETS letter sets (ETSLS), and letter number sequencing
(LNS), respectively.

Figure 4 shows the Cohen’s d between the performance
of predictive models based on white matter and gray matter
structural covariance connectivity. Most of the predictive
models based on white matter structural covariance connectivity
exhibit lower performance than that using gray matter
connectivity. Notably, the performance of predictive models
for DSYM estimation using white matter connectivity is

TABLE 2 Performance of gray matter models.

Tasks r P-value MAE

SOC 0.22± 0.02 p < 0.01 1.63± 0.02

SST 0.22± 0.02 p < 0.01 40.68± 0.47

SWM 0.38± 0.02 p < 0.01 16.96± 0.19

VRM 0.32± 0.02 p < 0.01 1.53± 0.02

DC 0.43± 0.01 p < 0.01 10.31± 0.12

DSYM 0.46± 0.01 p < 0.01 10.04± 0.11

ETSLS 0.38± 0.01 p < 0.01 4.63± 0.05

ETSV 0.18± 0.03 – 5.7± 0.08

LNS 0.33± 0.02 p < 0.01 2.2± 0.02

significantly higher than that using gray matter connectivity
(Cohen’s d = 2.15). The Cohen’s d > 0.8 means large effect size.

Predictive patterns of white matter
morphological connectivity

Figure 5 shows the predictive patterns of white matter
morphological connectivity for various cognitive tasks. The
labels in the x-axis and y-axis indicate the indices of the
12 WMNs, which are discovered by a previous resting state
fMRI-based study (Peer et al., 2017). Predictive patterns of
the novel metrics for nine brain functions are found using
feature selection (p < 0.05, FDR corrected). Most of the white
matter structural covariance features are significantly correlated
to the SWM (p < 0.05, FDR corrected). The sensorimotor-
related white matter system (WMN-3) exhibits as the most
predictive network node. The sensorimotor-related connectivity
is significantly correlated to the nine brain functions (p < 0.05,
FDR corrected). In addition, the posterior cerebellar white
mater tracts (WMN-9) also exhibit as a predictive network node
for SWM and the ETSLS.
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FIGURE 4

Comparisons of predictive models based on white matter and gray matter. The nine cognitive predictive models contain the Stockings of
Cambridge (SOC), the stop signal task (SST), the spatial working memory (SWM), the verbal recognition memory (VRM), the digit comparison
(DC), the digit symbol (DSYM), the ETS advanced vocabulary (ETSV), the ETS letter sets (ETSLS), and letter number sequencing (LNS), respectively.

Correlations between the node
strengths and cognitive functions

Figure 6 shows the correlations between the node strengths
and cognitive functions. The node strengths of certain
WMNs are significantly correlated to brain functions. In this
paper, the significant correlations between the node strengths
of sensorimotor-related white matter system and cognitive
functions are reported in Figure 6. The sensorimotor-related
white matter system is positively correlated to SST (r = 0.18,
p < 0.05), SWM (r = 0.27, p < 0.05), and ETSV (r = 0.16,
p < 0.05). The sensorimotor-related white matter system is
negatively correlated to SOC (r = −0.29, p < 0.05), VRM
(r = −0.23, p < 0.05), DC (r = −0.35, p < 0.05), DSYM
(r = −0.39, p < 0.05), ETSLS (r = −0.29, p < 0.05), and LNS
(r =−0.19, p < 0.05). All of the p-values are corrected by FDR.

The distributions of gender, cognitive
scores and age

Of note, several cognitive scores are missing for certain
subjects. The distributions of gender can be found in Figure 7.

The distributions of cognitive scores can be found in Figure 8.
The distributions of age can be found in Figure 9. In addition,
the results of split-half analysis of age effects can be found in
Tables 3, 4. Here, we only report the performance of predictive
models using white matter structural covariance connectivity.

Comparisons with previous
morphological connectivity metrics

The wavelet-based metrics are compared with the famous
KL-divergence metrics. Although both metrics are significantly
correlated to age, the KL-divergence metrics fail in predicting
all of the nine cognitive variables. No significant correlation
is found between the KL-divergence metrics and the nine
cognitive variables.

Discussion

This paper investigated the white matter structural
covariance connectivity from brain anatomical MRI, and built
predictive models for the novel metrics. To achieve this goal, 3D
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FIGURE 5

Predictive patterns of the white matter structural covariance connectivity. (A–I) Denote the nine cognitive tasks. The nine cognitive predictive
patterns are related to the Stockings of Cambridge (SOC), the stop signal task (SST), the spatial working memory (SWM), the verbal recognition
memory (VRM), the digit comparison (DC), the digit symbol (DSYM), the ETS advanced vocabulary (ETSV), the ETS letter sets (ETSLS), and letter
number sequencing (LNS), respectively. Red circles denote negative correlations to cognitive scores. Blue circles denote positive correlations to
cognitive scores.

wavelet transform was applied on the individual VBM dataset
to obtain hierarchical features. The interregional connectivity
was investigated using the 4D wavelet features. The SVR
algorithm was then applied to build the predictive models for
cognitive scores, which were well-tested using cross-validations.
The predictive models achieved high performance based
on the morphological connectivity. Furthermore, predictive
interregional patterns were found using feature selection.
The morphological connectivity was significantly correlated
to cognitive scores. In summary, the novel white matter
morphological features exhibited predictive power, and had
potential to be neuroimaging-markers for brain disorders.

The correlation coefficient is always used to evaluate the
performance of the regression models (Cui and Gong, 2018;
Cohen et al., 2020). An efficient predictive model was indicated
by significantly high correlation coefficients between the original
scores and the predicted values. Automatic prediction of
cognitive functions is a challenging task, according to the
individual differences in brain activity and connectivity (Dubois
and Adolphs, 2016; Scheinost et al., 2019; Pua et al., 2021).
Several studies attempted to predict cognitive or behavior scores
using machine learning and fMRI. The intelligence quotient
(IQ), reading ability, sleep quality, inattention, impulsivity, and
autistic symptoms could be predicted using machine learning
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FIGURE 6

Correlations between the node strengths and cognitive scores. (A–I) Denote the nine cognitive tasks. The nine cognitive tasks contain the
Stockings of Cambridge (SOC), the stop signal task (SST), the spatial working memory (SWM), the verbal recognition memory (VRM), the digit
comparison (DC), the digit symbol (DSYM), the ETS advanced vocabulary (ETSV), the ETS letter sets (ETSLS), and letter number sequencing
(LNS), respectively. The node strengths are based on the sensorimotor-related white matter network (WMN-3).

(Cui et al., 2018; Cai et al., 2020; Zhou et al., 2020; Hebling
Vieira et al., 2021; Wang and Li, 2021). Specially, the brain-
age predictive models exhibited relatively high performance
(Franke et al., 2012). The aforementioned predictive models
shed lights on intelligent evaluation of human behaviors using
neuroimaging-markers rather than clinical scales. However,
the predictive models for various cognitive functions (i.e.,
SWM) remain largely unexplored. In this paper, we applied
interregional white matter morphological features to predict
cognitive scores for the first time. The abilities of DC and
DSYM were successfully estimated using SVRs and white matter

connectivity. We found that the models using white matter
connectivity is better than that using gray matter connectivity
for DSYM and SOC prediction. According to previous studies,
the white matter was more activated than gray matter during
DSYM task, suggesting that DSYM ability is more related to
white matter than gray matter (Colom et al., 2010; Gawryluk
et al., 2014). The SOC is a complex cognitive task that requires
whole brain connectivity, which means that the white matter
might play a mediation role in SOC performance improvement
across childhood (Kipping et al., 2018). The performance of
our predictive models was comparable to previous models.
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FIGURE 7

Gender distributions for the nine cognitive tasks.

Additional results suggested that the wavelet-based metrics
outperformed the KL-divergence metrics in predictive models
for cognitive tasks using white matter connectivity. Notably,
the predictive models were well-validated using 1,000 times
of 10-fold CVs. The proposed method with high performance
and reliability might outperform the conventional fMRI-based
predictive models, which were quite time-consuming and
related to physiological artifacts. Moreover, the predictive
patterns were found using feature selection, and might open
a new way to investigate the brain cognitive abilities based on
white matters.

The predictive patterns of cognitive scores were discovered
to investigate the brain functions. Previous studies found that
the working memory network, the attentional network, and
the default mode network were related to several cognitive
functions (Yang et al., 2013; Rosenberg et al., 2016; Zhang
et al., 2020). Most of current predictive models for brain
cognitive functions were focused on the gray matter, this study
provided the first evidences that brain functions could be
predicted using white matter structural covariance connectivity.
Specially, the sensorimotor-related white matter system (WMN-
3) and posterior cerebellar white mater tracts (WMN-9) were
significantly correlated to nine cognitive scores, suggesting

the predictive power of the two WMNs (Peer et al., 2017).
The sensorimotor and cerebellar regions of the white matter
might play important roles in SWM and reading ability (Cui
et al., 2018). Most of the node strengths of the WMN-3 were
significantly negatively correlated to cognitive scores, implying
the functional segregation in white matter with increasing
abilities of cognitive functions (Fukushima et al., 2018). The
predictive patterns suggested that machine learning based on
white matter morphological features might be an efficient way
to evaluate cognitive functions.

The biological meanings of the interregional morphological
connectivity remain unclear. Nevertheless, significant
correlations were found between the interregional features
and cognitive scores, implying the potential biological
meanings of the proposed metrics. A previous study
suggested that we could explain the interregional features
based on the axon tension theory (Van Essen, 1997; Kong
et al., 2014), which assumed that the structurally linked
brain regions were connected by a mechanical force.
Therefore, the two linked brain regions exhibited similar
radiomic features. Another previous study found that
the interregional morphological connectivity exhibited
discriminative powers for attention deficit hyperactivity
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FIGURE 8

Distributions of cognitive scores. (A–I) Denote the nine cognitive tasks.

disorder (ADHD) identification (Wang et al., 2018a). The
interregional features were significantly related to individual
inattention and impulsivity (Wang et al., 2018a), and could
predict the clinical severity of autism spectrum disorder
(ASD) (Sato et al., 2013). One of our previous study also
found the voxel-wise morphological features exhibited
high reliability and could represent individual differences
(Wang et al., 2018b). The above evidences suggested that the
morphological connectivity had potential discriminative and
predictive powers in machine learning tasks. Although
lack of interpretation of its biological meanings, the
interregional white matter morphological connectivity
still had potential to be a novel neural-metric for brain
connectome.

In addition, we analyzed the age effects on the predictive
models. First, the 10-fold cross-validation procedures were
repeated 1,000 times for each predictive model to avoid random
sampling. Second, the distributions of age variable were plotted

in Figure 9. We found that the curves of distributions for
age variable were similar to the original ones. Third, the
subjects were reassigned into two groups: younger group
(age < mean age) and elder group (age > mean age). We
trained the nine predictive models based on the younger
group and tested the models using the elder group, and
obtained desired performance. We then reversed the training
and testing samples, and also obtained significant performance.
Forth, we found that none of the nine cognitive variables was
correlated to age. We then combined the structural covariance
connectivity and age as features for the predictive models,
and no significant improvement was found for the model
performance. In summary, age effects might play less important
roles in this study, according to current evidences.

This study was performed with several advantages.
One advantage was predicting cognitive scores based on
interregional white matter morphological features. The
conventional regional morphological measures could only
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FIGURE 9

Age distributions for the training models in each task. (A–I) Denote the nine cognitive tasks. The blue curves fit the distributions of age in each
training folds. The black curves fit the distributions of age for all samples in each task.

represent the local information of brain regions. Our method
could provide additional brain topology information for the
white matters. Furthermore, the proposed brain network
features were significantly related to cognitive scores, suggesting
the potential biological basis of the morphological connectivity.
Therefore, the interregional morphological connectivity was
informative. Another advantage was validating the variability
of the proposed metrics using the machine learning. The
performance of the predictive models was comparable to
previous methods, implying the potential clinical applications
of the proposed metrics. The predictive models could open a
new perspective for brain disorders and healthy aging.

There were several limitations that should be addressed
in future study. One limitation was the explanation of the
proposed morphological metrics for white matter. Although

the interregional features were significantly correlated to
the cognitive scores, additional cognitive tasks and different
imaging modalities (i.e., functional fMRI, diffusion MRI)
should be applied to explain the biological meanings of the
structural covariance connectivity. Furthermore, other novel
feature extraction methods for investigating the morphological
connectivity should be analyzed in subsequent study. Another
limitation was the morphological connectivity depended on
the wavelet basis and scales. The criteria for wavelet scale
selection should be addressed in future research. The third
limitation was the white matter functional atlas used in this
paper. Although the white matter functional networks were
well-established using resting state fMRI and diffusion MRI, a
novel white mater atlas derived from morphological features
should be analyzed and validated in future study. We agree
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TABLE 3 Predicting cognitive functions of elder group using models
based on younger group.

Tasks r P-value MAE

SOC 0.31 p < 0.01 1.55

SST 0.28 p < 0.01 39.73

SWM 0.35 p < 0.01 18.64

VRM 0.19 p = 0.2 1.68

DC 0.38 p < 0.01 10.88

DSYM 0.47 p < 0.01 10.18

ETSLS 0.42 p < 0.01 4.28

ETSV 0.13 p = 0.1 5.6

LNS 0.23 p < 0.01 2.45

TABLE 4 Predicting cognitive functions of younger group using
models based on elder group.

Tasks r P-value MAE

SOC 0.28 p < 0.01 1.57

SST 0.24 p < 0.01 41.77

SWM 0.37 p < 0.01 17.38

VRM 0.3 p < 0.01 1.54

DC 0.35 p < 0.01 11.07

DSYM 0.39 p < 0.01 10.13

ETSLS 0.34 p < 0.01 5

ETSV 0.23 p < 0.01 5.79

LNS 0.22 p < 0.01 2.22

that individualized functional network parcellation is beneficial
for behavior prediction (Kong et al., 2021). The T1-weighted
MRI wavelets features can also be used for individual brain
parcellations. We sought to let the potentials of wavelets
transforms on brain parcellations as future directions. The
fourth limitation was the machine learning procedure, various
feature selection and regression algorithms should be compared
in future study. The fifth limitation was the study population,
which was mixed with the apoe-gene carriers. Increased sample
size and different kinds of populations should be investigated
additionally. The last limitation was the parameters of the MRI,
which had impacts on the VBM measures (Streitbürger et al.,
2014). Different spatial resolutions, scan sequences, head coils
of MRI scan sessions should be compared in future research.

Conclusion

This paper proposed a novel neural-metric named white
matter structural covariance connectivity based on wavelet
transform. The cognitive scores were estimated using the
interregional morphological features. The predictive models for
several cognitive functions achieved high performance based
on cross-validations. The predictive patterns of interregional
morphological connectivity for cognitive scores were found by
machine learning. The results suggested that the interregional

white matter morphological connectivity could be a potential
neural-metric for brain connectome.
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