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The endoplasmic reticulum (ER) is the largest tubular reticular organelle

spanning the cell. As the main site of protein synthesis, Ca2+ homeostasis

maintenance and lipid metabolism, the ER plays a variety of essential roles

in eukaryotic cells, with ER molecular chaperones participate in all these

processes. In recent years, it has been reported that the abnormal expression

of ER chaperones often leads to a variety of neurodevelopmental disorders

(NDDs), including abnormal neuronal migration, neuronal morphogenesis,

and synaptic function. Neuronal development is a complex and precisely

regulated process. Currently, the mechanism by which neural development is

regulated at the ER level remains under investigation. Therefore, in this work,

we reviewed the recent advances in the roles of ER chaperones in neural

development and developmental disorders caused by the deficiency of these

molecular chaperones.
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Introduction

Neurodevelopment is a highly complex and precisely regulated process (Bagni and
Zukin, 2019). The establishment of the human embryonic central nervous system begins
on the 22nd day after fertilization when the neural tube begins to form (Devakumar et al.,
2018). As development progresses, the anterior portion of the neural tube expands to
form “brain vesicles”, and the brain develops from five small vesicle walls filled with fluid
(Jiang and Xu, 2019). The initial vesicle wall has only two layers: the compartment layer
and the marginal layer (Bostan et al., 2018; Moon and Xiong, 2022). Neural precursor
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cells (NPCs) are located in the inner layer of vesicles, and
cells in the ventricular layer proliferate. Some of the newly
generated cells remain in the ventricular layer where they
to continue to divide and differentiate. Finally, these cells
proliferate and form different brain regional structures, such as
the cerebral cortex, thalamus, and hippocampus (Trujillo et al.,
2005; Turrero García and Harwell, 2017). Another group of
daughter cells located furthest from the ventricle side begin to
migrate outward. After these cells reach various regions of the
brain and occupy specific locations, they lose their ability to
divide, undergo cell differentiation, and finally form the brain
(Crelin, 1974; Li and Pleasure, 2014; Belmonte-Mateos and
Pujades, 2022).

At the cellular level, NPCs proliferate and differentiate into
immature neurons (Riquelme et al., 2008). Then, immature
neurons undergo a series of morphological changes, including
neuronal axon and dendrite development (Omotade et al., 2018;
Prigge and Kay, 2018), axonal myelination, and dendritic spine
formation (Nimchinsky et al., 2002), and gradually become
mature neurons. Neurons are interconnected by synapses
formed by both axonal endings and dendritic spines, forming
complex neural networks (Omotade et al., 2018; Kadoyama
et al., 2019). Abnormalities in any of these processes may
impair neural development, resulting in brain dysfunction and
subsequent leading to brain diseases (Guerrini and Dobyns,
2014).

The endoplasmic reticulum (ER) is the largest tubular
reticular organelle in eukaryotic cells (Rapoport, 2007; Pobre
et al., 2019) and plays several essential roles, including Ca2+

storage and release, lipid synthesis, intracellular signaling,
and protein synthesis (Phillips and Voeltz, 2016; Schwarz
and Blower, 2016). ER molecular chaperones are a class of
proteins ubiquitous in living organisms and are widely found
in prokaryotes and eukaryotes (Doyle et al., 2013; Bose and
Chakrabarti, 2017). These molecular chaperones are mainly
responsible for assisting in correct protein folding, assembly,
trans-location, degradation of misfolded proteins and inhibition
of protein aggregation to maintain normal protein homeostasis
(Carver et al., 2018; Freilich et al., 2018; Takeuchi, 2018; Ma et al.,
2020).

Studies have found that abnormal expression of molecular
chaperones often leads to abnormal neurodevelopment and
even causes a variety of different neurodevelopmental diseases
(Fatemi et al., 2005; Lammert et al., 2017). ER chaperones
involved in neural development are mainly divided into the
following categories: heat shock family proteins including heat
shock protein 70 (HSP70) and heat shock protein 90 (HSP90)
(Miller and Fort, 2018), glycan-binding lectin chaperones
including calnexin (CNX) and calreticulin (CRT) (Ni and Lee,
2007), protein disulfide isomerase (PDI) (Turano et al., 2002),
sigma-1 receptor (Sig-1R) (Su et al., 2010; Zhemkov et al., 2021;
Dalwadi et al., 2022) and prefoldin (PFDN) (Siegert et al., 2000).

HSP70 and HSP90, members of the heat shock protein
family, are highly conserved and ubiquitous molecular
chaperones (Tsuboyama et al., 2018). The reversible interaction
between HSP70 and peptides plays an important role in protein
folding, transport, degradation of misfolded peptides and
maintenance of cellular homeostasis (Fernández-Fernández and
Valpuesta, 2018). HSP90 and its co-chaperones coordinate key
physiological processes, such as cell survival, cell cycle control,
hormone signaling, and apoptosis (Hoter et al., 2018). Binding
immunoglobulin protein (Bip) and glucose-regulated protein
94 (GRP94) are the main HSP70 and HSP90 proteins in the
ER. Bip cannot function alone, and the binding and separation
between Bip and nascent proteins require the participation
of other auxiliary proteins, such as the cochaperone SIL1, the
main function of which is to serve as a nucleotide exchange
factor (NEF) to assist Bip protein in binding nascent peptide
chains and mediating their folding and assembly (Otero et al.,
2010). However, GRP94 expression in the ER is mostly related
to tumor cancer and other related diseases (Gewirth, 2016).
CRT and CNX bind Ca2+ and act as molecular chaperones
in the transition of proteins from the ER to the extracellular
membrane and regulate Ca2+ balance in the ER (Tjoelker
et al., 1994). In addition to assisting protein folding consistent
with the Sig-1R and PFDN protein, PDI is also involved in
the formation and isomerization of disulfide bonds to prevent
intermolecular aggregation (Wilkinson and Gilbert, 2004).

In addition, in the ER, chaperones not only exert their
respective functions individually but also interact with each
other to maintain ER homeostasis and protein homeostasis.
For example, glycan-binding lectin chaperones form the
glycosylation-deglucosylation cycle. As a reticulin, CRT is
involved in a quality control system for newly synthesized
proteins and glycoproteins that relies on multiple additional
chaperons, including CNX and protein disulfide isomerase
family A member 3 (PDIA3) (Fucikova et al., 2021). This system
is often referred to as the CNX/CRT cycle. The CNX/CRT cycle
specifically recognizes glycoproteins linked by N2 glycosidic
bonds and is an important monitoring mechanism for protein
folding and assembly in eukaryotic cells as well as regulating
Ca2+ homeostasis and Ca2+ signaling processes (Insert a) in the
ER (Helenius and Aebi, 2001). As a highly conserved molecular
chaperone, Bip assists in a wide range of folding processes
through its two domains: the nucleotide binding domain (NBD)
and the substrate binding domain (SBD) (Mayer and Gierasch,
2019). When adenosine diphosphate (ADP) binds the NBD,
the SBD conformation changes, and the substrate binding
affinity of Bip increases. The SBD lid closes on the bound
substrate, limiting the conformational freedom of the substrate
and protecting the bound substrate from premature folding
or aggregation (Hendershot et al., 1996). The NEF of Bip can
break the hydrogen bond contact and detach the bound ADP
molecule (Tyson and Stirling, 2000) so that NBD can bind to the
new adenosine triphosphate (ATP) molecule, and the substrate
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binding affinity is reduced. SBD docks on the NBD and opens
the lid to release the bound polypeptide substrate (Insert b). At
present, SIL1 and glucose-regulated protein (GRP170) are the
two co-chaperones that can bind Bip to promote NEF activity
(Yan et al., 2011). Bip is also a regulator of Ca2+ homeostasis in
the ER, maintaining Ca2+ balance in the ER (Lièvremont et al.,
1997). In addition, when unfolded/misfolded proteins in the
ER exceed the capacity of the protein folding mechanism, Bip
can initiate the unfolded protein response (UPR), assist in ER-
associated degradation (ERAD), reduce the unfolded/misfolded
protein load, and induce autophagy (Wang J. et al., 2017).

Recent studies have shown that many ER chaperone proteins
participate in neural development. Therefore, in this work, we
review the regulatory roles of ER chaperones in various stages of
central nervous system development as well as recent research
progress on related neurodevelopmental diseases.

The role of binding
immunoglobulin protein in
neurodevelopment

Heat shock proteins are a large family of evolutionarily
conserved molecular chaperones that play key roles in cell
survival and development, and their expression is induced
by different factors, including heat shock, nutrient deficiency,
hypoxia, and intoxication (Tsuboyama et al., 2018). HSP70
family plays an essential role in protein folding, transport,
degradation of misfolded polypeptides, and maintenance of
cellular homeostasis (Fernández-Fernández and Valpuesta,
2018). Among them, Bip [also known as glucose-regulated
protein 78 (GRP78) or heat shock protein A5 (HSPA5)] with
a molecular weight of 78 kDa, mainly exists in the ER and is
responsible for binding the nascent peptide chain and mediating
its folding and assembly (Wang et al., 2009). Bip cannot perform
its functions alone, but other auxiliary proteins are required for
its binding and separation from nascent proteins (Otero et al.,
2010). The effects of Bip on neurodevelopmental processes are
mainly reflected in embryonic development, cortical neuron
migration, and coordination of developmental processes in
conjunction with some ER cochaperone proteins.

Binding immunoglobulin protein
regulates the migration and
localization of developing cortical
neurons

Mutant mice with Bip deficiency die during the embryonic
period (Luo et al., 2006; Jin et al., 2017), and the main cause
of death is abnormal expression of the pulmonary surfactant
protein surfactant protein-A (SP-A) and prominently surfactant

protein-C (ProSP-C), which subsequently triggers respiratory
insufficiency in neonatal or newborn mice and leads to death.
In addition to respiratory failure, Bip mutant mice exhibit
abnormal neuronal migration and dysplasia. Normal cortical
neurogenesis in the ventricular zone (VZ), and newborn
neurons migrate to different layers of the cerebral cortex
through radial migration (Nadarajah and Parnavelas, 2002;
Marín et al., 2010). Neurons generated earlier migrate to the
deep cortex, whereas neurons generated later migration to
shallow layers (Ghashghaei et al., 2007; Kwan et al., 2012). The
subplate (SP), cortical plate (CP), and marginal zone (MZ) are
formed in an inside-out migration pattern during development
(Caviness, 1982). However, newborn neurons in Bip mutant
mice are the first to migrate to the MZ and remain there, whereas
later-born neurons fail to migrate to the upper layers. The
mutant brain exhibits an outside-in pattern during neocortical
layer formation. This phenotype is observed because loss of Bip
affects the expression of reelin, a protein that plays an essential
role in neuronal migration. In wild-type mice, reelin-secreting
Cajal-Retzius (CR) cells are located in the superficial layer of the
cortex. In contrast, CR cells in mutant Bip mice are scattered
around the upper layer of the neocortical primordium, and CR
cells in Bip mutants do not secrete reelin. Therefore, Bip mutant
mice exhibit a phenotype similar to that of reelin knockout mice
(Mimura et al., 2008).

Binding immunoglobulin protein
regulates motor neuron development

Heterozygous mutant Bip mice exhibit no significant
difference in lifespan compared with wild-type mice, but mutant
Bip mice develop renal tubular-interstitial lesions as they
age (Kimura et al., 2008). Some mutant Bip mice develop
paralysis and tremors after 12 months. These mice exhibit
motor nerve injury symptoms, such as loss of righting reflex,
and suffer from paralysis (Jin et al., 2014). In addition,
studies have shown that Bip deletion is associated with the
neurodegenerative disease amyotrophic lateral sclerosis (ALS).
ALS is a fatal neurodegenerative disease characterized by
progressive degeneration of upper and lower motor neurons
(Beghi et al., 2011; Filareti et al., 2017). In recent years,
impaired protein homeostasis has been found to be a key factor
in the pathogenesis of ALS (Zhao et al., 2008; Ruegsegger
and Saxena, 2016), and Bip plays an important role in this
process. Studies have found that Bip-deficient mice show more
severe neurological decline and spinal motor neuron loss
symptoms than normal mice. Gómez-Almería et al. created
mutant superoxide dismutase 1 (mSOD1) and Bip double
mutant (mSOD1/Bip+/-) mice to study the role of Bip in a
mouse model of the neurodegenerative disease ALS (Gómez-
Almería et al., 2021). They found that knockout of Bip show
more intense neurological decline than mSOD1 single knockout

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1032607
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1032607 November 11, 2022 Time: 10:32 # 4

Sun et al. 10.3389/fnins.2022.1032607

mice. Then, to determine the relationship between the Bip
protein and the pathogenesis of ALS, they also discussed the
potential relationship between the Bip protein and the type-
1 cannabinoid (CB1) receptor that mediates neuroprotection.
CB1 receptor is mainly located in neurons of the central nervous
system (Chiarlone et al., 2014). Numerous studies have reported
that CB1 receptor-mediated neuroprotection is related to ALS
(Abood et al., 2001; Rossi et al., 2010). They found that in
mSOD1 mice with partial Bip gene deletion, the level of the CB1
receptor was significantly decreased, which indirectly indicated
that Bip may play a neuroprotective role in ALS (Gómez-
Almería et al., 2021). Similarly, Apolloni et al. found that
increasing Bip and Hsp70 protein levels in the spinal cord and
cortex of ALS model mice could rescue the loss of motor neuron
dendritic spines (Apolloni et al., 2019). These studies suggest
that Bip plays vital roles in motor neuron development.

Binding immunoglobulin protein
regulates the plasticity of the central
nervous system

Studies have shown that the interaction between Bip and
N-methyl-D-aspartate (NMDA) receptors may affect synaptic
transmission. NMDA receptors play essential roles in brain
development, plasticity, and pathology. Functional NMDA
receptors are tetramers mainly composed of two GluN1 subunits
and two GluN2 regulatory subunits (Cull-Candy et al., 2001;
Yashiro and Philpot, 2008). The number and composition of
GluN2A and GluN2B containing NMDA receptors at synapses
are dynamically regulated during development and neuronal
activation, which is thought to control synaptic plasticity (Nase
et al., 1999; Lopez de Armentia and Sah, 2003; Liu et al.,
2004). Using immunoprecipitation, the authors examined the
distribution of Bip in neurons and found that Bip is strongly
expressed in both cortical and hippocampal neuronal cell bodies
and neurites. Furthermore, Bip co-localizes with GluN2A in
cultured cortical neuron dendrites, and preventing the binding
of Bip to GluN2A reduces synaptic transmission and impairs
memory formation (Zhang et al., 2015).

Binding immunoglobulin protein and
SIL1 jointly regulate neural
development

SIL1 is a 54-kDa ER protein composed of 461 amino acids
and is a NEF for Bip (Wang J. et al., 2017). As an auxiliary
protein of Bip, the synergistic effect of SIL1 and Bip has
consistently been a research hotspot. The central nervous system
of mice with SIL1 deficiency exhibits developmental defects,
including abnormal neuronal morphological development,

cortical neuron migration, and localization (Inaguma et al.,
2014).

SIL1-binding immunoglobulin protein
coordinately regulates neuronal migration

SIL1 plays a role in neuronal migration in the neocortex.
Inaguma et al. constructed a SIL1 knockout plasmid, transfected
it into the neural progenitor cells of the VZ of the embryonic
mouse brain through in utero electroporation (Tabata and
Nakajima, 2001; Nishimura et al., 2012) and observed the
localization of the transfected cells at the post-natal day 0
(P0). In the control group, neurons normally migrated to the
superficial layers (layers II-IV) of the CP, whereas the SIL1-
deficient neurons remained in the middle or lower layers of the
CP. Then, the authors performed immunostaining to assess the
differentiation status of the abnormally localized cells and found
that the abnormally localized cells remained in the immature
neuronal state (NPCs or basal progenitor cells) (Inaguma et al.,
2014).

Considering that SIL1 acts as a chaperone for Bip and
regulates its function, Bip may also be involved in neuronal
migration. Therefore, Inaguma et al. also examined the role
of Bip in neuronal migration during cortical formation and
compared it with SIL1. They found that a large fraction of Bip-
deficient (through RNA interference) neural progenitor cells,
which remain in the lower part of CP, intermediate zone (IZ),
and subventricular zone (SVZ)/VZ at P0, exhibit a phenotype
similar to that of SIL1-deficient cells. Bip-deficient neurons
showed delayed migration at embryonic day 17 (E17) but
localized in normal positions at post-natal day 7 (P7). However,
after inhibiting the SIL1-Bip interaction, neuronal migration
was significantly inhibited. In conclusion, the coordination
function of SIL1 and Bip plays a key role in neuronal migration
(Inaguma et al., 2014).

SIL1 and binding immunoglobulin protein
jointly regulate reelin protein and affect
development

In addition to regulating neuronal migration during cortical
development, Reelin is currently believed to be involved in
neuronal dendrite development and changes in brain plasticity
(Niu et al., 2004; Jossin and Goffinet, 2007). The distribution
of cortical neurons in heterozygous reeler (Reelin knockout)
mice did not appear disordered, but their dendritic development
was affected. Dendritic spine density decreased on the dendrites
of pyramidal neurons in the CA1 region of the mouse
hippocampus at 21 and 32 days after birth, whereas more
mature neurons showed a lower density of dendritic spines
accompanied by decreased expression levels of post-synaptic
density protein 95 (PSD95) and NMDA receptors (Niu et al.,
2008). These findings indicate that Reelin promotes dendritic
development and the generation and maintenance of dendritic
spines during post-natal development. The loss of Bip is one of
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the reasons for the down-regulation of Reelin protein, indicating
that Bip may affect the development of dendrites and dendritic
spines by affecting Reelin protein expression. Loss of SIL1, Bip,
or Reelin function leads to similar abnormal phenotypes of
neuronal migration (Leemhuis and Bock, 2011; Stranahan et al.,
2013), and the loss of function of the ER molecular chaperone
Bip inhibits normal Reelin expression. Thus, the relationship
among these three proteins during neural development and
whether the role played by Reelin protein in development is
co-regulated by the coordination of Bip and SIL1 represent
questions that deserve to be explored.

The role of calnexin during
neurodevelopment

Calnexin is a 90-kDa ER integral protein with a long amino-
terminal domain (460 amino acids) located in the lumen of
the ER, a hydrophobic trans-membrane domain and a short
acidic cytoplasmic domain (91 amino acids). CNX binds to
Ca2+ and acts as a chaperone in the transition of proteins from
the ER to the outer membrane (Tjoelker et al., 1994). CNX and
CRT constitute the CNX/CRT cycle and are responsible for the
folding and quality control of newly synthesized proteins (Li
et al., 2011).

Many researchers have confirmed the role of CNX as a
molecular chaperone in neurodevelopment. The CANX gene
(coding CNX) is activated in neuronal tissue early in embryonic
development (Coe et al., 2008). Immunohistochemical staining
of mouse brain tissue sections showed that CNX exists in
hippocampal neurons and is expressed at high levels in soma,
dendrites, and synapses (Itakura et al., 2013). Additional studies
have shown that in mice, CNX deficiency leads to a phenotype of
peripheral axonal demyelination and reduced peripheral nerve
conduction velocity, demonstrating that CNX may play an
essential role in neuron growth and development (Jung et al.,
2018).

Calnexin regulates dendrite and
synapse development

Denzel et al. found that approximately 50% of CNX
knockout mice died within 48 h after birth, most of the
remaining mice died within 4 weeks, and only a few mice
survived to 3 months (Denzel et al., 2002). CNX gene knockout
(cnx−/−) mice exhibited significant movement impairment,
including unsteady gait, inactive walking, and obvious trunk
ataxia. The authors then examined the sciatic nerve in the gene-
deficient mice through electron microscopy and found that most
of the mice exhibited a reduced number of medullary nerve
fibers and a reduced sciatic nerve diameter (Denzel et al., 2002).
However, the cause of the short-lived death of cnx−/− mice has

not yet been discovered but might be related to the coordinating
role of CNX proteins in development. This hypothesis deserves
further exploration.

Recent studies assessing the localization of CNX and NMDA
receptors on neurons based on specific immunostaining and
biotin chemical reagent labeling revealed that a considerable
portion of CNX was localized on the cell surface of cultured
neurons, and this localization was regulated by NMDA receptors
(Itakura et al., 2013). These results suggest that CNX may
play an essential role in NMDA receptor-mediated neuronal
function. Other studies demonstrated that α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid (AMPA) receptors interact
with CNX and Bip in neuronal cell bodies and hippocampal
pyramidal neuron dendrites (Rubio and Wenthold, 1999;
Gerrow and Triller, 2010). In addition, the AMPA receptor
is a tetramer composed of four subunits, GluA1, GluA2,
GluA3, and GluA4. This receptor is expressed in both neurons
and glial cells (Pick and Ziff, 2018). It is well known that
NMDA receptors and AMPA receptors play essential roles
in central nervous system development. NMDA receptors
are involved in experience-dependent synapse and dendritic
development (Nadarajah and Parnavelas, 2002; Luo et al., 2006),
whereas AMPA receptor expression directly affects neuronal
dendritic complexity, synaptic maturation, and neural network
formation (Buffington et al., 2014). Defects in AMPA receptor
expression are the underlying causes of developmental diseases,
degenerative diseases, and cognitive dysfunction (Kessels and
Malinow, 2009; Henley and Wilkinson, 2016; Guo and Ma,
2021). However, the specific effects of CNX loss on NMDA
receptor or AMPA receptor membrane expression or function
remain to be investigated. Moreover, studies have shown
that CNX can be attached to membranes through NMDA
receptor-mediated pathways (Itakura et al., 2013). Therefore,
CNX may regulate central development by participating in
receptor function at the cell membrane. In addition, CNX
regulates calcium levels in the ER (Roderick et al., 2000), which
subsequently regulates receptor transport to influence synaptic
strength (Turrigiano, 2008). Therefore, CNX may directly
affect synaptic strength and synaptic development through this
mechanism. However, the direct correlation between CNX and
synaptic development and function needs to be expanded.

Calnexin cooperates with the
cytoskeleton-associated protein to
regulate neural plasticity

Activity-regulated cytoskeleton-associated (Arc) protein is a
master regulator of long-term synaptic plasticity and memory
formation (Bramham et al., 2010; Korb and Finkbeiner, 2011;
Shepherd and Bear, 2011; Nikolaienko et al., 2017). Arc
proteins control synaptic strength by promoting AMPA receptor
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endocytosis (DaSilva et al., 2016) and activity-dependent long-
term changes in synaptic strength (Ehlers, 2000; Newpher and
Ehlers, 2008). Arc overexpression decreased the density of
GluA1 subunits of AMPA receptors on the cell surface and
AMPA receptor-mediated miniature excitatory post-synaptic
currents (mEPSCs). Arc mutations that prevent clathrin-
adaptor protein 2 (AP-2) interaction reduce Arc-mediated
endocytosis of GluA1 and abrogate AMPA receptor-mediated
mEPSCs reduction (DaSilva et al., 2016). Endocytosis is the
process by which cells internalize substances through the
plasma membrane. Endocytosis plays an important role in
different stages of the development of the nervous system,
such as the formation of continuous synaptic transmission
(Sudhof, 2004), the entry of drugs into the central nervous
system (Smith et al., 2008), and the internalization of receptor-
ligand complexes to nerve endings for intracellular signaling
(Gloor et al., 2001). CNX is also involved in clathrin-mediated
endocytosis of neurons (Li et al., 2011). Kraus et al. performed
an electron microscopy analysis of the cerebellum of 7-day-
old wild-type and CNX-null mice to assess whether CNX is
involved in neuronal endocytosis. The results showed that the
number of synaptic vesicles was significantly increased in the
cerebellum of CNX-deficient mice compared with wild-type
mice, demonstrating that CNX deficiency leads to increased
endocytic activity in the mouse neuronal system (Kraus
et al., 2010). Recent studies have found a direct interaction
between Arc and CNX in neurons, and the interaction
between recombinantly expressed glutathione S-transferase
(GST)-tagged Arc and endogenous CNX has also been found
in HEK293, SH-SY5Y neuroblastoma, and PC12 cells (Myrum
et al., 2017). Given that both Arc and CNX mediate clathrin-
dependent endocytosis and that both are expressed in excitatory
synapses, it is possible that Arc and CNX cooperate in regulating
endocytosis. Therefore, whether CNX is involved in the synaptic
effect is also a mechanism that needs further exploration.

Calreticulin regulates
neurodevelopment

Calreticulin is a multifunctional protein with a molecular
weight of 46 kDa. CRT is expressed in almost all eukaryotic
cells and is preferentially located in the ER. Depending on the
sublocalization of CRT in cells, CRT has different physiological
functions, including chaperone function and lectin binding.
CRT was initially considered to be a high-affinity calcium-
binding protein (Rauch et al., 2000), and early studies focused
on its role as a calcium storage molecule in the ER (Michalak
et al., 1992), including regulating calcium channel activation
and maintaining intracellular calcium homeostasis (Chen et al.,
2015). Later, CRT was considered a multifunctional protein
that interacts with other proteins and participates in various
processes (Michalak et al., 1999). In recent years, the focus

of CRT research has been refocused to its role as an ER
chaperone that aids in glycoprotein folding (Pacheco et al.,
2020). The role of CRT in neurodevelopment mainly involves
regulating embryonic development, neural differentiation, and
axonal growth in the peripheral nervous system.

Calreticulin regulates embryonic
development of the central nervous
system

To study the role of CRT during development in vivo, Rauch
et al. generated CRT-deficient mice by targeted inactivation of
the CRT gene. The results demonstrated that CRT heterozygous
mice were viable and fertile, whereas crt−/− mice were
embryonic lethal and exhibited multiple disease phenotypes,
including cardiomyopathy, anencephaly, and omphalocele
(Rauch et al., 2000). In addition, CRT is also important for
cranial neural tube closure and is highly expressed in the
developing brain during neurogenesis (Mesaeli et al., 1999).
Neural tube formation is a complex process that requires
the interaction of neuroepithelial cells and the underlying
mesenchyme (Lynch et al., 2012; Correll et al., 2019). Disruption
of neural tube closure was found in several CRT knockout
mice, in which proteins involved in neuronal migration and
calcium signaling were inactivated (Solheim et al., 1997; Rauch
et al., 2000). These results demonstrate that CRT is important
for embryonic brain development, especially the neural tube
development. However, it is currently unclear which proteins
interact with CRT to regulate embryonic neural development.

Calreticulin regulates neuronal
differentiation

Neurotrophic factors, including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophic
factor-3 (NT-3), and neurotrophic factor-4/5 (NT-4/5), are
key tissue factors that control nervous system development
(Chao, 2003). The NGF/tyrosine receptor kinase A (TrkA)
signaling pathway is necessary for neural development, and
abnormalities in this pathway can lead to abnormal neuronal
differentiation. Shih et al. found that in NGF-stimulated
PC12 cell differentiation, CRT levels were increased by
activation of mitogen-activated protein kinase (MAPK)
mediated by extracellular signal-regulated kinase (ERK).
CRT deficiency significantly reduced NGF-induced neuronal
differentiation. Furthermore, CRT overexpression enhanced
neuronal differentiation through simultaneous activation of the
ERK-dependent MAPK pathway (Shih et al., 2012). The Ca2+

regulation ability of CRT is also essential for NGF-triggered
neuronal differentiation (Pilquil et al., 2020). In addition, studies
have shown that CRT is a novel oncogenic N-MYC (MYCN)
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inhibitor that can down-regulate MYCN promoter activity and
protein expression to regulate neuronal differentiation. This
study also found that CRT-mediated MYCN inhibition resulted
in increased neurite length (Lee et al., 2019).

Calreticulin regulates axonal growth in
the peripheral nervous system

Calreticulin localizes to axons of cultured dorsal root
ganglion neurons in vitro and peripheral nervous system axons
in vivo (Willis et al., 2005; Vuppalanchi et al., 2010), and
automatic axonal regeneration occurs after injury to adult
peripheral neurons (Bradke et al., 2012). The intrinsic growth
capacity of peripheral nervous system axons after injury is
greater than that of central nervous system axons. Pacheco
et al. constructed in vitro and in vivo neuronal axonal injury
models to study the relationship between CRT and axonal
regeneration after axonal injury. Intra-axonal CRT levels were
elevated after peripheral nerve injury in vivo. Unilateral sciatic
nerve crush injury was performed in the mid-thigh of male
SD rats, and then sciatic nerve sections were collected and
stained 1 h, 6 h, 18 h, and 7 days after the crush injury.
Compared with the control sciatic nerve, axonal CRT levels
were significantly increased 6 h after injury and reached a
maximum at 18 h after injury. The authors then performed
axotomy on dorsal root ganglion neurons to study the effect of
CRT deletion on the post-operative axonal growth process. The
results showed that the shRNA-mediated CRT deletion group
exhibited exacerbated post-axotomy contractions. In contrast,
axon-targeted expression of unrestricted CRT mRNA reduces
contraction and promotes axon regeneration after axotomy
in vitro (Pacheco et al., 2020). In conclusion, the overexpression
of axon-targeted CRT promotes axon regeneration after axonal
injury, indicating that CRT plays an important role in axonal
growth.

The role of protein disulfide
isomerase in neurodevelopment

Protein disulfide isomerase is a class of multifunctional
proteins present in the ER lumen, including endoplasmic
reticulum protein 57 (ERp57, also known as PDIA3),
endoplasmic reticulum protein 29 (ERp29), protein disulfide
isomerase-1 (PDI-1), endoplasmic reticulum protein 72
(ERp72), protein disulfide isomerase A1 (PDIA1), and protein
disulfide isomerase p (PDI p) (Turano et al., 2002). As a
molecular chaperone, PDI binds to the stretched or partially
folded peptide chain through its polypeptide binding site to
form an intermediate to prevent incorrect protein folding
(Wilkinson and Gilbert, 2004).

Protein disulfide isomerase-1 regulates
neuronal migration

Protein disulfide isomerase-1 controls neuronal migration
by regulating Wnt secretion. PDI is a family of protein
chaperones that reside in the ER and are capable of
catalyzing the formation (oxidation), cleavage (reduction), and
rearrangement (isomerization) of disulfide bonds (Wilkinson
and Gilbert, 2004). The formation of a proper Wnt protein
structure requires the formation of disulfide bonds, which are
critical for Wnt secretion and signaling (Zhang X. et al., 2012;
MacDonald et al., 2014). Wnt proteins play essential roles in
neuronal migration and axon-dendritic guidance in vertebrates
(Yoshikawa et al., 2003; Bocchi et al., 2017), and they also
control neural developmental processes in C. elegans, including
neuronal migration, polarity, and axon guidance (Coudreuse
et al., 2006; Hilliard and Bargmann, 2006; Pan et al., 2006).
Therefore, abnormal Wnt expression or function significantly
impairs neural development.

PDI-1 controls the secretion of EGL-20, the Wnt homolog in
C. elegans, and therefore affects neuron migration (Torpe et al.,
2019). EGL-20/Wnt is expressed and secreted in subcutaneous
(epidermal) and muscle cell subsets of C. elegans (Whangbo and
Kenyon, 1999). EGL-20 function is critical for the migration
of hermaphroditism-specific neuron (HSN) (Desai et al., 1988).
Torpe et al. used HSN development as a readout of EGL-20
function to identify molecules that control Wnt maturation
and secretion. They hypothesized that PDI is important for
EGL-20-directed HSN development. The expression of five
PDI-encoding genes (pdi-1, pdi-2, pdi-3, pdi-6, and C14B9.2)
in C. elegans was reduced using RNA interference, and
the development of HSN was analyzed. This study found
a specific requirement for PDI-1 during HSN development
with approximately 20% of PDI-1-silenced animals exhibiting
a phenotype deficient in HSN migration. Subsequently, to
determine whether PDI-1 also controls EGL-20-dependent
post-embryonic neuron development, the authors performed
post-embryonic neuronal migration assays in PDI-1-deficient
animals and found that PDI-1 knockout animals exhibited
migration defects (Torpe et al., 2019). PDI inhibitors reduce
Wnt3a secretion in human cells. Most mammalian genomes
contain 19 Wnts and greater than 20 PDI proteins, which exhibit
distinct expression domains and biological functions (Ellgaard
and Ruddock, 2005; Galligan and Petersen, 2012; Willert and
Nusse, 2012). Mammalian Wnt3a secretion was abolished when
a single cysteine residue was replaced by alanine (MacDonald
et al., 2014), suggesting that Wnt secretion is influenced by
disulfide coordination. These results suggest that PDI can affect
neuronal migration by regulating the secretion of Wnt and its
homolog EGL-20.

The role of the Wnt signaling pathway in early cortical
development is not limited to the migratory localization
of neurons. It is also involved in neurogenesis, neuronal
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differentiation, and axon-dendritic guidance (Freese et al., 2010;
Munji et al., 2011). In addition, the atypical Wnt signaling
pathway is involved in the assembly of neural circuits (Hinata
et al., 2007; Wang et al., 2011), especially dendrite development
and synaptogenesis in cultured pyramidal neurons (Salinas
and Zou, 2008). Wnt pathway dys-regulation is closely related
to human neurological diseases (Castelo-Branco et al., 2003).
However, the mechanism by which PDI further affects other
developmental processes by affecting the Wnt signaling pathway
is unclear and deserves further exploration.

The role of sigma-1 receptor in
neurodevelopment

Sigma-1 receptor is a 223-amino acid long trans-membrane
ER chaperone with a molecular weight of 25.3 kDa (Hanner
et al., 1996; Dalwadi et al., 2022). Most Sig-1R proteins are
located in the ER, especially in the mitochondria-associated
ER membrane, and are critical for regulating energy balance
and calcium homeostasis (Hayashi and Su, 2007). Sig-1R is
highly expressed in the central nervous system, especially
in the cortex, basal ganglia, spinal cord, and brainstem. It
is also vital to maintain the proper functioning of motor
neurons (Su et al., 2010). Sig-1R has recently attracted
extensive attention as a potential drug target for neurological
diseases and cancer (Merlos et al., 2017; Penke et al.,
2018).

Recently, Sig-1R was shown to be important in
neurodevelopmental research as an ER chaperone and is
known to be involved in learning and memory. Within
the nervous system, Sig-1R is predominantly localized
in the gray matter of neurons and multiple glial cell
types (Peviani et al., 2014; Robson et al., 2014). In
addition to its role in regulating intercellular signaling
(Su et al., 2010), neuroprotection (Ruscher et al., 2011),
neural recovery (Ruscher et al., 2012), neuroplasticity
(Kourrich et al., 2012), and neurotransmitter release
(Zheng, 2009), Sig-1R also regulates various neural
developmental processes, such as hippocampal neuronal
dendritic morphogenesis, dendritic spine maturation, and
neuroplasticity.

Sigma-1 receptor regulates neuronal
morphogenesis

Sigma-1 receptor regulates neurite outgrowth (Ishima et al.,
2014) as well as primary neuron morphogenesis (Ishima and
Hashimoto, 2012). Dendritic spines in hippocampal neurons
play important roles in neuroplasticity and memory formation.
siRNAs were used to silence the expression of Sig-1R to
study their role in the morphogenesis of primary hippocampal

neurons in vitro. The results showed impaired dendrite
extension and branching after Sig-1R gene silencing. Moreover,
Sig-1Rs also have a major impact on the formation and
maturation of dendritic spines in later stages (Tsai et al., 2009).
In rat hippocampal primary neurons, reducing the expression
of Sig-1Rs by siRNA resulted in defects in dendritic spine
formation. Tsai et al. observed and analyzed the dendritic spine
morphology and maturity of cultured hippocampal neurons.
On DIV 16, the control group neurons formed filamentous
protrusions on the dendrites. On DIV 22, control neurons
formed clusters of short, thick mushroom-like spine heads
without filopodia, indicating spine maturation. In contrast, Sig-
1R-siRNA-transfected (siSig-1R-tf) neurons formed elongated
protrusions with a few spine heads at the tips. The longer the
culture time, the more pronounced the abnormal phenotype.
This finding suggests that Sig-1Rs are endogenous regulators of
hippocampal dendritic spine formation (Tsai et al., 2009).

Sigma-1 receptor regulates synaptic
function

Sigma-1 receptor also plays an important role in the
development of synaptic function (Ryskamp et al., 2019).
Active synapses express specific proteins and receptors
for proper function. Studies have shown that Sig-1R
knockdown inhibits functional synapse formation. GluA2,
GluA3, and PSD-95 staining revealed a strong immune
response on dendritic spines in control neurons. However,
this response was not observed in filopodia protrusions
of siSig-1R-tf neurons, whereas these proteins were still
present in dendritic shafts. The axonal terminals of siSig-
1R-tf neurons also showed significantly reduced immune
responses to synaptophysin. Neurons labeled with FM4-64,
a membrane-selective red fluorescent dye, were depolarized
with KCl to measure synaptic activity. The results showed
that siSig-1R-tf neurons did not form functional synapses.
These results suggest that Sig-1Rs have essential effects on
synapse formation and synaptic function (Ryskamp et al.,
2019).

Earlier, we mentioned that the NMDA receptor is associated
with learning and memory. A study found that changes in
Sig-1R can cause changes in NMDA receptor expression. Sig-
1R was overexpressed by intraperitoneal injection of the Sig-
1R activation agonist SKF10,047 in SD rats, and subsequent
immunofluorescence staining revealed increased GluN2A,
GluN2B, and PSD95 expression (de Montigny et al., 1992;
Monnet et al., 1994, 1996). This effect was abolished after
the addition of the Sig-1R antagonist BD1063 (Matsumoto
et al., 1995; McCracken et al., 1999). In addition, they found
increased interactions between Sig-1R and GluN2 subunits as
well as increased surface levels of NMDA receptor upon Sig-1R
activation, which suggests that Sig-1R regulates the expression
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of NMDA receptor and related neural function (Pabba et al.,
2014).

Sigma-1 receptor regulates
mitochondrion-associated
endoplasmic reticulum membrane
conduction and affects neural
development

The membrane of the ER of a cell forms contacts directly
with mitochondria, and the contact is referred to as the
mitochondrion-associated ER membrane (MAM) (Mori et al.,
2013). The MAM is a subdomain of the ER that engages
in a direct physical association with mitochondria (Rizzuto
et al., 2004; Csordás et al., 2006; Szabadkai et al., 2006). The
MAM integrates many signaling pathways and is important
for cellular survival because it serves as the “tunnel” for lipid
transport and Ca2+ signaling between the ER and mitochondria
(Cárdenas et al., 2010). Sig-1Rs are ER chaperones that
localize specifically at the MAM and regulate a variety of
cellular functions including Ca2+ signaling between ER and
mitochondria, neuronal differentiation, ion channel activities,
and notably cellular survival (Aydar et al., 2002; Fontanilla
et al., 2009; Fukunaga and Moriguchi, 2017). However, exactly
how Sig-1R regulates the neuronal differentiation process at the
MAM is not fully clarified. Neurons are highly differentiated
cells and require great amounts of ATP for the maintenance of
cell membrane ionic gradients and neurotransmission (Xavier
et al., 2016). Mitochondria, the main intracellular energy
transducers, play a key role in neural development by producing
ATP and biosynthetic substrates, regulating Ca2+ homeostasis,
and initiating apoptosis (Kann and Kovács, 2007). Given the
vital role of Sig-1R in the MAM and the importance of
energy transport for neural development, exploring the energy
transduction mechanism of Sig-1R in the MAM may be key to
studying the developmental process.

The function of prefoldin during
neurodevelopment

Prefoldin is a heterohexameric protein complex (Glover
and Clark, 2015) consisting of two α subunits (PFDN3 and
PFDN5) and four β subunits (PFDN1, PFDN2, PFDN4, and
PFDN6). PFDN interacts with nascent polypeptide chains
and can act as a substitute for Hsp70 in vitro to facilitate
protein folding and prevent intermolecular aggregation (Siegert
et al., 2000). In recent years, studies have found that PFDN
regulates the toxicity of misfolded proteins, including those
that lead to neurodegenerative diseases. For example, PFDN
can protect neuronal cells from polyglutamine toxicity by

preventing aggregate formation or maintaining proteostasis by
unfolding misfolded proteins in physiopathological conditions
(Tashiro et al., 2013; Tahmaz et al., 2022). PFDN-deficient mice
exhibit phenotypic features of defective cytoskeletal function,
including ciliary dyskinesia, neuronal loss, and defects in B- and
T-cell development and function. As ubiquitous components
of the cytoskeleton, actin and tubulin play essential roles in
multiple stages of neural development, including dendritic
axon growth, neuronal polarization, neuronal migration, and
synaptic signal transduction (Cao et al., 2008; Bertling and
Hotulainen, 2017), whereas efficient synthesis of actin and
tubulin requires the participation of the protein complex
formed by PFDN and t-complex protein 1 ring complex
(TRiC)/chaperonin-containing t-complex protein 1 (CCT). As
an ER chaperone, PFDN promotes the post-translational folding
of actin and other cytoskeletal proteins through the t-complex
protein 1 (TCP1)-containing loop complex chaperone TRiC
(Cao et al., 2008). PFDN and TCP1 play essential roles
in metazoan development. In C. elegans, RNA interference
screens revealed that knockdown of a single PFDN or
TCP1 subunit resulted in morphological abnormalities and
distinct penetrating embryonic lethal phenotypes (Delgehyr
et al., 2012), suggesting that these proteins are essential in
multiple tissue development and early embryonic development
(Monzo et al., 2010). In contrast, PFDN1-deficient mice
develop defective cytoskeletal function, loss of neural tracts,
hydrocephalus, neuromuscular defects, abnormal lymphocyte
development and function, and shortened lifespan (Lee
et al., 2011). Furthermore, abnormal actin and/or tubulin
cytoskeleton assembly and microtubule formation may underlie
the Pfdn5nmf 5a (encoding PNDF5) disease phenotype, including
photoreceptor degeneration (Kwon et al., 2019), central nervous
system abnormalities, and male sterility (Lee et al., 2011).
Although PFDN5 is expressed in various tissues, defects
in PFDN5 homozygotes appear to be limited to neuronal
cells. Genetic disruption of the mouse Pfdn5 gene results
in reduced formation of microtubules and microfilaments,
leading to progressive neurodegeneration, hydrocephalus, and
reproductive abnormalities. These results suggest that PFDN5
is required for normal sensory and neuronal development (Lee
et al., 2011).

Endoplasmic reticulum molecular
chaperones and
neurodevelopmental disorders

Neurodevelopmental disorders (NDDs) refer to the
abnormal development of the nervous system caused by
inherited or acquired diseases, resulting in brain dysfunction.
NDDs include intellectual disability (ID), autism spectrum
disorder (ASD), attention-deficit hyperactivity disorder
(ADHD), and bipolar disorder (BD) (Rutter et al., 2006; Thapar
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et al., 2017; Ismail and Shapiro, 2019; Morris-Rosendahl and
Crocq, 2020). At present, the global prevalence of unexplained
ID is 2–3% (Olusanya et al., 2020), the prevalence of ASD is
1–2% (Baxter et al., 2015; Zablotsky et al., 2015), the prevalence
of ADHD is 5–7.2% (Polanczyk et al., 2007, 2014; Sokolova
et al., 2017; Wang T. et al., 2017), and the prevalence of BD
is 1–4% (Merikangas et al., 2011). Numerous studies have
shown that children with NDDs have a high incidence of
mental health problems compared with normal children
(Arim et al., 2015; Eyre et al., 2019). NDDs bring heavy
economic and mental burdens to families and society, seriously

affect the quality of life of patients and their families and
represent a public health problem of high concern worldwide.
The pathogenesis of NDDs is complex. Environmental
risk factors, such as the inflammatory response, immune
disorders and metabolic disorders, and genetic factors, such
as neuronal dysfunction and chromosome deletion, are
involved in the occurrence of NDDs (Bădescu et al., 2016).
The abnormal expression of ER chaperone proteins can lead
to the dys-regulation of neurodevelopmental processes and
participate in the occurrence of many neurodevelopmental
diseases.

TABLE 1 The role of Endoplasmic reticulum (ER) chaperones in neural development.

Protein Localization Development
stage

Neurodevelopmental
disorders

References

GRP78/Bip ER lumen
ER
trans-membrane
Cell surface
Nucleus

Embryonic
neurodevelopment
Neuronal migration
Synapse formation
and plasticity

BD Chen et al., 2000; Abood et al., 2001; Bown et al., 2002; Nadarajah
and Parnavelas, 2002; Kim et al., 2005; Aghajani et al., 2006; Luo
et al., 2006; So et al., 2007; Mimura et al., 2008; Zhang and Kaufman,
2008; Hayashi et al., 2009; Rossi et al., 2010; van Schadewijk et al.,
2012; Chiarlone et al., 2014; Jin et al., 2014, 2017; Pfaffenseller et al.,
2014; Wang J. et al., 2017; Bengesser et al., 2018; Gómez-Almería
et al., 2021

SIL1 ER lumen Neuronal migration ID Krieger et al., 2013; Inaguma et al., 2014; Roos et al., 2014; Osborn
et al., 2017; Wang J. et al., 2017

Calnexin ER
trans-membrane
Cell surface

Embryonic
neurodevelopment
Axon/dendrite
initiation
Synapse formation
and plasticity

ID Wraith et al., 1987; Wilson et al., 1990; Tjoelker et al., 1994; Gloor
et al., 2001; Denzel et al., 2002; Coe et al., 2008; Smith et al., 2008;
Kraus et al., 2010; Itakura et al., 2013; Ficicioglu et al., 2018; Jung
et al., 2018; Stapleton et al., 2018; Osaki et al., 2019

Calreticulin ER lumen
Cytosol
Cell surface

Embryonic
neurodevelopment
Axon/dendrite
initiation
Neuronal
differentiation

ASD Solheim et al., 1997; Mesaeli et al., 1999; Oldenborg et al., 2000;
Rauch et al., 2000; Bartholomeusz et al., 2002; Chao, 2003; Willis
et al., 2005; Kumar et al., 2008; Weiss et al., 2008; McCarthy et al.,
2009; Vuppalanchi et al., 2010; Hazlett et al., 2011; Shih et al., 2012;
Maillard et al., 2015; Sacco et al., 2015; Lee et al., 2019; Zarrei et al.,
2019; Pacheco et al., 2020; Pilquil et al., 2020; Li et al., 2021

PDI ER lumen
Cell surface

Neuronal migration ASD, ID Desai et al., 1988; Whangbo and Kenyon, 1999; Turano et al., 2002;
Wilkinson and Gilbert, 2004; Ellgaard and Ruddock, 2005; Fatemi
et al., 2005; Iossifov et al., 2014; Wang et al., 2014; Parakh and
Atkin, 2015; Lammert and Howell, 2016; Perri et al., 2016; Zeeshan
et al., 2016; Lammert et al., 2017; Martin et al., 2018; Torpe et al.,
2019; Bilches Medinas et al., 2022

Sigma-1 Receptor ER
trans-membrane

Axon/dendrite
initiation
Spine maturation
Synapse formation
and plasticity

ASD, ID, ADHD Barkley et al., 1992; Gibbons et al., 1992, 1995, 2008; Bakker et al.,
1994; Matsuno et al., 1996; Amir et al., 1999; Kaufmann and Moser,
2000; Matsumoto et al., 2001; Aydar et al., 2002; Maurice et al., 2002;
Amini et al., 2004; Hayashi and Su, 2004; Rizzuto et al., 2004;
Arnsten and Dudley, 2005; Arnsten and Li, 2005; Capp et al., 2005;
Arnsten, 2006; Csordás et al., 2006; Laurvick et al., 2006; Mientjes
et al., 2006; Szabadkai et al., 2006; Kann and Kovács, 2007;
Fontanilla et al., 2009; Hagerman et al., 2009; Tsai et al., 2009;
Zheng, 2009; Boyle and Kaufmann, 2010; Cárdenas et al., 2010; Neul
et al., 2010, 2014; Su et al., 2010, 2016; Budimirovic and Kaufmann,
2011; Nogami et al., 2011; Ruscher et al., 2011, 2012; Shioda et al.,
2011; Villard et al., 2011; Ishima and Hashimoto, 2012; Kourrich
et al., 2012; Levenga and Willemsen, 2012; Zhang C. L. et al., 2012;
Mori et al., 2013; Samaco et al., 2013; Ishima et al., 2014; Peviani
et al., 2014; Robson et al., 2014; Lombardi et al., 2015; Kaufmann
et al., 2016, 2017, 2019; Xavier et al., 2016; Fukunaga and Moriguchi,
2017; Dahlhaus, 2018; Yamaguchi et al., 2018; Ryskamp et al., 2019;
Schmidt and Kruse, 2019; Tan and Zoghbi, 2019; Hampel et al.,
2020; Motawe et al., 2020; Reyes et al., 2021; Dalwadi et al., 2022

Prefoldin ER lumen
Nucleus
Cytosol

Embryonic
neurodevelopment

N.D. Cao et al., 2008; Monzo et al., 2010; Lee et al., 2011; Delgehyr et al.,
2012; Glover and Clark, 2015; Bertling and Hotulainen, 2017
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Endoplasmic reticulum molecular
chaperones and autism spectrum
disorder

Autism spectrum disorder is a brain developmental disorder
characterized by language disorders, social difficulties, and
repetitive and stereotyped behaviors (Lai et al., 2014).

Calreticulin and autism spectrum disorder
Current studies have reported copy number variations

(CNVs) in specific genes, and the ASD-related literature has
cited the involvement of ER chaperone proteins. However,
the molecular mechanisms are not well understood. For
example, when studying the relationship among CD47
overexpression, brain overgrowth and 16p11.2 deletion
syndrome, Li et al. found that ER chaperone CRT-mediated
phagocytosis was related to the pathogenesis of ASD (Li
et al., 2021). CNV at 16p11.2 has been implicated in
neuropsychiatric disorders, such as ASD and schizophrenia
(Kumar et al., 2008; Weiss et al., 2008; McCarthy et al.,
2009; Zarrei et al., 2019). Carriers with 16p11.2 deletions
tend to have macrocephaly (or enlarged brain), whereas
carriers with 16p11.2 duplications often have microcephaly
(Bartholomeusz et al., 2002; Hazlett et al., 2011; Maillard
et al., 2015; Sacco et al., 2015). Human induced pluripotent
stem cells (hiPSCs) from controls and subjects with 16p11.2
deletions and duplications were employed to understand the
underlying mechanisms regulating brain overgrowth. CD47
(the “do not eat me” signal) was found to be overexpressed
in cells with the 16p11.2 deletion vector, and CRT was
also highly expressed. Cells with high CRT expression
should be eliminated by immunophagocytosis, whereas
cells escape immunophagocytosis due to high expression of
CD47 (Oldenborg et al., 2000). The phagocytosis and CRT
expression of hiPSCs with 16p11.2 deletion were restored to
the control level when anti-CD47, a CD47 blocking agent, was
applied (Li et al., 2021). This finding indicates that the normal
phagocytosis mediated by CRT is affected in 16p11.2 null cells,
and this mechanism may be involved in the pathogenesis of
ASD.

Protein disulfide isomerase A1 and autism
spectrum disorder

Lammert et al. found that increased PDIA1 was associated
with ASD (Lammert et al., 2017). Studies have shown that
RELN gene mutation can lead to ASD complications (Fatemi
et al., 2005). In the ASD mouse model based on the RELN
R2290C (Reelin mutant gene) (Iossifov et al., 2014; Wang
et al., 2014; Lammert and Howell, 2016) mutation, PDIA1
expression was increased in the neurospheres of RELN
R2290C heterozygous (+/-) as well as in the cerebellum
of RELN Orleans (Orl) +/- mice. Reelin protein is highly
expressed in the developing cerebral cortex and cerebellum

and plays an important role in neuronal migration. As an
ER-resident chaperone, PDIA1 can ensure the formation
of correct disulfide bonds in nascent proteins (Parakh
and Atkin, 2015), but its overexpression may cause
neuropathological diseases (Perri et al., 2016; Zeeshan
et al., 2016). This finding indicates that the increased
expression of PDIA1 may be associated with the risk of
ASD.

Sigma-1 receptor and autism spectrum
disorder

Fragile X syndrome (FXS) is a disorder of synaptic
development and dysfunction (Hagerman et al., 2009) and is the
most prevalent genetic form of ID, ASD, and ADHD (Boyle and
Kaufmann, 2010; Budimirovic and Kaufmann, 2011; Kaufmann
et al., 2017). FXS mouse models recapitulate anxiety phenotypes
similar to those observed in the clinic. Blarcamesine is a Sig-1R
agonist (Villard et al., 2011), and the important role of Sig-
1R in calcium homeostasis and synaptic function (Su et al.,
2016; Schmidt and Kruse, 2019) makes blarcamesine a potential
candidate for FXS. Blarcamesine has shown preliminary efficacy
in patients with Alzheimer’s disease, Rett syndrome (RTT),
synaptic neurodegeneration and NDDs (Hampel et al., 2020).
Reyes et al. conducted research on the role of blarcamesine
in FXS (Reyes et al., 2021). These researchers used the Fmr1
knockout FXS mouse model (Bakker et al., 1994; Mientjes et al.,
2006; Dahlhaus, 2018) to evaluate the effect of blarcamesine
on key cognitive and behavioral aspects that represent the FXS
phenotype. When FXS mice were administered blarcamesine,
two key neurobehavioral phenotypes, the open field test
(hyperactivity) and contextual fear conditioning (associative
learning), returned to normal.

Kaufmann et al. conducted further studies on the role
of blarcamesine in RTT (Kaufmann et al., 2019). RTT is
a progressive, non-inherited, X-linked neurodevelopmental
disorder with an incidence of approximately 1 in 10,000 female
births (Laurvick et al., 2006; Neul et al., 2010). Most patients
carry a mutation in the methyl-CpG-binding protein 2 (MECP2)
gene, which encodes a rich transcriptional regulator in the
brain (Amir et al., 1999; Neul et al., 2014). The disorder
is characterized by a variety of neurological impairments,
particularly affecting cognition (i.e., developmental delay, ID,
communication deficits), behavior, and motor and autonomic
dysfunction (Neul et al., 2010; Kaufmann et al., 2016). No
specific effective treatment is available for RTT, and treatment
is mainly symptomatic. Using female Mecp2 mutant mice
(Samaco et al., 2013; Lombardi et al., 2015; Tan and Zoghbi,
2019) as the research object, the authors and others administered
the Sig-1R agonist blarcamesine and found that motor defects,
acoustic starvation defects and visual defects were significantly
improved. These data suggest that Sig-1Rs play an important
role in FXS and in neurological disorders that are genetically
characterized as FXS.
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Endoplasmic reticulum molecular
chaperones and intellectual disability

Intellectual disability (ID) is a common disorder of
nervous system development that leads to intellectual
disabilities. Various factors can cause ID, including loss of
important synaptic function, abnormal neuronal morphological
development, and neuronal migration and localization disorders
(Kaufman et al., 2010; Ropers, 2010; Mehregan et al., 2016).

SIL1 and intellectual disability
Studies have shown that SIL1 gene mutations causes

Marinesco-Sjögren syndrome (MSS), and it is the only gene that
has been found to cause MSS. MSS is a rare autosomal recessive
genetic disease. Clinical studies have found that approximately
90% of patients with MSS caused by SIL1 mutation present
with moderate to severe ID, motor delay, congenital cataract,
cerebellar atrophy, and other NDDs (Roos et al., 2014; Osborn

et al., 2017). It has been well established that the decreased
interaction between Bip and SIL1 or the loss of SIL1 function
alone leads to the abnormal migration and localization of
cortical neurons, representing a possible cause of ID (Krieger
et al., 2013; Inaguma et al., 2014).

Calnexin and intellectual disability
In a study of mucopolysaccharidosis type II (MPS II),

Osaki et al. demonstrated that CNX expression directly affects
intellectual deficits caused by iduronate 2-sulfatase (IDS)
mutations (Osaki et al., 2019). MPS II is one of the most
common mucopolysaccharidoses (Wraith et al., 1987; Stapleton
et al., 2018) and is caused by mutations in the gene encoding
IDS (Wilson et al., 1990). The loss of IDS function leads to
the accumulation of heparan sulfate and dermatan sulfate of
glycosaminoglycans throughout the body, resulting in skeletal
deformities, retardation, rigid joints, and thick skin (Ficicioglu
et al., 2018). It was found that mutant IDS retained in the

FIGURE 1

Endoplasmic reticulum (ER) molecular chaperones involved in neurodevelopment. ER molecular chaperones regulate central nervous
development through two mechanisms: 1. ER chaperones directly act on specific developmental periods and regulate developmental stages. 2.
ER chaperones indirectly act on secretory proteins or receptor proteins and regulate ER stress by ensuring protein homeostasis. CRT and Sig-1R
regulate neuronal morphogenesis and dendritic axon growth (A); Bip, SIL1, and PDI-1 regulate cortical neuron migration (C); CRT regulates
Ca2+ to guide NGF differentiation into mature neurons (D); Bip, CNX, and Sig-1R regulate synaptic function (B). Indirect regulation mainly
affects the secreted protein Reelin and AMPA and NMDA membrane receptors (C), which act on the post-synaptic membrane and nerve
migration. Bip proteins are involved in endoplasmic quality control and transport misfolded proteins for degradation, thereby maintaining
protein homeostasis under ER stress conditions. Insert (a) CRT cooperates with CNX and PDIA3 to form the CNX/CRT cycle that controls
protein folding within the ER. The CNX/CRT cycle can specifically recognize glycoproteins linked by N2 glycosidic bonds and regulate Ca2+

homeostasis and Ca2+ signaling processes in the ER. Insert (b) Bip is involved in a variety of ER functions dependent on ATP-induced
conformational changes. The adenosine triphosphatase (ATPase) cycle of Bip is regulated by its co-chaperones of two families, namely, the
ER-localized DnaJ-like proteins (ERdjs) and the nucleotide exchange factors (NEFs). ERdjs enables Bip to stably associate with its target protein.
The NEF SIL1 then mediates the release of the target protein from the upper Bip and further folds to form the mature protein. Modified from
Fucikova et al. (2021), Ichhaporia and Hendershot (2021).
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ER requires binding to CNX to achieve folding. Thus, CNX
knockdown reduces the transport of mutant IDS from the ER to
lysosome and its enzymatic activity. These studies indicate that
proper folding by interaction with CNX ensures its functional
activity. These findings reveal the existence of a role between
IDS and CNX for the treatment of ID caused by MPSII and IDS
mutations (Osaki et al., 2019).

Sigma-1 receptor and intellectual disability
α-thalassemia X-linked intellectual disability (ATR-X)

syndrome is caused by mutations in ATRX (Gibbons et al., 1992,
1995). ATR-X syndrome is characterized by a variety of clinical
manifestations, including severe ID, facial dysmorphism,
genital abnormalities, and seizures (Gibbons et al., 2008).
Similarly, ATR-X model mice lacking Atrx exon 2 (Nogami
et al., 2011) show phenotypes similar to the symptoms
of ID noted in humans, cognitive deficits (Kaufmann and
Moser, 2000; Levenga and Willemsen, 2012), and abnormal
dendritic formation (Shioda et al., 2011). Yamaguchi et al.
investigated whether Sig-1R promotes the increased activity of
neurotrophic factors, such as BDNF, to induce neuroprotection
and nerve regeneration (Yamaguchi et al., 2018). They found
that treatment with the Sig-1R activator SA4503 (Matsuno
et al., 1996) reversed axonal development and dendritic spine
abnormalities in primary cultured cortical neurons of ATR-
X model mice. In addition, SA4503 treatment rescued the
cognitive deficits noted in ATR-X model mice.

Protein disulfide isomerase family A member 3
and intellectual disability

Recessive gene mutations underlie many developmental
disorders and often lead to disabling neurological problems
(Martin et al., 2018). Bilches et al. conducted clinical and genetic
studies on large close relatives with ID (Bilches Medinas et al.,
2022). These researchers isolated a homozygous mutant of
PDIA3, c.170G > A (p. Cys57Tyr or C57Y), from the genes of
clinical patients with ID and determined that this disease was
associated with PDIA3. PDIA3 is an oxidoreductase containing
a thioredoxin-like domain that catalyzes the formation and
isomerization of disulfide bonds in the ER and is associated with
syndromic ID (Ellgaard and Ruddock, 2005). Experiments in
zebrafish embryos demonstrated that the PDIA3C57Y mutation
is pathogenic and causes developmental defects, such as
axonal disorganization and skeletal abnormalities. Abnormal
PDIA3C57Y expression in the hippocampus leads to impaired
synaptic plasticity and memory consolidation (Bilches Medinas
et al., 2022).

Endoplasmic reticulum molecular
chaperones and bipolar disorder

Bipolar disorder is a common mental disorder characterized
by recurrent episodes of mania, hypomania, and depression. BD

is characterized by mood swings between elevated and depressed
moods (Rosso et al., 2007). The exact mechanism of these mood
swings remains unclear and needs to be further elucidated.

Binding immunoglobulin protein and bipolar
disorder

There is increasing evidence from previous in vitro studies
that the ER, as a protein folding factory, plays a major role
in BD (So et al., 2007; Hayashi et al., 2009; Pfaffenseller et al.,
2014). The role of the ER molecular chaperone Bip in BD
diseases is more reflected in ER stress. ER stress activates the
UPR (Zhang and Kaufman, 2008; van Schadewijk et al., 2012),
which is partially impaired in BD (Pfaffenseller et al., 2014).
Therefore, Bengesser et al. analyzed Bip and C/EBP homologous
protein (CHOP) gene expression and X-box binding protein
1 (XBP1) splicing in the peripheral blood of BD patients and
control study participants (Bengesser et al., 2018). They isolated
RNA from fasting blood of BD patients and control study
participants, reverse transcribed it into cDNA, and analyzed Bip
and CHOP gene expression. The results significantly increased
Bip gene expression in BD samples. In addition, valproate,
an atypical antipsychotic drug, has been shown to play a
neuroprotective role by increasing the expression of chaperone
proteins that assist ER protein folding, such as CRT and Bip
(Chen et al., 2000; Bown et al., 2002; Kim et al., 2005). This
neuroprotective effect has been suggested to be potentially
related to the pathophysiology of neuropsychiatric disorders,
such as schizophrenia and BD (Aghajani et al., 2006). However,
the role of the specific pathophysiology of this neurological
disorder remains to be elucidated.

Endoplasmic reticulum molecular
chaperones and attention-deficit
hyperactivity disorder

Attention-deficit hyperactivity disorder is a syndrome
characterized by inattention, hyperactivity, emotional
impulsivity, and learning difficulties (Tripp and Wickens,
2009).

At present, there are few studies on the role of molecular
chaperones in ADHD, and more relevant studies exist at the
level of drug treatment targets. Methylphenidate (MPH) is a
commonly used stimulant drug for ADHD (Capp et al., 2005;
Arnsten, 2006). The symptoms of ADHD patients are mostly
consistent with dysfunction in the pre-frontal cortex (PFC)
(Barkley et al., 1992), a highly functional region that directs and
organizes attention, thoughts, and emotions (Arnsten and Li,
2005). It has been demonstrated that low-dose MPH injection
into the PFC can improve working memory performance
(Arnsten and Dudley, 2005). High MPH doses can cause
behavioral sensitization and a high risk of addiction (Amini
et al., 2004). Sig-1R receptor proteins are highly distributed
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in the PFC, striatum and hippocampus. At the cellular level,
Sig-1R is post-synaptic (Hayashi and Su, 2004) and is an
excitatory target for the treatment of ADHD (e.g., cocaine)
(Matsumoto et al., 2001; Maurice et al., 2002). MPH was found
to increase NMDA receptor-mediated synaptic transmission,
which was mediated by Sig-1R. Under the same dose of MPH
stimulation, the NMDA-induced post-synaptic strength in the
hippocampus of mice supplemented with the Sig-1R agonist
PRE-084 was significantly higher than that of the control group
(Motawe et al., 2020). Similarly, pretreatment with the Sig-1R
antagonist BD1063 effectively prevented hyperactivity caused
by MPH hyperactivity (Matsumoto et al., 1995), confirming
the importance of Sig-1R receptors in excitatory synaptic
transmission (Zhang C. L. et al., 2012). Therefore, the active
use of Sig-1R receptor ligands in the treatment of ADHD and
prevention of MPH-induced addiction may have unexpected
effects.

Conclusion

A considerable amount of evidence indicates that ER
chaperones play key roles in neural development through
various processes, such as neuronal migration and localization,
neuronal morphogenesis, and synaptic modification. There are
two main mechanisms by which ER chaperones participate in
the regulation of neural development: 1. ER chaperones directly
act on specific developmental periods to regulate developmental
stages. 2. ER chaperones indirectly regulate development by
regulating the spatial and temporal expression of secreted
proteins or central development-related receptor proteins. Of
these methods, the indirect regulation mode mainly affects
the secretory protein Reelin and membrane receptor proteins
AMPA receptor, NMDA receptor and Wnt receptor. Bip protein
maintains protein homeostasis under ER stress. In addition, the
key effects of these partners in neurodevelopmental diseases
also deserve our attention (Table 1). Bip, SIL1, and PDI-1
regulate neuronal migration. Bip, CNX, CRT and PFDN regulate
early embryonic development. CNX, CRT and Sig-1R regulate
neuronal morphogenesis and dendritic axon growth. Bip,
CNX, and Sig-1R regulate synaptic function (Figure 1). These
direct effects occur through membrane receptor-independent
mechanism and are related to the regulation of ER calcium levels
by ER chaperones. However, the direct mechanisms of action
remain unclear and need to be further studied.

In summary, considerable research on the function of ER
molecular chaperones has been performed, and some progress
has been made. However, some limitations remain. 1. ER
molecular chaperones have specific expression sites in the early
stage of neural development, and specific spatial and temporal
patterns coincide with different stages of neural development.
For example, Bip is involved in early embryonic development
and is closely related to cortical neuronal migration. Sig-
1R regulates neuronal morphogenesis and dendritic axon
growth and are mainly localized in the hippocampus. Do

these findings suggest that the functions of these molecular
chaperones are focused at specific developmental sites at
specific developmental times? 2. The mechanism by which ER
chaperones affect central nervous system development is still
not well defined. For example, Bip and SIL1 coregulate the
coordination mechanism during central development. CNX
regulates the specific regulatory processes of the NMDA
receptor and AMPA receptor. Whether PDI-mediated Wnt
protein-dependent disulfide bond formation affects other
developmental processes in addition to migration remains
unclear. As well characterized molecular ER chaperone, the role
of GRP94 in protein folding and assembly as well as in cancer
and related diseases has been widely studied (Fu and Lee, 2006;
Pan et al., 2009). However, there are few studies on GRP94
in neural development, and further exploration is needed. 3.
At present, studies on the role of molecular chaperones in
developmental function are insufficient, and further studies on
the functions of these molecular chaperones in different brain
regions are needed. Finally, studies on the key role and induction
mechanism of molecular chaperones in neurodevelopmental
diseases are limited.

At present, neurodevelopmental diseases have become a
problem of great concern. The complex etiology and specific
pathogenesis have affected the health of numerous individuals.
Determining whether it is possible to repair developmental
defects by controlling the expression of chaperone proteins
and subsequently treat developmental diseases is the focus
of our research.
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