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Introduction: Sciatica is a pain disorder often caused by the herniated

disk compressing the lumbosacral nerve roots. Neuroimaging studies have

identified functional abnormalities in patients with chronic sciatica (CS).

However, few studies have investigated the neural marker of CS using

brain structure and the classification value of multidimensional neuroimaging

features in CS patients is unclear.

Methods: Here, structural and resting-state functional magnetic resonance

imaging (fMRI) was acquired for 34 CS patients and 36 matched healthy

controls (HCs). We analyzed cortical surface area, cortical thickness,

amplitude of low-frequency fluctuation (ALFF), regional homogeneity (REHO),

between-regions functional connectivity (FC), and assessed the correlation

between neuroimaging measures and clinical scores. Finally, the multimodal

neuroimaging features were used to differentiate the CS patients and HC

individuals by support vector machine (SVM) algorithm.

Results: Compared to HC, CS patients had a larger cortical surface area

in the right banks of the superior temporal sulcus and rostral anterior

cingulate; higher ALFF value in the left inferior frontal gyrus; enhanced

FCs between somatomotor and ventral attention network. Three FCs values

were associated with clinical pain scores. Furthermore, the three multimodal

neuroimaging features with significant differences between groups and the

SVM algorithm could classify CS patients and HC with an accuracy of 90.00%.

Discussion: Together, our findings revealed extensive reorganization of local

functional properties, surface area, and network metrics in CS patients. The

success of patient identification highlights the potential of using artificial

intelligence and multimodal neuroimaging markers in chronic pain research.
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Introduction

Sciatica is a pain disorder often caused by the herniated disk
compressing the lumbosacral nerve roots, usually presenting as
pain radiating from the low back down to the leg below the knee
(Porchet et al., 2002; Deyo and Mirza, 2016). About a quarter
of adults in the USA have experienced low back pain in the
past 3 months, and 30% of those accompanied sciatica (Jensen
et al., 2019). The global prevalence of sciatica varies from 1.2
to 43% (Konstantinou and Dunn, 2008; Finley et al., 2018),
reflecting its ununified diagnostic criteria and diverse clinical
manifestations. Pain caused by sciatica can easily progress to a
chronic stage which may be either continuous or recurrent, and
severely affects the quality of life and mental health (Foster and
Reddington, 2021). However, the pathophysiologic mechanisms
of chronic sciatica (CS) are not clear, which restricts the
development of therapeutic protocols.

Previous neuroimaging studies have shown greater regional
homogeneity (REHO) of the posterior cingulate (Liu et al., 2020)
and lower functional connectivity (FC) between the dorsolateral
prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC)
(Li et al., 2012) in patients with CS compared with healthy
controls (HCs). However, these functional abnormalities may
not fully account for the pathophysiology of CS, because a large
number of studies have found both functional and structural
(e.g., cortical surface area) changes associated with chronic pain
(Seminowicz et al., 2011; Luchtmann et al., 2014; De Pauw
et al., 2019; Niddam et al., 2019). Besides, multiple studies
have suggested that communication between brain networks
is changed in chronic pain patients, and connections across
networks may reflect the presence of chronic pain (Kim et al.,
2013; Hemington et al., 2016).

Given these neuroimaging findings on chronic pain, we
speculated that patients with CS may also have abnormal
changes in structural properties or between-regions FC. In
addition, previous studies have applied machine learning
techniques to distinguish patients with post-herpetic neuralgia
(PHN) and HC using the amplitude of low-frequency
fluctuation (ALFF) values (Huang et al., 2020). However, few
studies have classified neuropathic pain patients from HC
by multimodal neuroimaging features. The multidimensional
neuroimaging features may serve as a bridge between clinical
observations and neural mechanisms that can increase the
understanding of CS as a complex and multifaceted pain-related
disease.

Therefore, this study aimed to investigate the underlying
neurobiological mechanisms of CS using surface-based
morphometry, local functional metric, and network FC analyses
in patients with CS using structural and functional magnetic
resonance imaging (fMRI) data. Besides, the relationships
between neuroimaging measures and clinical symptom scale
scores were examined. Furthermore, the diagnosability of the
neuroimaging properties was evaluated utilizing a support

vector machine (SVM) of machine learning techniques and
neuroimaging features with significant differences between CS
patients and HC.

Materials and methods

Participants

This study included 34 CS patients who meet the diagnostic
criteria of sciatica (Jensen et al., 2019) and 38 HC participants.
Patients were recruited in the Dongzhimen Hospital Affiliated
to Beijing University of Chinese Medicine from December
2020 to May 2021. The study recruited participants through
hospital outpatient, the WeChat official account (one of China’s
popular social media platforms) of Dongzhimen Hospital, and
brochures.

The key inclusion criteria of CS people were: (1) 35–
65 years old; (2) having unilateral radiating leg pain below
the knee for more than 3 months, accompanied by a positive
straight-leg raise test or corresponding neurological deficit
(paresthesia, muscle weakness, or reflex abnormalities) with
magnetic resonance imaging (MRI) or computed tomography
(CT) confirmed disk herniation, (3) leg pain intensity on the
visual analog scale (VAS) (0–100 mm) of 40 mm or higher
(Collins et al., 1997), (4) right-handed. The exclusion criteria
were: (1) sciatica induced by other diseases than lumbar disk
herniation, (2) having the severe spinal disease or severe
progressive neurological symptoms, (3) having cardiovascular,
liver, kidney, or hematopoietic system diseases, mental health
disorders, or other severe coexisting diseases, (4) pregnant
or lactating women or those planning to conceive during
the trial. Additionally, 38 pain-free age- and sex-matched
HCs were recruited from the same geographic area by public
advertisement. All HCs also met the above exclusion criteria.
In addition, HCs were asked whether had personal or family
histories of pain disorders or had experienced any significant
pain condition as the exclusion criteria.

This study has been approved by the Ethics Committee
of Dongzhimen Hospital Affiliated to Beijing University
of Chinese Medicine (No. 2020BZYLL0803), and it was
part of a study registered in Chinese Clinical Trial Registry
(ChiCTR2100044585). All participants provided written
informed consent according to the Declaration of Helsinki
after study procedures were explained to them thoroughly. We
collected MRI data from all participants.

Clinical parameters

After recruitment, the following clinical measurements were
evaluated by CS patients within the day before the MRI
scanning. VAS was performed to rate the extent of pain in the leg
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and low back. Oswestry Disability Index (ODI) (Fairbank and
Pynsent, 2000) was conducted to identify self-reported function
levels through examining perceived disability in 10 activities
of daily living. Sciatica Frequency and Bothersomeness Index
(SFBI) (Atlas et al., 1996) was used to assess the frequency
and bothersomeness of sciatica with scores ranging from 0 to
24, respectively. The 36-item Short-Form Health Survey (SF-
36) (Lam et al., 2005) was administered to assess the quality of
life in eight aspects, and the scores on the physical and mental
components of the SF-36 will be summarized.

Magnetic resonance imaging
acquisition

Magnetic resonance imaging images were obtained at
a Siemens 3.0 T MRI scanner (Skyra, Siemens, Erlangen,
Germany) using a standard head coil at the Department
of Radiology for Beijing Hospital of Traditional Chinese
Medicine Affiliated to Capital Medical University. The high-
resolution T1 structural MRI (sMRI) was acquired using
a gradient echo sequence with the following parameters:
repetition time (TR) = 2,530 ms, echo time (TE) = 2.98 ms,
flip angle (FA) = 7◦, inversion time = 1,100 ms, field of view
(FOV) = 240 mm × 240 mm, number of slices = 192,
voxel size = 1 mm × 1 mm × 1 mm, and in-plane
resolution = 256 × 256. And resting-state functional MRI
(rs-fMRI) was scanned using echo-planar imaging (EPI)
sequence with the following parameters: whole brain,
TR = 2,000 ms, TE = 30 ms, FOV = 224 mm × 224 mm,
FA = 90◦, slice thickness/gap = 3.5/0.6 mm, voxel
size = 3.5 mm × 3.5 mm × 3.5 mm, axial slices = 32, in-
plane resolution = 64× 64, and 240 volumes. The scan duration
was 5 min for the T1-weighted image and 8 min for EPI scans
for blood oxygen-level dependent (BOLD)-based functional
neuroimaging. We used comfortable foam pads to minimize
head motion and earplugs to reduce noise interference.
Before starting scanning, we instructed participants to keep
their eyes closed, stay awake, avoid engaging in any specific
thoughts and keep still.

Quality control of magnetic resonance
imaging data

Visually checking image quality by a neuroradiologist (QR)
to make sure there were no apparent structural abnormalities
or artifacts present, and the images with head movement greater
than 2 mm in any direction or head rotation greater than 1◦ were
excluded. Two HCs were excluded from the study on account
of excessive head motion (>2 mm in translation or >2.0◦

in rotation) during the rs-fMRI scanning. The two excluded
participants were female, their ages were 48 and 54 years. As

a result, 34 patients with CS and 36 HCs were included in
further statistical analyses. Furthermore, we also extracted the
mean framewise displacement (FD) (Van Dijk et al., 2012) for
each participant to measure the extent of head motion and
compared them between the two groups. The Mann–Whitney U
of non-parametric test result showed that there is no significant
difference in head motion among the three groups (z = 1.575,
p = 0.115).

Structural magnetic resonance
imaging data processing

First, the “recon-all” command with –all –qcache options
implemented in FreeSurfer (V6.0)1 was used to pre-process
T1-weighted images, the key steps including motion correction,
non-uniform intensity normalization, talairach transform
computation, skull removal, volumetric segmentation, cortical
surface reconstruction and so on. Mean cortical thickness and
surface area were calculated for each of the 68 cortical regions
of the Desikan-Killiany Atlas (34 per hemisphere). Cortical
thickness was estimated for each participant using the distance
from the white matter boundary to the corresponding pial
surface (Fischl and Dale, 2000). The cerebral surface area was
calculated by mesh generation and surface triangulation. Then
mean cortical thickness and surface area were extracted for each
cortical region.

Functional magnetic resonance
imaging data processing and network
analyses

The fMRI data were pre-processed using the software
MATLAB 2017 and the toolbox for Data Processing and
Analysis for Brain Imaging (DPABI) (version 6.1)2 (Yan et al.,
2016). For each participant’s image data, we discarded the first
10 volumes because of signal equilibrium, a total of 230 volumes
for each subject were processed with the slice timing, motion
correction, spatial smoothing (8-mm FWHM), and spatial
normalization to the Montreal Neurological Institute (MNI)
space. Then we re-sampled the data into 3 mm× 3 mm× 3 mm.
Finally, after removing the linear trend, we applied a 0.01–
0.08 Hz bandpass filter.

It should be noted that ALFF was calculated without
filtering during the pre-processing process, and REHO was not
smoothed during the pre-processing but smoothed after it was
calculated, to allow the data to be normalized, which would be
conducive to statistical analysis and indicator standardization.

1 http://surfer.nmr.mgh.harvard.edu/

2 http://rfmri.org/dpabi
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ALFF and REHO values were calculated using the DPBAI
toolbox. ALFF is used to detect the regional intensity of
spontaneous fluctuations in the BOLD signal, REHO calculates
the temporal homogeneity of the BOLD signal between a given
voxel with neighboring voxels. These measures were selected
to pinpoint the spontaneous neural activity of specific regions
and physiological states of the brain. The ALFF measures the
gross power of oscillations within a certain frequency range,
using the DPBAI software and regions of interest (ROIs) defined
by the Anatomical Automatic Labeling (AAL) ROI library. The
calculation procedure: (1) Fast Fourier Transform (FFT) was
used to convert all voxels from the time domain to the frequency
domain; (2) the ALFF of every voxel was calculated by averaging
the square root of the power spectrum across 0. REHO was
computed based on Kendall’s coefficient of concordance (KCC)
of the time series of the voxel with its nearest 26 neighboring
voxels. The REHO was computed for all brain voxels.

We used the software MATLAB 2017 and the DPABI
(version 6.1) to extract time courses of 160 ROIs in the
Dosenbach 160 atlas (Dosenbach et al., 2010). Each ROI
(i.e., node) was a 5 mm radius sphere centered on the
atlas coordinates, including 19 voxels in each. To derive
the connectivity matrix of the brain, we computed Pearson
correlation coefficients of BOLD signals between each pair of
142 ROIs (Glasser et al., 2016) (Dosenbach 160 atlas exclude 18
ROIs of the cerebellum), which were then Fisher transformed
to z-values. We grouped significant nodes according to a
well-defined seven-network atlas derived from 1,000 healthy
participants by Yeo et al. (2011): sensory-motor network (SMN),
ventral attention network (VAN), visual network (VN), dorsal
attention network (DAN), default mode network (DMN),
frontoparietal network (FPN), and subcortical network (SC).
Because the limbic network nodes from the Yeo atlas were not
covered by the Dosenbach 160 atlas, we defined subcortical ROIs
as the SC (Yang et al., 2021).

Statistical analyses

Demographic and clinical characteristics
analyses

Demographic data collected from either group includes age,
gender, educational level, and occupation. Participants were
asked to indicate the physical activity level of the work they
do most of the time, the nature of occupation was defined as
manual work and mental work. We used Statistical Package
for Social Sciences (SPSS) V21 software to conduct statistical
analyses. Before statistical analyses, we checked the normality
of each metric. Education in each group and age of the HC
group were non-normally distributed, we used Kolmogorov–
Smirnov non-parametric tests. As for categorical variables (i.e.,
gender and occupation), we used the Chi-Square test to evaluate
the differences between groups. The significance level was set at
p < 0.05.

Surface area and thickness analyses
The cortical surface area and cortical thickness of CS

patients and HC were extracted. Then, we used SPSS
V21 software to conduct statistical analyses. Two-sample
independent t-tests were used to compare the regional-wise
differences between the two groups if the measurements were
normally distributed [False discovery rate (FDR) correction,
p < 0.05], and if the data distribution is not normal, we
used non-parametric tests of Mann–Whitney U. Effect sizes are
depicted as Cohen’s d. The effect size was computed at https:
//www.psychometrica.de/effect_size.html.

Amplitude of low-frequency fluctuation and
regional homogeneity analyses

For ALFF and REHO maps, voxel-wise two-sample
independent t-tests were performed to compare the results
between the two groups, Gaussian Random Field theory (GRF)
correction, voxel-level p < 0.001, and cluster-level p < 0.05. We
extracted the values of ALFF and REHO results and calculated
effect sizes using Cohen’s d.

Network functional connectivity analyses
For FC analyses, we also used two-sample independent

t-tests with FDR corrected (p < 0.05) in DPABINet (See
text footnote 2, version 1.1). The figures were distributed in
DPABINet and BrainNet Viewer.3 Finally, we extracted the
values and showed them in the tables. Cohen’ s d was used as
the effect size measure.

Brain metrics and clinical variables correlation
analyses

We extracted metrics (ALFF, REHO, surface-based
morphometry, and FC) with significant group differences
and investigated their relationships with clinical variables.
VAS score for leg pain, VAS score for back pain, ODI score,
SF-36 for physical, SF-36 for mental, SFBI for frequency, and
SFBI for bothersomeness were investigated. For non-normally
distributed variables (VAS score for leg pain and SF-36 for
mental score), we used Spearman’s correlation analyses. For
the other normally distributed variables, Pearson correlation
was used to analyze the correlation. The above statistical
analyses were implemented using SPSS V21 (significance level
is p < 0.05).

Group classification with support vector
machine

After revealing the significant ALFF values, surface area,
and FCs in the CS group, we used these three kinds of
features to accurately differentiate the 34 CS individuals from
the 36 HCs. Features with different scales across different
modalities were normalized to a value between 0 and 1

3 http://www.nitrc.org/projects/bnv
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according to their maximum and minimum values. Then, the
discriminant analysis was performed by using the SVM with
a nested leave-one-out cross-validation (LOOCV) framework.
First, the C regularization parameter and the linear kernel
function were optimized by performing 5-fold cross-validation
on the n-1 (i.e., 69) training data. Once the optimal SVM
model was obtained, it was applied to classify the left-out
individual as CS or HC.

The performances of a classifier were quantified using
accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic (ROC) curve (AUC).
Note that the specificity represented the proportion
of the HC individuals correctly predicted, while the
sensitivity represented the proportion of the CS individuals
correctly predicted. Specifically, accuracy is calculated as
(TP + TN)/(TP + TN + FN + FP), sensitivity is defined as
TP/(TP + FN) and specificity is defined as TN/(FP + TN),
where TN is the number of true negatives (HC individuals
correctly classified), TP is the number of true positives (CS
individuals correctly classified), FN is the number of false
negatives (CS individuals classified as HC individuals), and FP
is the number of false positives (HC individuals classified as CS
individuals). In addition, the AUC is an evaluation measure
based on the ROC curve, which illustrates the performance
of the classifier. The ROC curve is delineated by plotting

TABLE 1 Demographic and clinical characteristics of two groups.

Parameter CS (n = 34) HC (n = 36) Statistics P-value

Age (years) 54.29 (8.80) 58.50 (51, 62.75) Z = 0.861 0.449a

Gender (M/F) 14/20 12/24 X2 = 0.461 0.497b

Education
(years)

12.97 (3.49) 11.50 (2.77) Z = 0.909 0.381a

Occupation
(Men/Man)

11/23 19/17 X2 = 1.611 0.204b

Pain duration
(years)

8.00 (3.38, 17.75) N/A N/A N/A

VAS score for leg
pain

55 (50, 70) N/A N/A N/A

VAS score for
back pain

57.50 (14.72) N/A N/A N/A

ODI score 26.27 (11.33) N/A N/A N/A

SF-36 for
physical

35.32 (10.34) N/A N/A N/A

SF-36 for mental 57.31 (47.42, 62.71) N/A N/A N/A

SFBI for
frequency

12.85 (4.84) N/A N/A N/A

SFBI for
bothersomeness

11.88 (4.27) N/A N/A N/A

We used mean (standard deviation) if the measurements were normally distributed, and
median (Q1, Q3) if the measurements were not normally distributed. aNon-parametric
test, Kolmogorov–Smirnov. bChi-square test. CS, chronic sciatica; HC, healthy controls;
M/F, male/female; Men/Man, Mental work/Manual work; N/A, not applicable; VAS,
visual analog scale, 0–100 mm; ODI, Oswestry Disability Index; SF-36, the 36-item
Short-Form Health Survey; SFBI, Sciatica Frequency and Bothersomeness Index.

1-specificity and sensitivity at different thresholds, and the
thresholds of each ROC curve underwent stepwise variation
from 0 to 1 in each 0.1 interval. Last, the model’s performance
was evaluated by computation of the Matthews Correlation
Coefficient (MCC). The calculation formula (Ali et al., 2021) is
as follows:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Results

Demographic and clinical
characteristics

Thirty-four CS patients and 36 matched HCs completed the
entire study. Age and years of education were not normally
distributed, so the Kolmogorov–Smirnov test was used to test
for group differences. No significant group differences were
found in age (p = 0.449), gender (Chi-square test: p = 0.497),
years of education (p = 0.381), and occupation (Chi-square test:
p = 0.204) between the CS and HC groups (Table 1). And
the median pain duration of CS was 8 months, the median
pain score for the leg on the VAS was 55, and the mean VAS
score for back pain was 57.50 (14.72) in patients. Otherwise,
the mean SF-36 score for the physical duration of CS was 35.32
(10.34), and the median SF-36 score for mental was 57.31 in
CS patients.

Amplitude of low-frequency
fluctuation abnormality in chronic
sciatica patients

Compared with the HC group, patients with CS had higher
ALFF in the left inferior frontal gyrus (IFG) (t = 4.132,
ES = −1.238, CI [−1.750 to −0.727]; Figure 1A and Table 2).
However, the REHO analysis did not yield any significant results
at the whole brain level.

Abnormal surface area in chronic
sciatica patients

Compared with the HC group, patients with CS had the
larger surface area in the right banks of the superior temporal
sulcus (bankssts) (t = 3.666, ES = −0.877, CI [−1.367 to 0.386],
FDR corrected p = 0.016) and right rostral anterior cingulate
(rACC) (t = 3.417, ES = −0.817, CI [−1.305 to 0.329], FDR
corrected p = 0.018; Table 3 and Figure 1B). However, we did
not find a significant difference in cortical thickness between the
two groups.
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FIGURE 1

Group differences in local functional metric and surface morphology. (A) Patients with CS have significantly higher ALFF value in the left inferior
frontal gyrus. The red color reflects ALFF values greater in CS patients than in the HC group. Gaussian Random Field theory (GRF) correction
with voxel-level p < 0.001 and cluster-level p < 0.05. (B) Cortical surface area differences between CS patients and HC. T-values of two altered
brain regions in the surface area of the right hemisphere. Positive (red) values reflect cortical area larger in CS patients than in the HC group,
FDR corrected p < 0.05. CS, chronic sciatica; CS, chronic sciatica; HC, healthy controls; rh, right hemisphere; rACC, rostral anterior cingulate
cortex; bankssts, banks of superior temporal sulcus.

TABLE 2 Significant differences in ALFF between two groups.

Regions Peak MNI coordinates Voxels size t-value ES (95%CI)

X Y Z

ALFF

CS > HC Inferior frontal gyrus, L −36 6 27 85 4.132 −1.238 (−1.750,−0.727)

Regions were identified in Figure 1A. Peak coordinates (X, Y, Z) are displayed according to MNI standard space, and labels according to the AAL atlas. GRF corrected, voxel-level
p < 0.001, cluster-level p < 0.05. MNI, Montreal Neurological Institute; CS, chronic sciatica; HC, healthy controls; ALFF, the amplitude of low-frequency fluctuation; L, left; ES, effect
sizes, Cohen’s d; CI, confidence interval; the effect size was computed for groups with different sample size.

TABLE 3 Differences in surface area index between the two groups.

Region CS (n = 34) HC (n = 36) t-value ES (95%CI) P-value

CS > HC rh_bankssts 941.24 (150.03) 834.78 (86.14) 3.666 −0.877 (−1.367, 0.386) 0.016*

rh_rACC 662.29 (170.19) 542.17 (121.17) 3.417 −0.817 (−1.305, 0.329) 0.018*

We used mean (standard deviation) if the measurements were normally distributed. Two-sample t-test. *Survives false discovery rate (FDR) correction, p< 0.05. CS, chronic sciatica; HC,
healthy controls; rh, right hemisphere; rACC, rostral anterior cingulate cortex; bankssts, banks of superior temporal sulcus; ES, effect sizes, Cohen’s d; CI, confidence interval; the effect
size was computed for groups with different sample size.

Functional connectivity alterations in
chronic sciatica and its relationship
with clinical symptoms

For FC analysis, there were 15 connections between SMN
and VAN that exhibited higher connection strength in the CS
group than in the HC group, with a few connections among
other networks. In addition, there were 10 lower connections
among six networks (p < 0.05, FDR corrected, Table 4 and
Figures 2A,B). In addition, the FC between right vPFC and
left precentral gyrus had a negative correlation with the VAS
for leg pain score (Spearman rho = −0.349, p = 0.043, CI
[−0.621 to −0.002]), the FC between left basal ganglia and
left precentral gyrus had a negative correlation with the VAS
for leg pain score (Spearman rho = −0.393, p = 0.022, CI

[−0.651 to −0.052]), and the FC between mFC and left
precentral gyrus had a negative correlation with the VAS
for leg pain score (Spearman rho = −0.344, p = 0.047, CI
[−0.617 to 0.004]). The correlation results were shown in
Figure 2C.

Multimodal brain metrics discriminate
between chronic sciatica patients and
healthy control

In this study, ALFF, surface area, and FCs were utilized to
classify whether a sample belonged to the CS group (Table 5 and
Figure 3). For single-measurement analyses, the FCs exhibited
a higher accuracy rate (accuracy = 85.71%) and MCC of
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TABLE 4 The comparison of FCs between two groups.

Comparisons Significant FC Group t-value ES (95%CI) P-value

Region A Region B CS (n = 34) HC (n = 36)

Sciatica > HC vPFC Precentral 0.08 (0.18) 0.09 (0.06) 4.171 0.106 (−0.363, 0.575) <0.05*

Ant insula Precentral 0.13 (0.14) −0.11 (0.18) 4.047 −1.409 (−1.932,−0.885) <0.05*

Ant insula Precentral 0.07 (0.18) −0.05 (0.20) 4.356 −0.599 (−1.079,−0.120) <0.05*

Ant insula Precentral 0.08 (0.19) −0.12 (0.19) 4.848 −1.079 (−1.580,−0.577) <0.05*

dACC Precentral 0.12 (0.25) −0.13 (0.17) 5.062 −1.145 (−1.650,−0.639) <0.05*

dACC Parietal 0.08 (0.25) −0.17 (0.23) 4.530 −1.064 (−1.564,−0.563) <0.05*

Ant insula Precentral 0.16 (0.19) −0.18 (0.23) 4.258 −1.618 (−2.158,−1.078) <0.05*

Ant insula Precentral 0.13 (0.17) −0.04 (0.21) 5.014 −0.920 (−1.413,−0.427) <0.05*

Basal ganglia Precentral 0.17 (0.21) −0.08 (0.19) 3.913 −1.294 (−1.810,−0.779) <0.05*

Basal ganglia Precentral 0.16 (0.24) −0.04 (0.25) 4.869 −0.827 (−1.316,−0.339) <0.05*

Basal ganglia Parietal 0.12 (0.23) −0.11 (0.22) 4.538 −1.006 (−1.504,−0.509) <0.05*

mFC Precentral 0.12 (0.25) −0.13 (0.23) 5.142 −1.040 (−1.540,−0.541) <0.05*

mFC Precentral 0.18 (0.23) −0.15 (0.19) 3.981 −1.599 (−2.137,−1.061) <0.05*

vFC Precentral 0.17 (0.21) −0.03 (0.21) 4.094 −0.958 (−1.453,−0.463) <0.05*

vFC Precentral 0.26 (0.20) 0.0001 (0.14) 4.324 −1.511 (−2.042,−0.980) <0.05*

We used mean (standard deviation) if the measurements were normally distributed. CS, chronic sciatica; HC, health control; vPFC, ventral prefrontal cortex; ant insula, anterior insula;
dACC, dorsal anterior cingulate cortex; mFC, medial frontal cortex; vFC, ventral frontal cortex. *Survives false discovery rate (FDR) correction, p < 0.05. ES, effect sizes, Cohen’s d; CI,
confidence interval; the effect size was computed for groups with different sample size.

0.715 than the ALFF (accuracy = 70.00%, and MCC = 0.424)
and surface area (accuracy = 68.57%, MCC = 0.398).
Surface morphology achieved the lowest accuracy rate. The
classification accuracy improved after combining the significant
measurements of the three features, achieving an accuracy of
90.00%, an AUC of 0.96, and an MCC of 0.800.

Discussion

Combining a variety of analysis methods, we demonstrated
that CS patients had abnormal local neural activity, which was
also reflected in the greater ALFF values of the left IFG. At a
finer cortical scale, we could identify the significantly greater
cortical surface area in the regions cingulate and temporal. At
the resting-state functional network level, we found that CS
patients showed greater FCs mainly between the SMN and VAN,
especially the precentral gyrus and anterior insula. Finally, we
found that multimodal combined neuroimaging features were
more dominant in this disease classification performance.

Greater surface area of rostral anterior
cingulate and banks of the superior
temporal sulcus in right hemisphere

The ACC plays a vital role in the neuropathic pain effect in
animals (Gao et al., 2020). For instance, increased GABAergic
inhibitory control in the rACC could reduce ongoing pain and

pain aversiveness caused by sciatic nerve injury (Juarez-Salinas
et al., 2019). Using fMRI and electrophysiological recording,
a previous study observed plasticity changes in the cingulate
cortex in rats with neuropathic pain (Chao et al., 2018).
However, the underlying role of the ACC in CS patients is much
unclear. Our study showed a larger surface area in the rACC
in CS patients compared to HC, suggesting that the rACC may
be related to pain-induced negative emotion in CS patients.
In another neuropathic pain disease, trigeminal neuralgia
patients exhibited reduced ACC surface area compared with
HC (Mo et al., 2021). The controversy may stem from different
neuropathological processes. In the future, we will further
explore whether the enlarged surface area of ACC can be the
biomarker to distinguish CS patients from other neuropathic
pain disorders.

Furthermore, the superior temporal gyrus might be involved
in pain due to mismatches between pain expectation and
perception (Smallwood et al., 2013). Patients with chronic
traumatic neck pain showed a smaller cortical volume in the
right superior temporal gyrus compared to HC (De Pauw
et al., 2019). However, our study showed that CS patients
have a greater cortical surface area in the right superior
temporal gyrus, which may be due to the different etiologies and
neuropathological processes of diseases. A study reported that
patients with bipolar disorder showed a larger surface area of
left bankssts, which could help distinguish them from patients
with major depression, the overall accuracy was 74.3% (Fung
et al., 2015). The surface area of the right bankssts and rACC
in this study were also effective in distinguishing CS patients
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FIGURE 2

The altered FCs between networks and relationships with clinical symptoms. (A) The FCs significantly altered in the CS group compared with
the HC group, which were mainly focused on SMN and VAN (p < 0.05, FDR corrected). (B) 15 greater FCs were involved in the SMN and VAN.
The red color represents greater FCs; the blue color represents lower FCs. (C) The VAS for leg pain score had a negative correlation with the FC
of right vPFC and left precentral gyrus (Spearman, r = –0.349, p = 0.043, CI [–0.621 to –0.002]); the FC of left basal ganglia and left precentral
gyrus (Spearman, r = –0.393, p = 0.022, CI [–0.651 to –0.052]); and the FC of mFC and left precentral gyrus (Spearman, r = –0.344, p = 0.047,
CI [–0.617 to 0.004]). The blue color nodes belong to SMN, the light purple nodes belong to VAN, the red color represents greater FCs. CS,
chronic sciatica; HC, health control; vPFC, ventral prefrontal cortex; mFC, medial frontal cortex; SMN, somatomotor network; VAN, ventral
attention network; VN, visual network; DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal network; SC,
subcortical network; VAS, visual analog scale.

from HC, the accuracy was 66.99%. These results suggested that
disease-specific neuroanatomical features (e.g., cortical surface
area) may help establish reliable distinctions between different
populations (e.g., between different types of disease, between
patients with HC).

Frontal cortex showed greater
spontaneous neuronal activity and
functional connectivity’s

In our study, we found significantly greater ALFF in the
IFG in CS patients compared to HC. Consistent with previous

studies involving aspects of chronic pain (Buckalew et al., 2010;
Hashmi et al., 2013), we found the neural activity of the
frontal lobe was significantly greater in CS patients. IFG is the
important part of the prefrontal cortex (PFC), the brain region
commonly associated with cognitive and emotional processing
(Petrides, 2005; He et al., 2007). In CS patients, the abnormal
functional activity of the two brain regions may influence pain
perception through heightening emotional responses to pain
(Gracely et al., 2004).

Consistent with a previous study, medial PFC/rACC had
abnormally increased FCs with brain regions with the SMN
(postcentral gyrus) in cLBP patients, and the FCs could
discriminate cLBP patients from HCs with 91% accuracy
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TABLE 5 Results of the discrimination analyses derived from the SVM
between HC and CS.

Feature Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

MCC

ALFF 70.00 67.65 83.33 79.66 0.424

Surface area 68.57 55.88 77.78 66.99 0.398

FCs 85.71 85.29 86.11 90.85 0.715

Combining
features

90.00 94.12 86.11 96.41 0.800

For single-measurement analyses, the FCs exhibited a higher accuracy rate (85.71%)
than the other two features. The surface morphology (surface area) achieved the lowest
accuracy rate of 68.57%. The classification accuracy improved after combining the
features of the three measurements, achieving an accuracy of up to 90.00%. CS, chronic
sciatica; HC, health control; ALFF, the amplitude of low-frequency fluctuation; FC,
functional connectivity, AUC, the area under the curve; MCC, Matthews Correlation
Coefficient; FC, functional connectivity; SVM, support vector machine.

FIGURE 3

Receiver operating characteristic (ROC) for CS and HC SVM
classification analyses. For single-measurement analyses, the
functional connectivity (FC) exhibited a higher AUC of 90.85%
than the other two measurements. The surface area achieved
the lowest AUC of 66.99%. Critically, the AUC improved after
combining all features of the three measurements, achieving an
AUC up to 96.41%. ALFF, the amplitude of low-frequency
fluctuation; FC, functional connectivity.

(Tu et al., 2020a). Our study found the greater FCs between the
vPFC, mFC, and the precentral gyrus (SMN), indicating that
communication between the frontal cortex and sensory-related
regions was altered in CS patients. In addition, the two FCs
were negatively correlated with the pain intensity of the leg,
suggesting that the feeling of pain caused by CS is the main
symptom and significantly reduces the patient’s quality of life.
However, DMN connectivities in the patients with cLBP and/or
pain in a lower vs. the HC showed reductions of this network
in the dorsolateral PFC, medial PFC, and ACC (Li et al., 2014).
It may be due to its small sample size (20 patients and 10 HCs)
and only focus on FCs within the DMN. Based on these results,
we speculated that the persistent chronic pain and associated
symptoms of CS were caused by abnormalities in frontal cortex.

The important functional
connectivity’s were mainly between
sensory-motor network and ventral
attention network regions

The SMN including the primary and secondary
sensorimotor cortex, which receives and processes sensory
information from the periphery, is thought to be the main brain
network responsible for pain perception (Mayer et al., 2015).
Abnormalities in the VAN were also widely seen in chronic pain
patients with persistent diminished attention or inattention
(Moriarty et al., 2011; Wen et al., 2012). The pathological
changes of basal ganglia (Borsook et al., 2010; Starr et al., 2011)
and neurological dysfunction of the anterior insular cortex
(Ferraro et al., 2022) in the VAN have also been reported to be
involved in pain processing leading to altered pain perception.
Patients with failed back surgery syndrome with chronic low
back pain have greater FC in the precentral gyrus and putamen
(extending to the insula) in the SMN compared to HC (Kolesar
et al., 2017). Consistent with previous studies, the FC between
SMN and VAN was higher in CS patients, especially between
the precentral gyrus and anterior insula, compared with HC. In
addition, patients with CLBP had greater gray matter volume
in the SMN regions and greater FC between the bilateral
sensorimotor cortex and sensory association cortex during pain
(Li et al., 2018). These studies may imply that enhanced cortical
activity in the SMN and VAN regions also underlies the clinical
pain status of CS patients. Furthermore, the precentral gyrus is
a sensorimotor area that receives information projected from
the basal ganglia, both of which play an important role in pain
processing (Liu et al., 2012). Compared to HC, complex regional
pain syndrome patients displayed greater resting connectivity
from the caudate to the primary motor cortex (Lee et al., 2022).
Our study found a greater FC between the basal ganglia and
the precentral gyrus in CS patients, indicating that pain may
increase the attention of CS patients to their pain sensation, and
the FC was negatively correlated with the VAS score of leg pain,
we speculate that engaging the conscious attention (Aminabadi
et al., 2022) of CS patients can reduce pain perception.

Our study also showed the abnormal FCs within FPN and
with the other networks, and previous studies have shown
positively associated with pain rating changes (Kong et al.,
2013). The frontoparietal region may play a dominant role in
the formation and transmission of sensations (Lobanov et al.,
2013), and RFPN is recognized as an important network that
associates with perception and pain (Smith et al., 2009). Neural
function activity in encephalic regions of FPN showed abnormal
changes (Cui et al., 2022), and a significantly lower FC of
RFPN was observed in MWoA patients (Li et al., 2015). In our
study, we found increased FCs between FPN and SMN, and
decreased FCs within FPN and with the other networks in CS
patients, suggesting that FPN also plays an important role in the
processing and regulation of CS pain.
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Multimodal metrics successfully
distinguish chronic sciatica patients
from healthy control

In recent years, SVM techniques combined with
neuroimaging metrics have been applied to differentiate
pain patients from HCs and to predict the outcome of
certain interventions (Bagarinao et al., 2014; Zeng et al.,
2019; Huang et al., 2020; Tu et al., 2020b; Gui et al., 2021;
Wei et al., 2022). The patients with neuropathic pain and
the HC were classified by the mean ALFF values of the
frontal gyrus and the precuneus using the linear SVM
classifier, and the classification accuracy was 86.36% between
the PHN patients and HC (Huang et al., 2020). A study
identified a neural marker with abnormal FC within the
SMN and FPN that could discriminate MwoA patients from
HC with a 91.4% accuracy rate (Tu et al., 2020b). Patients
with trigeminal neuralgia exhibited reductions in cortical
indices in the cingulate cortex, and these abnormal whole
brain-level morphological alterations successfully enable
automated trigeminal neuralgia diagnosis with high specificity
(trigeminal neuralgia: 95.35%; disease controls: 46.51%)
(Mo et al., 2021). Interestingly, these studies reported that
the classification performance of FCs between networks
was higher than the ALFF values and cortical indices
(structural features). Despite coming from various studies
about different chronic and neuropathic pain diseases, these
studies showed that ALFF values, inter-network FCs, and
structural measurements (e.g., cortical indices) can be used as
neurological features to distinguish chronic pain patients from
healthy people, respectively.

However, chronic pain could affect multiple brain systems
and cause extensive reorganization of brain structure and
function, and the results of these studies were often derived
from a few modalities, ignoring the combination of multiple
modalities, which may affect the performance of the machine
learning classifiers. In our study, SVM was applied to combined
MRI imaging features (ALFF, cortical surface area, FCs), which
distinguished CS patients from HC with higher accuracy of
90.00%. The finding implies that multimodal data analysis
gives better results and exhibits the best model’s performance
(MCC = 0.800) than unimodal analysis. The multimodal
analysis could combine the advantages of multiple imaging
techniques to improve both spatial and temporal resolution
and target disease neurobiomarkers with high specificity
and sensitivity and provide many new opportunities to
improve brain research. The identification of distinguishable
or predictive neuroimaging biomarkers is needed as it can
aid in diagnosis and prognosis, as well as be helpful in
clinical decision-making. To date, one of the few factors
that independently predict poor outcomes in sciatica is the
duration of leg pain (Konstantinou et al., 2018), the application

of multimodal neuroimaging biomarkers may help to assess
the disease severity of patients and progression, especially
during non-painful periods, assisting clinicians in early decision
making, and tailor treatment plans for patients. For instance,
they could be a useful diagnostic tool when patients are unable to
communicate or self-reports are otherwise unreliable. Moreover,
our findings may invite future studies with larger datasets to
investigate the relationship between multimodal neuroimaging
biomarkers and clinical measurements and develop therapeutic
biomarkers to evaluate or predict the response of potential new
treatments.

Study limitations

We acknowledge that our research has several limitations.
First, the present study was based on 34 CS patients and 36
HCs, it is necessary to expand the sample size to confirm the
results. Brain metrics and clinical variables correlation analysis
were conducted with two-sided significance levels (alpha = 0.05)
without corrections for multiple comparisons due to the small
sample size and the exploratory nature of the study. Second, the
study covered a range of ages from 35 to 65 years, restricting
the generalization of the present results to other populations.
Future studies with the younger or older age range are needed
to increase external validity. Third, it might be a lack of
a dataset of patients with other chronic pain disorders, we
could not verify the specificity of the multimodal markers.
Future studies with more datasets of pain-related disease will
help clarify which specific chronic pain diseases (e.g., knee
osteoarthritis, low back pain) are associated with functional
impairment in different brain domains. Fourth, perhaps even
more importantly, clinical measurements were evaluated at a
single time point (1 day before MRI scanning) which does
not necessarily reflect the long-term status of an individual,
other time-dependent variables on multiple time points may
provide more information on the chronic pain status. Fifth, the
results of the brain’s functional network are affected by different
parcelation strategies. Other brain atlases are needed to further
assess the reliability of the differentiation of CS individuals. Last,
we acknowledged that we only recruited sciatica patients with
diagnosed disk herniated disks, and it cannot distinguish if the
results are due to pain, or due to the specific nature of the
origins of the pain in the patient group, so our results should
not be exaggerated.

Conclusion

Our findings provide new insights into the pathophysiologic
mechanisms of CS and highlight the potential of multimodal
features as markers in the research of neural mechanisms
of chronic pain.
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