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In Alzheimer’s disease, the researchers found that if the patients were treated

at the early stage of the disease, it could e�ectively delay the development

of the disease. At present, multi-modal feature selection is widely used in the

early diagnosis of Alzheimer’s disease. However, existing multi-modal feature

selection algorithms focus on learning the internal information of multiple

modalities. They ignore the relationship between modalities, the importance

of each modality and the local structure in the multi-modal data. In this

paper, we propose a multi-modal feature selection algorithm with anchor

graph for Alzheimer’s disease. Specifically, we first use the least square loss

and l2,1−norm to obtain the weight of the feature under each modality. Then

we embed a modal weight factor into the objective function to obtain the

importance of each modality. Finally, we use anchor graph to quickly learn

the local structure information in multi-modal data. In addition, we also verify

the validity of the proposed algorithm on the published ADNI dataset.

KEYWORDS
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1. Introduction

Alzheimer’s disease is a degenerative disease of the central nervous system in the

elderly. It is one of the most common chronic diseases in human aging. Its clinical

manifestations are memory impairment, aphasia, impairment of abstract thinking and

computing power, personality, and behavior changes, etc.. At present, it can not be

cured, only through comprehensive treatment to delay the development. However,

the current study shows that if effective treatment is carried out in the early stage of

Alzheimer’s disease (i.e., mild cognitive impairment), further deterioration of the disease

can be prevented. Therefore, how to accurately judge which stage the patient is in is

very important.

On the one hand, in the information data about patients with Alzheimer’s disease,

due to personal privacy and other reasons, the data volume is relatively small, but the

data dimension is relatively high. For example, in references Jie et al. (2013) and Liu

et al. (2014), the amount of data is small, but their dimensions are indeed hundreds of

thousands. On the other hand, the data on patients with Alzheimer’s disease are often

multi-modal, i.e., it includes three different modalities: magnetic resonance imaging
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(MRI), positron emission tomography (PET), and cerebrospinal

fluid (CSF) biomarkers. Different modalities have different

characteristics and functions. Therefore, we not only need to

reduce the dimension of the data, but also need to conduct

multi-modal analysis of the data (i.e., the relationship between

different modalities).

In addition, the current dimension reduction algorithms

have high time complexity, i.e., the graph needs to calculate the

similarity relationship between all sample points, which leads to

a large amount of calculation. For example, Zhang et al. (2017)

proposed a multi-modal feature selection algorithm. It uses the

traditional graph laplace method to learn the local structure

information in the data, and its calculation amount is large.

Therefore, for the diagnosis of Alzheimer’s disease, we need

to carry out effective multi-modal feature selection with low

time complexity.

In view of the above problems, this paper proposes

a multi-modal feature selection algorithm for Alzheimer’s

disease diagnosis. Specifically, we first use the data under

three modalities (i.e., MRI, PET, and CSF) to perform linear

fitting with the labels, respectively, so as to obtain the weight

relationship matrix for each modality. Then, we introduce

anchor graph to quickly construct the relationship between

samples, which can not only reduce the time complexity of

the algorithm, but also learn the graph structure information

in the data. Finally, we introduce l2,1 sparse regularization

term to obtain the weight of each feature and perform multi-

modal feature selection. In addition, the proposed method

also considers the relationship between modalities (i.e., the

importance of each modality).

The main contributions of this paper are as follows:

• We propose a multi-modal feature selection framework

for Alzheimer’s disease, which can select important feature

subsets to help the early diagnosis and prediction of

Alzheimer’s disease.

• The anchor graph is embedded in the proposed algorithm,

which can reduce the time complexity of the algorithm.

• We apply a new alternative iterative optimization strategy

to optimize proposed multi-modal feature selection

algorithm. It can make the proposed objective function

monotonically decrease until convergence in each iteration.

• For the proposed algorithm, we have carried out a series of

experiments on ADNI datasets to verify the validity of the

proposed method.

2. Related work

In this section, we will introduce some work on Alzheimer’s

disease from two aspects. That is, 1. Research on Alzheimer’s

disease with feature selection Algorithm 2. Research on

Alzheimer’s disease with multi-modal learning technology.

2.1. Feature selection for Alzheimer’s
disease

Alzheimer’s disease is the most common dementia disease

in the elderly. In 2016, a survey showed that more than 40

million people worldwide suffer from Alzheimer’s disease, and

this number is expected to double every 20 years. At the same

time, the researchers found that if the patients were treated

at the early stage of the disease, it could effectively delay

the development of the disease. On the other hand, with the

development of machine learning and deep learning, researchers

use artificial intelligence algorithms to explore and understand

the pathogenesis of Alzheimer’s disease, thus providing a fast and

effective way to explore the disease.

At present, most researchers use classification (Yu et al.,

2022), regression, and clustering techniques to predict

Alzheimer’s disease data (Zhang et al., 2022b). But this ignores

the problems caused by the high-dimensional features and

redundant features in the data. Therefore, some researchers use

feature selection algorithm to preprocess the data. For example,

Mahendran and Vincent (2022) proposed an embedded

feature selection method for early detection of Alzheimer’s

disease. Specifically, it first uses quality control, downstream

analysis, and normalization to preprocess the data. Then it

uses four feature selection algorithms to reduce the dimension

of the data, so as to select the most suitable feature selection

algorithm. Finally, it uses the deep learning model to classify

and predict the reduced dimension data. Gallego-Jutglà et al.

(2015) proposed a hybrid feature selection algorithm for early

diagnosis of Alzheimer’s disease. It classifies each feature

by selecting the value range. Rani Kaka and Prasad (2021)

used integrated feature selection and multiple support vector

machines to predict Alzheimer’s disease. Specifically, it first

uses adaptive histogram equalization to improve the contrast.

Then, it uses fuzzy c-means clustering algorithm to distinguish

proteins, cerebrospinal fluid and gray matter. Finally, it uses

the feature selection algorithm based on integration to reduce

the dimension of the data, so as to classify them by the support

vector machine. Chaves et al. (2012) proposed a feature selection

algorithm based on association rules for Alzheimer’s disease.

On the one hand, this method uses principal components

analysis (PCA) and partial least squares to reduce the dimension

of data. On the other hand, it uses support vector machine

to classify data. Thapa et al. (2020) proposed a data-driven

technology based on feature selection for early diagnosis of

Alzheimer’s disease. They pointed out that the combination of

neuropsychological scores and MRI features could be helpful

for the early diagnosis of Alzheimer’s disease. Liu et al. (2019)

proposed a deep feature selection algorithm for Alzheimer’s

disease. This method combines deep learning, feature selection,

causal reasoning, and genetic imaging analysis. Chyzhyk

et al. (2014) proposed a wrapped feature selection to analyze

MRI. This method uses extreme learning machines to train

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1036244
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.1036244

algorithms, thereby extracting original features from brain MRI.

Niyas and Thiyagarajan (2022) used fisher scores and greedy

search to select features in Alzheimer’s disease data. Specifically,

it first preprocesses the data. Then it uses fisher’s score to rank

all features and select the best feature subset. Finally, it uses

greedy search to select the sub optimal minimum feature subset.

2.2. Multi-modal learning for Alzheimer’s
disease

The above feature selection algorithms are all for the single-

mode Alzheimer’s disease dataset. In addition to single-mode,

there are multi-modal. Multi-modal learning means that there

are more than one source and form of data, and the process of

learning in these forms is called multi-modal learning. Multi-

modal learning can be divided into five categories: multi-

modal representation learning (Zhang C. et al., 2021), modal

transformation, alignment (Zhu et al., 2022), multi-modal

fusion, and collaborative learning (Li et al., 2019). In this

paper, because we use multi-modal feature selection algorithm,

we focus on multi-modal feature selection in multi-modal

representation learning.

In the study of early diagnosis of Alzheimer’s disease,

datasets often include three different modalities: magnetic

resonance imaging (MRI), positron emission tomography

(PET), and cerebrospinal fluid (CSF). Therefore, it is necessary

to select multi-modal features of datasets. For example, Zhang Y.

et al. (2021) used neuroimaging embedding and feature selection

to do early diagnosis of Alzheimer’s disease. Specifically, it first

uses the l2,1−norm and multiple hinge losses to obtain the

feature weights for each modality. Then it uses lp−norm to fuse

the complementary information of each modality. Finally, the

convergence of the proposed method is proved theoretically.

Shao et al. (2020) proposed a hypergraph based multi-task

feature selection algorithm for Alzheimer’s disease. Specifically,

it first learns the feature subset for each modality separately.

Then it selects the common feature subset of all modalities.

Finally, it introduces the regularization term of hypergraph to

establish the high-order structural relationship between samples.

Jie et al. (2013) proposed a feature selection algorithm based

on manifold learning for Alzheimer’s disease. Specifically, it first

performs single task learning in each modality. Then it uses a set

of sparse regularization terms to learn the relationship between

modalities. Finally, it introduces a laplace regularization term to

maintain the geometric distribution in the data structure, so as to

make more accurate feature selection. Bi et al. (2020) studied the

multi-modal data of Alzheimer’s disease by using evolutionary

random forest algorithm. Specifically, it randomly selects

samples and features to improve the generalization performance

of random forest. In addition, it also uses hierarchical clustering

to obtain the best decision tree. Jiao et al. (2022) proposed

a multi-modal feature selection algorithm based on feature

structure fusion for Alzheimer’s disease. Specifically, it first

calculates the similarity between features to construct the

correlation regularization. Then, it uses manifold learning to

obtain the local structure information of the data. Finally, it

uses two regularization terms combined with low rank learning

technology to obtain the feature subset of multi-modal data.

Hao et al. (2020) proposed a multi-modal feature selection for

Alzheimer’s disease. Specifically, it first uses the random forest

strategy to obtain the similarity of each mode. Then it uses a

group sparse regularization terms and similarity regularization

terms to constrain the objective function, so as to obtain the

feature subsets for multiple modalities. Finally, it uses multi-

kernel support vector machine to classify the reduced dimension

data. Zhu et al. (2014) also proposed a multi-modal feature

selection method for Alzheimer’s disease. Specifically, it first

uses canonical correlation analysis to consider the correlation

between features. Then it uses the least square loss and

l2,1−norm to select features in multi-modal. Finally, according

to the selected features, it performs multi-task learning.

From the above works, we can see that whether it is single-

modal feature selection or multi-modal feature selection for

Alzheimer’s disease. Their core is to select the features that are

most helpful for the early diagnosis of Alzheimer’s disease, and

then use these features to classify and predict the data.

3. Method

3.1. Notation

In this paper, we use capital bold letters, lowercase bold

letters and ordinary letters to represent matrices, vectors, and

scalars, respectively. Given a data matrix X. Xv represents the

data in the v-th modality. The lf− norm of the matrix X is

expressed as ‖X‖F =

(

∑

j

∥

∥xj
∥

∥

2
2

)1/2
. The l2,1− norm of X is

expressed as ‖X‖2,1 =
∑

i

√

xTi xi + ε. In addition, we use XT ,

X−1 and tr(X) to represent the transposition, inverse and trace

of matrix X, respectively.

3.2. Multi-modal learning

In practical applications, datasets often describe the same

sample in many forms. For example, when we describe an

animal, we can describe it in text, audio, or video. At this time,

text, audio, and video can be considered as three modalities.

Similarly, in the actual dataset, there are often somemulti-modal

datasets, and the traditional data mining algorithms can not

be well-applied to these datasets. They can only mechanically

learn a single modality. Multi-modal learning refers to using a

function to model a specific view, and using redundant views
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of the same input to jointly optimize all functions, ultimately

improving the learning effect. The traditional multi-modal

feature selection function is as follows:

min
Wv

∥

∥

∥
WT

v X
T
v − Y

∥

∥

∥

2

F
+ R ‖Wv‖ (1)

where X ∈ R
n×dv represents the data in the v-th modality.

Wv ∈ R
dv×k represents the feature selection matrix in the v-

th modality. Y ∈ R
k×n represents the label of all data. R ‖Wv‖

represents the regular term of Wv, which can be the l1−norm,

l2,1−norm, and l2,p−norm that can realize feature selection.

3.3. Anchor graph construction

In graph learning, we often construct graphs according to

the similarity calculation between samples (Zhang and Li, 2021).

Specifically, we first regard each sample as a node of the graph,

and then use the metric function to calculate the similarity or

relationship between the samples (Zhang et al., 2022a). Finally,

we use the obtained relations or weights in the previous step to

construct the edges between nodes (samples), so as to construct

the graph structure in the data, so as to learn the local structure

or global structure information in the data. The traditional graph

learning method is as follows:

min
sTi 1=1,0≤sij≤1

∑

i,j (
∥

∥xi − xj
∥

∥

2
2
sij + ηs2ij) (2)

In Equation (2), it uses the square of Euclidean distance to

calculate the distance between the i-th sample xi and the j-th

sample xj. S is a similarity matrix. After S is obtained by solving

Equation (2), We can obtain the laplace matrix by L = D− S, so

as to learn the local structure information in the data.

Although the above method can learn the graph structure in

the data, its time complexity is relatively high, because it needs

to calculate the similarity between each sample and all other

samples. Therefore, some researchers have proposed anchor

point graph construction. Specifically, it first generates anchor

points from all the data, and then establishes the similarity

matrix between the anchor points and the sample points. If

the anchor point is selected by random sampling method, its

time complexity is O(1). Suppose there are m anchor points

generated, and the total number of samples is n, and each sample

has d features. The time complexity of generating the similarity

matrix is O[nd log(m)]. The formula for constructing anchor

point graph is as follows:

min
zTi 1=1,zi≥0

m
∑

j=1

∥

∥xi − aj
∥

∥

2
2
zij + η

m
∑

j=1
z2ij (3)

where aj is the generated j-th anchor point and Z ∈ R
n×m is

the similarity matrix. η is an adjustable parameter. According to

references Nie et al. (2014) and Nie et al. (2021), we can get the

solution of Z as:

zij =
di,k+1−dij

kdi,k+1−
∑k

j=1 dij
(4)

where dij =
∥

∥xi − aj
∥

∥

2
2
and k is a non-negative parameter.

After obtaining the matrix Z, we can obtain the similarity matrix

through the following formula:

S = Z1−1ZT (5)

where 1 is a diagonal matrix whose diagonal elements are

1jj =
n
∑

i=1
zij. The function of anchor point graph is to reduce

the time complexity. After the similarity matrix S is obtained

by constructing anchor points, it is still necessary to obtain the

laplace matrix with L = D− S.

3.4. Proposed multi-modal feature
selection with anchor graph

Equation (1) enables feature selection unless select the

appropriate regular term R ‖Wv‖. Due to the wide applicability

of the l2,1−norm, in this paper, we choose the l2,1−norm to

limit the weight matrix Wv. i.e., the following formula can be

further obtained:

min
Wv

∥

∥

∥
WT

v X
T
v − Y

∥

∥

∥

2

F
+ α‖Wv‖2,1 (6)

Although Equation (6) can be used for multi-modal feature

selection, it ignores the deviation problem in the process of

data fitting. In addition, it does not learn the graph structure

information existing in the data. Therefore, we further introduce

the deviation term and the graph regularization term, as shown

in the following formula:

min
Wv ,b,θv

∥

∥

∥
WT

v X
T
v + b1Tn − Y

∥

∥

∥

2

F
+ α‖Wv‖2,1

+βtr(WT
v X

T
v LvXvWv)

(7)

where Lv is the laplace matrix, b is the deviation term, and α

and β are adjustable hyperparameters. Since what we are doing

is multi-modal feature selection, Equation (7) cannot consider

the weight of each modality. Different modalities should have

different importance. Therefore, we need learn the weight of

each modality in Equation (7) and further obtain the final

objective function, as shown below:

min
Wv,b,θv

∥

∥

∥
WT

v 2vX
T
v + b1Tn − Y

∥

∥

∥

2

F
+ α‖Wv‖2,1

+βtr(WT
v X

T
v LvXvWv)

s.t.[θ1; θ2; · · · ; θv]
T1d = 1, θ ≥ 0

(8)
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To sum up, Equation (8) improves multi-modal feature

selection from three aspects: 1. The weight of each modality,

i.e.,2v, is considered. 2. The deviation problem in the process of

data fitting is considered. 3. Using anchor graph construction to

improve the slow learning speed of traditional graph structure.

3.5. Optimization

In this section, we optimize the proposed objective function,

i.e., Equation (8), by alternating iterations.

Update b by Fixing Wv and θv.

When Wv and θv are fixed, we can obtain the

following formula:

min
b

∥

∥

∥
WT

v 2vX
T
v + b1Tn − Y

∥

∥

∥

2

F
(9)

Next, we take the derivative of bwith Equation (9) and make

the derivative zero, as follows:

∂
∥

∥WT
v 2vX

T
v +b1Tn−Y

∥

∥

2

F
∂b = 0 (10)

Further, Equation (10) is equivalent to the

following equation:

2WT
v 2vX

T
v 1n + 2b1Tn 1n − 2Y1n = 0 (11)

Through Equation (11), we can obtain the solution of b

as follows:

b = 1
n (Y1n −WT

v 2vX
T
v 1n) (12)

Update Wv by Fixing b and θv.

When b and θv are fixed, Equation (8) can be converted into

the following equation:

min
Wv

∥

∥

∥
WT

v 2vX
T
v + b1Tn − Y

∥

∥

∥

2

F
+ α‖Wv‖2,1

+βtr(WT
v X

T
v LvXvWv)

(13)

On the one hand, since ‖Wv‖2,1 =
dv
∑

i=1
‖wvi‖2 and

‖wvi‖2 are likely to be 0, this will cause Equation (13) to be

non differentiable. Therefore, we introduce a sufficiently small

constant ε to solve this problem, i.e., replace ‖wvi‖2 with
√

wT
viwvi + ε. On the other hand, Lv = Dv − Sv, where Lv is

a laplace matrix, Dv is a degree matrix, and Sv is a similarity

matrix. Since we use anchor point graph construction, Sv =

(BBT)v, where B = Z1− 1
2 . For the degree matrix Dv, its

diagonal element value is:

Dii =
∑

sj Zis(1ss)
−1Zjs =

∑

s Zis = 1 (14)

Therefore, we can get the degree matrix Dv = Iv. Further,

Equation (13) may be written as the following equation:

min
Wv

∥

∥

∥
WT

v 2vX
T
v + b1Tn − Y

∥

∥

∥

2

F

+α
dv
∑

i=1

√

wT
viwvi + ε + βtr(WT

v X
T
v (Iv − (BBT)v)XvWv)

(15)

Further, we use Equation (15) to find the derivative of Wv

and let the derivative be 0 to obtain the following formula:

∂









∥

∥

∥
WT

v 2vX
T
v + b1Tn − Y

∥

∥

∥

2

F
+ α

dv
∑

i=1

√

wT
viwvi + ε

+βtr(WT
v X

T
v (Iv − (BBT)v)XvWv)









∂Wv
= 0

(16)

Equation (16) is equivalent to the following equation:

22vX
T
v Xv2

T
v Wv + 22vX

T
v 1nb

T − 22vX
T
v Y

T

+2αNvWv + 2βXT
v (Iv − (BBT)v)XvWv = 0

(17)

where the value of each element in Nv is:

Nvii =
1

2
√

wT
viwvi+ε

(18)

According to Equation (17), we can obtain the closed form

solution ofWv as:

Wv =

(

2vX
T
v Xv2

T
v + αNv

+βXT
v (Iv − (BBT)v)Xv

)−1

(2vX
T
v Y

T − 2vX
T
v 1nb

T)

(19)

Update θv by Fixing b and Wv.

When b andWv are fixed, we solve θv. Since θv is the weight

for each modality, we can solve the weight under all modalities

at once, i.e., θ = [θ1; θ2; · · · ; θv]. WhenWv is solved, i.e., after

W = [W1;W2; · · · ;Wv] is obtained. At this time, Equation (8)

can be written as follows:

min
θ

∥

∥

∥
WT

2XT + b1Tn − Y
∥

∥

∥

2

F

s.t.θT1d = 1, θ ≥ 0
(20)

We bring Equation (12) into Equation (20) to further obtain

the following equation:

min
θ

∥

∥

∥
WT

2XTH− YH
∥

∥

∥

2

F

s.t.θT1d = 1, θ ≥ 0
(21)

whereH = In−(1/n)1n1
T
n . Through simple transformation,

we write Equation (21) in the form of trace, and the following

formula can be obtained:

min
θ

(

tr(2XTHHTX2
TWWT)− tr(22XTHHTYTWT)

)

s.t.θT1d = 1, θ ≥ 0
(22)
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Because HHT = H and 2
T = 2. Therefore, Equation (22)

may be further written as follows:

min
θ

(

tr(2XTHX2WWT)− tr(22XTHYTWT)
)

s.t.θT1d = 1, θ ≥ 0
(23)

Next, we introduce the following lemma to solve Equation

(23), and lemma 3.5 is as follows:

Lemma 1. If a is diagonal, then tr(ABAC) = aT(BT ◦ C)a.

Proof.

tr(ABAC) = aTdiag(BAC)

= aTvec{bTi Aci}

= aTvec{(bi ◦ ci)
Ta}

= aT(BT ◦ C)Ta = aT(BT ◦ C)a

(24)

By lemma 3.5, Equation (23) can be written as follows:

min
θ

θ
T
(

(XTHX)
T
◦ (WWT)

)

θ − θ
Tdiag(2XTHYTWT)

s.t.θT1d = 1, θ ≥ 0
(25)

Further, Equation (25) may be written as the

following equation:

min
θ

θ
TQθ − θ

Ts

s.t.θT1d = 1, θ ≥ 0
(26)

where

{

Q = (XTHTX) ◦ (WWT)

s = diag(2XTHYTWT)
(27)

Next, we use the augmented lagrange multiplier method to

solve Equation (26). We first introduce the variable u to rewrite

Equation (26), as follows:

min
θ

θ
TQθ − θ

Ts

s.t.θT1d = 1, θ ≥ 0, u = θ

(28)

Further, we construct the augmented lagrangian function

as follows:

f (θ , u,µ,λ1, λ2) = θ
TQθ − θ

Ts+
µ
2

∥

∥

∥
θ − u+ 1

µλ1

∥

∥

∥

2

F
+

µ
2 (θ

T1d − 1+ 1
µλ2)

2

s.t.u ≥ 0

(29)

where µ is a lagrange multiplier. Since the variable u is

introduced, we still solve Equation (29) by alternating iterative

optimization. i.e., when the variable u is fixed, Equation (29) is

equivalent to the following equation:

min
θ

1
2 θ

TEθ − θ
Tg (30)

where

{

E = 2Q+ µId + µ1d1
T
d

g = µu+ µ1d − λ21d − λ1 + s
(31)

Obviously, we can get the solution of θ as follows:

θ = E−1g (32)

When θ is fixed, Equation (29) can be written as follows:

min
u≥0

∥

∥

∥
u− (θ + 1

µλ1)
∥

∥

∥

2
(33)

According to Equation (33), we can obtain the solution of u

as follows:

u = pos(θ + 1
µλ1) (34)

The function of pos(x) is to assign the negative element of x

to 0. For the reader’s understanding, we summarize the pseudo

code of the algorithm as shown in Algorithm 1.

Input: Training set [X1,X2, . . . ,Xv] ∈ R
n×(d1+d2+,...,dv),

adjustable parameters α and β;

Output: W(t) ∈ R
d×k;

1 Initialize t = 0;

2 Randomly initialize W
(0)
v ;

3 repeat

4 Updata b(t+1) via Equation (12);

5 Compute Nv via Nvii =
1

2
√

wT
viwvi+ε

;

6 Compute W(t+1) via Equation (19) ;

7 Updata θ
(t+1) via Equation (32);

8 t = t+1 ;

9 until converge;

10 After getting the Wv on each mode, we put them

together, i.e., W(t) = [W1;W2; . . . ;Wv];

Algorithm 1. Pseudo code for proposed method.

3.6. Convergence analysis

In this section, we prove the convergence of the algorithm.

We first introduce the following lemma:

Lemma 2. For any non-zero vector x and y, the following

formula holds:

‖x‖2 −
‖x‖22
2‖y‖2

≤
∥

∥y
∥

∥

2 −
‖y‖22
2‖y‖2

(35)
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Theorem 1. The value of the proposed objective function

monotonically decreases in each iteration until it converges.

Proof. When b and θv are fixed, we use W
(t)
v and W

(t+1)
v to

represent the values of Wv at the t-th and (t + 1)-th iterations,

respectively. According to Equation (19), we can obtain the

following formula:

W
(t+1)
v = argmin

Wv

tr
(

(Xv2
T
v W

(t)
v + 1nb

T − YT)

(W
(t)T

v 2vX
T
v + b1Tn − Y)

)

+αtr(W
(t)T

v N
(t)
v W

(t)
v )+ βtr(W

(t)T

v XT
v LvXvW

(t)
v )

(36)

Further, we can obtain the following formula:

tr
(

(Xv2
T
vW

(t+1)
v + 1nb

T − YT)(W
(t+1)T

v 2vX
T
v + b1Tn − Y)

)

+αtr(W
(t+1)T

v N
(t)
v W

(t+1)
v )+ βtr(W

(t+1)T

v XT
v LvXvW

(t+1)
v )

≤ tr
(

(Xv2
T
vW

(t)
v + 1nb

T − YT)(W
(t)T

v 2vX
T
v + b1Tn − Y)

)

+αtr(W
(t+1)T

v N
(t)
v W

(t)
v )+ βtr(W

(t)T

v XT
v LvXvW

(t)
v )

(37)

Equation (37) may be rewritten as follows:

tr
(

(Xv2
T
v W

(t+1)
v + 1nb

T − YT )(W(t+1)T

v 2vX
T
v + b1Tn − Y)

)

+α
dv
∑

i=1

(
∥

∥(W(t+1)
v )i

∥

∥

2
+

∥

∥

∥
(W

(t+1)
v )i

∥

∥

∥

2

2

2
∥

∥

∥
(W

(t)
v )i

∥

∥

∥

2

−
∥

∥(W(t+1)
v )i

∥

∥

2
)+ βtr(W(t+1)T

v XT
v LvXvW

(t+1)
v )

≤ tr
(

(Xv2
T
v W

(t)
v + 1nb

T − YT )(W(t)T

v 2vX
T
v + b1Tn − Y)

)

+α
dv
∑

i=1

(
∥

∥(W(t)
v )i

∥

∥

2
+

∥

∥

∥
(W

(t)
v )i

∥

∥

∥

2

2

2
∥

∥

∥
(W

(t)
v )i

∥

∥

∥

2

−
∥

∥(W(t)
v )i

∥

∥

2
)+ βtr(W(t)T

v XT
v LvXvW

(t)
v )

(38)

According to lemma 2, we can get:

tr
(

(Xv2
T
vW

(t+1)
v + 1nb

T − YT)(W
(t+1)T

v 2vX
T
v + b1Tn − Y)

)

+α

∥

∥

∥
W

(t+1)
v

∥

∥

∥

2,1
+ βtr(W

(t+1)T

v XT
v LvXvW

(t+1)
v )

≤ tr
(

(Xv2
T
vW

(t)
v + 1nb

T − YT)(W
(t)T

v 2vX
T
v + b1Tn − Y)

)

+α

∥

∥

∥
W

(t)
v

∥

∥

∥

2,1
+ βtr(W

(t)T

v XT
v LvXvW

(t)
v )

(39)

In the (t+ 1)-iteration, whenW
(t)
v and θ

(t)
v are fixed, we can

obtain the closed form solution of b(t+1) according to Equation

(12). Therefore, it is easy to obtain the following formula:

tr
(

(Xv2
(t)T

v W(t)
v + 1nb

(t+1)T − YT )(W(t)T

v 2
(t)
v XT

v + b(t+1)1Tn − Y)
)

+α
∥

∥W(t)
v

∥

∥

2,1
+ βtr(W(t)T

v XT
v LvXvW

(t)
v )

≤ tr
(

(Xv2
(t)T

v W(t)
v + 1nb

(t)T − YT )(W(t)T

v 2
(t)
v XT

v + b(t)1Tn − Y)
)

+α
∥

∥W(t)
v

∥

∥

2,1
+ βtr(W(t)T

v XT
v LvXvW

(t)
v )

(40)

WhenW
(t+1)
v and b(t+1) are fixed, we can get the following

according to Equation (32):

tr
(

(Xv2
(t+1)T

v W(t+1)
v + 1nb

(t+1)T − YT )(W(t+1)T

v 2
(t+1)
v XT

v + b(t+1)1Tn − Y)
)

+α
∥

∥W(t+1)
v

∥

∥

2,1
+ βtr(W(t+1)T

v XT
v LvXvW

(t+1)
v )

≤ tr
(

(Xv2
(t)T

v W(t+1)
v + 1nb

(t+1)T − YT )(W(t+1)T

v 2
(t)
v XT

v + b(t+1)1Tn − Y)
)

+α
∥

∥W(t+1)
v

∥

∥

2,1
+ βtr(W(t+1)T

v XT
v LvXvW

(t+1)
v )

(41)

According to Equations (39)–(41), we can finally obtain:

tr
(

(Xv2
(t+1)T

v W(t+1)
v + 1nb

(t+1)T − YT )(W(t+1)T

v 2
(t+1)
v XT

v + b(t+1)1Tn − Y)
)

+α
∥

∥W(t+1)
v

∥

∥

2,1
+ βtr(W(t+1)T

v XT
v LvXvW

(t+1)
v )

≤ tr
(

(Xv2
(t)T

v W(t)
v + 1nb

(t)T − YT )(W(t)T

v 2
(t)
v XT

v + b(t)1Tn − Y)
)

+α
∥

∥W(t)
v

∥

∥

2,1
+ βtr(W(t)T

v XT
v LvXvW

(t)
v )

(42)

From Equation (42), we can see that the proposed algorithm

is monotonically decreasing and convergent. Thus, theorem 1

is proved.

4. Experiment

In this section, we compare the proposed algorithm with six

comparison algorithms on three ADNI sub-datasets.

4.1. Dataset

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database1. The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether

serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD).

We downloaded three sub-datasets from the ADNI website,

namely AD vs. NC (sick state vs. normal control), MCI vs.

NC (moderate cognitive impairment vs. normal control), and

pMCI vs. sMCI (Progress MCI vs. stable MCI). ADNI is the

authoritative data center for studying Alzheimer’s disease. It

was jointly funded by the national institutes of health and the

national institute of aging in 2004. It is dedicated to collecting

and sorting out the data of Alzheimer’s disease patients, tracking

the onset process of patients, exploring the changes and

causes of the onset process, so as to reveal the pathogenesis

of Alzheimer’s disease and find a cure. It includes clinical

data, magnetic resonance imaging data, positron emission

computed tomography data, genetic data, and biological

sample data.

In this paper, we obtained basic MRI, PET, and CSF data

from 202 experimental subjects (including 51 AD subjects, 52

1 adni.loni.usc.edu
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TABLE 1 Demographic information of the subjects.

AD NC MCI-C MCI-NC

(51) (52) (43) (56)

Female/male 18/33 18/34 15/28 17/39

Age 75.2± 7.4 75.3± 5.2 75.8± 6.8 74.8± 7.1

Education 14.7± 3.6 15.8± 3.2 16.1± 2.6 15.8± 3.2

MMSE 23.8± 2.0 29.0± 1.2 26.6± 1.7 28.4± 1.7

adas-Cog 18.3± 6.0 12.1± 3.8 12.9± 3.9 8.03± 3.8

The numbers in parentheses denote the number of subjects in each clinical category.

(MCI-C, MCI converters; MCI-NC, MCI non-converters; Mean± SD).

NC subjects, and 99 MCI subjects). Specifically, we retained 93

features from MRI as the first modality, 93 features from PET

as the second modality and three features from CSF as the third

modality. Detailed object information is shown in Table 1.

4.2. Comparison algorithm

OMVFS (Online unsupervised Multi-View Feature

Selection; Shao et al., 2016): this method is a multi-modal

feature selection algorithm. It does not store all data, but

performs data processing step by step to compress the required

data into a matrix. In addition, it also combines graph

regularization term, sparse learning and non negative matrix

decomposition technology to select features.

K-OFSD (Online Feature Selection based on the

Dependency in K nearest neighbors; Zhou et al., 2017): it

is a feature selection algorithm for class imbalance data.

Specifically, according to the neighborhood rough set theory, it

uses the information of k-nearest neighbors to select features, so

as to improve the separability between the majority class and the

minority class. In addition, it also uses the relationship between

labels and features to obtain the importance of each feature.

RLSR (Rescaled Linear Square Regression; Chen et al., 2017):

this method is a semi-supervised feature selection algorithm. It

scales the regression sparsity of the least squares loss function

again by using the scaling factor, so as to obtain the weight of

each feature. In addition, it also explains that this method can

learn the global structure of data and get sparse solution.

PMFS (Pareto-based feature selection algorithm for multi-

label classification; Hashemi et al., 2021): this method is a pareto

based feature selection algorithm. Specifically, it first establishes

a dual objective optimization model of feature redundancy and

feature correlation by using multiple labels. Then, it uses pareto

to solve the established model in the previous step. Finally, it

verifies the performance of the proposedmethod in experiments.

MDFS (Embedded feature selection method via manifold

regularization; Zhang et al., 2019): this method is a multi-

label feature selection algorithm. It uses the original features

to construct a low dimensional embedding to learn the local

structure information of the data. In addition, it embeds

l2,1−norm into the proposed objective function to select the

feature subset.

SDFS (Sparsity Discriminant Feature Selection; Wang et al.,

2020): this method is a feature selection algorithm based on

l2,0−norm. It uses structured sparse subspace constraints to

overcome the problem of parameter adjustment. In addition,

it also uses the objective function to improve the resolution of

the model.

4.3. Experimental setup

In this section, we conducted 10-fold cross validation

experiments. Specifically, we first carried out comparative

experiments on classification accuracy (acc), sensitivity (sen),

specificity (spe), and area under curve (auc) of all algorithms

on three datasets. Then, we carry out the parameter sensitivity

experiment of the proposed algorithm. Finally, we verify the

convergence of the proposed algorithm on three datasets. For

all algorithms, after obtaining the selected feature subset, we use

support vectormachine (SVM) to classify them, so as to compare

the performance of all algorithms. For parameters α and β . We

set their value range as α,β ∈ {10−3, 10−2, 10, 1, 10, 102, 103}.

In addition, we also set the convergence condition of the

proposed algorithm as
|obj(t+1)−obj(t)|

obj(t)
≤ 10−5, where obj(t)

and obj(t + 1) represent the values of the objective function in

the t-th iteration and the (t + 1)-th iteration, respectively.

4.4. Analysis of experimental results

Figure 1 shows the classification accuracy of each fold of all

algorithms on three datasets. From Figure 1, we can see that

the classification accuracy of all algorithms is not very stable

due to the randomness of 10 fold cross validation. From the

first and third subgraphs, we can see that PMFS and SDFS

have the worst performance. Therefore, we also carried out

experiments on the average classification accuracy, average sen,

average spe, and average auc of all algorithms on three datasets,

as shown in Table 2. From Table 2, we can see that the proposed

algorithm achieves the best classification accuracy. Specifically,

compared with the worst comparison algorithm PMFS and the

best comparison algorithm K-OFSD, the proposed algorithm

improves by 8.27 and 0.93%, respectively on the AD vs. NC

dataset. On the MCI vs. NC dataset, compared with the poor

comparison algorithms OMVFS, K-OFSD, RLSR, and the best

comparison algorithm MDFS, the proposed algorithm has

improved by 0.71 and 0.34%, respectively. On the pMCI vs.

sMCI dataset, compared with the worst comparison algorithm

SDFS and the best comparison algorithm MDFS, the proposed

algorithm improves by 5.95 and 1.2%, respectively. The reason
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FIGURE 1

Classification accuracy results of all algorithms on three datasets (From left to right, the results on datasets AD vs. NC, MCI vs. NC, and pMCI vs.

sMCI are in turn).

TABLE 2 Classification results of all algorithms on the three datasets (%).

Datasets AD vs. NC MCI vs. NC pMCI vs. sMCI

acc sen spe auc acc sen spe auc acc sen spe auc

OMVFS 81.70 81.27 81.70 90.76 73.15 9.08 99.21 38.73 76.32 71.18 82.13 81.76

K-OFSD 85.40 85.12 85.80 92.25 73.15 9.08 99.21 38.73 76.42 71.18 82.30 81.71

RLSR 84.24 85.46 83.21 93.08 73.15 9.08 99.21 38.68 76.32 71.18 82.13 81.75

PMFS 78.06 76.95 77.94 86.94 73.28 8.80 99.26 37.24 76.61 73.18 80.92 83.30

MDFS 84.77 84.99 84.14 92.64 73.52 8.87 99.30 37.84 76.72 73.18 81.06 83.13

SDFS 84.65 85.89 85.44 93.49 72.46 36.08 87.20 33.21 71.97 67.69 78.99 82.84

Proposed 86.33 87.22 86.90 93.76 73.86 10.15 99.52 37.02 77.92 72.34 82.38 81.98

The bold values indicate the best experimental results.

FIGURE 2

The classification accuracy of the proposed algorithm varies with di�erent parameter values. (From left to right, the results on datasets AD vs.

NC, MCI vs. NC, and pMCI vs. sMCI are in turn.)

for this phenomenon is that the proposed algorithm not only

considers the relationship between different modes, but also

considers the graph structure information in multi-modal data.

Figure 2 shows the parameter sensitivity of the proposed

algorithm, i.e., the classification accuracy of the proposed

algorithm changes with the change of the values of parameters

α and β . From Figure 2, we can see that the performance

of the proposed algorithm will be affected by the parameter

values. Therefore, we need to carefully adjust the values of

parameters α and β . In addition, we also conducted the

convergence experiment of the algorithm, as shown in Figure 3.

From Figure 3, we can see that the proposed algorithm has

good convergence. On the three datasets, the convergence was

achieved within 10 iterations of the objective function. This

shows that the proposed algorithm has fast convergence effect.

5. Conclusion

In this paper, we have proposed a multi-modal feature

selection algorithm with anchor graph for Alzheimer’s disease.
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FIGURE 3

The value of the proposed objective function changes with the number of iterations (From left to right, the results on datasets AD vs. NC, MCI vs.

NC, and pMCI vs. sMCI are in turn.)

It can be used in the early auxiliary diagnosis of Alzheimer’s

disease. Specifically, we use the least square, l2,1−norm and

anchor graph regular term to learn the importance of modes,

the weight of features and the local structure information

of data. In addition, we also prove the convergence of the

proposed method. Finally, on the three datasets i.e., AD vs.

NC, MCI vs. NC, and pMCI vs. sMCI, we verify the validity

of the proposed method and compare it with other advanced

comparison algorithms. In the future work, we plan to study new

representation methods of multi-modal data, so as to carry out

more efficient feature selection for Alzheimer’s disease.
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