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The surface spectral reflectance of an object is the key factor for high-fidelity

color reproduction and material analysis, and spectral acquisition is the basis

of its applications. Based on the theoretical imaging model of a digital camera,

the spectral reflectance of any pixels in the image can be obtained through

spectral reconstruction technology. This technology can avoid the application

limitations of spectral cameras in open scenarios and obtain high spatial

resolution multispectral images. However, the current spectral reconstruction

algorithms are sensitive to the exposure variant of the test images. That is,

when the exposure of the test image is different from that of the training

image, the reconstructed spectral curve of the test object will deviate from

the real spectral to varying degrees, which will lead to the spectral data of

the target object being accurately reconstructed. This article proposes an

optimized method for spectral reconstruction based on data augmentation

and attention mechanisms using the current deep learning-based spectral

reconstruction framework. The proposed method is exposure invariant and

will adapt to the open environment in which the light is easily changed and

the illumination is non-uniform. Thus, the robustness and reconstruction

accuracy of the spectral reconstruction model in practical applications are

improved. The experiments show that the proposed method can accurately

reconstruct the shape of the spectral reflectance curve of the test object

under different test exposure levels. And the spectral reconstruction error

of our method at different exposure levels is significantly lower than that

of the existing methods, which verifies the proposed method’s effectiveness

and superiority.
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Introduction

The visual system is important for humans to sense
the external environment. The eye can sense light radiation
in the visible light range in the visual system. The light
stimulation photoreceptor cells receive will eventually form
a comprehensive vision in the brain. By simulating visual
perception, digital cameras use color filter array sensors and
image signal processing technology to record the radiation
spectrum of natural scenes as a color image that conforms to
human visual perception. However, color imaging technology
has a limited ability to reproduce colors and characterize
objects, and the information contained in the visible spectrum
is far beyond the RGB data. The metamerism problem of
color imaging is the key issue of its use in high-fidelity
color reproduction and high-precision material characterization
(Kang, 2006).

It is well known that spectral reflectance is the “fingerprint”
of color information, which can effectively overcome the
influence of light source and observer on color reproduction and
object characterization. It is often used in agriculture, cultural
relic protection, skin health monitoring, and other fields (Kim
et al., 2017; Xu et al., 2017; Ablet et al., 2019). In addition, in
the field of computer vision, multispectral data can improve
detection accuracy (Hwang et al., 2015). However, due to the
limitations of current multispectral imaging technology, such
as the complexity of the systems (Hardeberg et al., 2002; Liang,
2012) and the low spatial resolution (Cucci et al., 2016; Daniel
et al., 2016), the current spectral cameras cannot quickly acquire
multispectral images with high spatial resolution, which restricts
the wide application of multispectral images.

Reconstructing multispectral images of scenes from RGB
images has been widely researched in many fields. Spectral
reconstruction is one of the ill-conditioned inverse problems
(Ribes and Schmitt, 2008). The same RGB data may correspond
to completely different spectral reflectance data. In natural
scenes, however, there is always a close correlation between
the RGB data of an image and the corresponding multispectral
image. Based on mathematical modeling, the relationship
between RGB data and corresponding multispectral data can
be established, and fairly accurate spectral reconstruction
results can be obtained (Lin and Finlayson, 2020). Therefore,
spectral reconstruction technology is easier to apply to open
environments than spectral cameras and quickly acquires high
spatial resolution multispectral images.

Current spectral reconstruction methods are mainly divided
into two different classes: machine learning and deep learning-
based methods (Liang et al., 2016, 2019; Galliani et al., 2017;
Liang and Wan, 2017; Shi et al., 2018; Yan et al., 2018; Liang
and Xiao, 2020; Zhang et al., 2020). The machine learning-based
methods include pseudo-inverse, kernel algorithm, principal
component analysis, and so on (Liang et al., 2019). The
pseudo-inverse method builds a reconstruction matrix based

on the error between the reconstructed and ground-truth
spectra of the training data. The kernel algorithm uses the
kernel function to transform the response values to the kernel
space and then calculates the reconstruction matrix. And the
principal component analysis method uses the top k principals
and coefficient matrix to reconstruct the spectral reflectance
of the target. In summary, the current machine learning-
based spectral reconstruction methods are all based on the
digital camera imaging model to reconstruct the spectral
reconstruction matrix. However, they are all exposure sensitive,
and the reconstructed spectral errors are large when applied in
non-uniform lighting environments.

In recent years, with the rapid development of deep learning
in the field of computer vision, classical network models, such
as convolutional neural networks and generative adversarial
networks, have been used in spectral reconstruction. Deep
learning-based spectral reconstruction models usually use a
large number of data sample pairs as support to establish the
mapping relationship between RGB images and multispectral
images. For the deep learning-based spectral reconstruction,
Yan et al. (2018) applied the U-net network to spectral
reconstruction. Galliani et al. (2017) utilized a variant of full
convolution for the end-to-end spectral reconstruction task. Shi
et al. (2018) proposed a network model based on residuals and
densely connected structures (He et al., 2016; Huang et al.,
2017). Zhang et al. (2020) proposed a deep learning spectral
reconstruction model based on dense connections. However, the
existing deep learning-based spectral reconstruction methods
with good spectral reconstruction accuracy usually have
complex network structures, a large number of parameters,
and exposure sensitivity (as shown in Figure 1B). That is, the
spectral reconstruction model constructed under one exposure
level cannot adapt to another, or the reconstructed spectral
curve will deviate from the ground truth.

An optimized deep learning-based spectral reconstruction
method is proposed based on a lightweight convolutional neural
network (CNN) to address the issues arising from the current
deep learning-based spectral reconstruction methods, such as a
large number of model parameters and sensitivity to exposure
changes of test images. Moreover, some optimized measures are
integrated into the network. First, the input RGB training image
is randomly multiplied by an exposure adjustment coefficient
during model training so that the model can see images with
more exposure levels. According to the exposure adjustment
coefficient of the training image, the reconstructed multispectral
image (RMSI) is reciprocally corrected in the loss function to
make the model learn the exposure invariant spectral features
that correspond to the training images. Secondly, the dense
connection mechanism in the original model not only helps to
alleviate the problem of model gradient disappearance but also
greatly reduces the number of model parameters. Finally, an
attention mechanism is introduced into the model to improve
spectral reconstruction accuracy by adaptively weighting the
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FIGURE 1

Schematic diagram of the exposure invariant (A) and exposure sensitive (B) spectral reconstruction methods. The photos appearing in these
figures are chosen from the public multispectral dataset from the NTIRE challenges (https://icvl.cs.bgu.ac.il/projects/ntire2020/).

feature channels. Experimental results show that the proposed
method not only achieves the performance of exposure invariant
but also exhibits better spectral reconstruction accuracy than
existing methods.

Models and methods

Imaging model

The imaging process of a color digital camera involves
three factors, light source, object, and camera. The light sources
are usually characterized by their spectral power distribution.
When the light source irradiates the surface of the object, the
object will selectively absorb some wavelengths of energy and
reflect the rest to form a radiance spectral that integrates the
light source information and the reflection characteristics of the
object. The radiance spectra are focused and incident on the
camera sensor through the lens. After photoelectric conversion
and analog-to-digital conversion, the radiance spectral forms
a raw format digital image on the camera sensor, and then
the raw image undergoes a series of image signal processing
(dark current correction, dead pixel correction, white balance

correction, demosaicing, color space conversion, etc.) to form
the visually pleasing color image (Nakamura, 2017).

The imaging mentioned above process of a digital camera
can be generally divided into a linear imaging stage and a
nonlinear processing stage. The linear imaging stage is from the
radiance spectral to the raw image, and the nonlinear imaging
stage is from the raw image to the final visual pleased color
image. However, because different brands of cameras usually
use different image signal processing algorithms, and because
they are all the company’s intellectual properties, it is hard
to accurately and uniformly express the nonlinear stage. The
current research on spectral reconstruction is carried out in the
linear imaging mode (Ribes and Schmitt, 2008), as shown in
Eq. 1:

di =
∫
l (λ) r (λ) t (λ) fi (λ) s (λ) dλ+ ni
=

∫
mi (λ) r (λ) dλ+ ni,

(1)

where di represents the response of the i-th channel of a pixel in
the image, l(λ) is the spectral distribution of the lighting source,
r(λ) is the spectral reflectance of a point on the surface of the
object, t(λ) is the overall transmittance of the camera lens optics,
fi(λ) is the transmittance of the i-th channel filter of the camera,
s(λ) is the spectral sensitivity function of the camera sensor, λ

indicates the wavelength, ni represents the noise signal of the i-th

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1031546
https://icvl.cs.bgu.ac.il/projects/ntire2020/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1031546 October 17, 2022 Time: 10:7 # 4

Liang et al. 10.3389/fnins.2022.1031546

channel of the digital camera, mi = l(λ)t(λ)fi(λ)s(λ) represents
the overall spectral sensitivity function of the i-th channel of a
digital camera (Liang et al., 2019). Eq. 1 can be abbreviated into
the matrix form as shown in Eq. 2:

d = Mr (2)

where d represents the K × 1 dimensional response value vector
of a pixel, K is the channel number of the imaging system. M
is the K × N dimensional overall sensitivity function matrix of
the imaging system that contains l(λ), t(λ), fi(λ), and s(λ), and
r represents the N × 1 dimensional spectral vector of a pixel.

Spectral reconstruction model

Because of the high correlation between RGB images
and the corresponding multispectral images, learning-based
methods can be used to model the mapping between RGB and
multispectral images. In recent years, with the success of deep
learning in many computer vision tasks, CNN based methods
have gradually been applied to spectral reconstruction.
Assuming that an RGB image and its corresponding
multispectral image are given, the mapping between RGB
and multispectral image can be described as follows:

r = f
(
d
)

(3)

where d is the digital response value of any pixel in the
RGB image, r is the spectral reflectance corresponding to
the pixel, and f (·) is the mapping model from RGB values
to multispectral reflectance. When the spectral reconstruction
model f (·) is established, the corresponding spectral reflectance
r can be obtained by Eq. 3 for any given pixel response
value d. The multispectral image corresponding to the RGB
image is obtained.

Proposed optimized method

As mentioned in the introduction section, neural networks
can learn the mapping relationship from RGB images
to multispectral images, and convolutional networks and
generative adversarial networks are gradually being used in
spectral reconstruction. However, existing deep learning-based
spectral reconstruction models usually need to train millions
of model parameters. And during model training, convolution
operators are used to extract deep image features. Multiple sets
of convolution operators are usually superimposed to improve
the network’s performance, making the deep learning spectral
reconstruction methods more complex than machine learning-
based ones.

In addition, although the accuracy of the existing machine
learning-based spectral reconstruction method is limited by the

appropriate design of the spectral reconstruction model [such
as the use of root polynomial extended regression (Lin and
Finlayson, 2019)] and using linear raw image data, the method
can achieve the ability of exposure invariant (as shown in
Figure 1A). Unlike machine learning-based methods, which can
easily perform linear regression, deep learning-based spectral
reconstruction methods are all nonlinear mathematical models.
This is because, to ensure the learning ability and generalization
performance of the deep learning model, the nonlinear
activation functions (such as Relu, Prelu, and Sigmoid functions)
and non-zero bias terms are always included in the model.
Therefore, obtaining the corresponding linear output is difficult
for the existing deep learning-based spectral reconstruction
model when a set of linear inputs is given. In other words,
the existing deep learning-based spectral reconstruction models
are exposure sensitive and cannot guarantee the correctness of
the reconstructed spectral curve (as shown in Figure 1B). Take
the typical architecture of a single neuron in the deep learning
framework as an example, as shown in Eq. 4:

y = h
(
wTx+ b

)
(4)

where x is the input, w is the weight, b is the bias, y is the
output, and h(·) is the activation function. Without considering
the influence of exposure change on spectral reconstruction,
the corresponding output y can always be obtained for any
given input x. However, considering the exposure influence on
spectral reconstruction (Lin and Finlayson, 2019), the output ky
is difficult to acquire directly for the input kx for current deep
learning-based spectral reconstruction methods, where k is the
exposure adjustment coefficient.

Therefore, for the existing deep learning-based spectral
reconstruction model, how to make it exposure invariant, as
shown in Eq. 5, will be the key problem when using it in an
open environment with variable and non-uniform illumination
(Liang and Xiao, 2020). In addition, it is also important to
reconstruct high-precision multispectral images in an open
illumination environment:

kr = f
(
kd
)

(5)

Based on the statements above, to build a lightweight
deep learning-based spectral reconstruction model with the
ability to be exposure invariant and, at the same time,
improve the spectral reconstruction accuracy, in this study, an
optimized deep learning-based spectral reconstruction method
is proposed by referencing the existing models. The ability
to be exposure invariant is first achieved for the spectral
reconstruction model through training data enhancement.
Then, the attention mechanism of spectral reconstruction is
further introduced into the model to improve the spectral
reconstruction accuracy. Details of the proposed optimized
method are described as follows.
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FIGURE 2

Schematic diagram of training the deep learning-based spectral reconstruction model based on data augmentation. The photos appearing in
these figures are chosen from the public multispectral dataset from the NTIRE challenges (https://icvl.cs.bgu.ac.il/projects/ntire2020/).

FIGURE 3

Schematic diagram of convolutional block attention module (CBAM) attention module.

TABLE 1 Comparison of the mean relative absolute error (MRAE) (%) of different methods under different tested exposure levels.

Exposure ×1 Exposure ×0.25 Exposure ×0.5 Exposure ×2 Exposure ×4 Ave. Std.

Yan 0.38 8.42 3.97 0.72 1.18 2.93 3.38

Galliani 0.38 6.55 2.02 0.81 1.09 2.17 2.52

Zhang 0.31 6.06 2.01 0.69 0.92 2.00 2.36

HSCNN+ 0.24 5.70 1.94 0.67 1.15 1.94 2.19

Ours 0.36 0.42 0.37 0.36 0.38 0.38 0.03

The bold values indicate the best results with the smallest spectral reconstruction errors.

TABLE 2 Comparison of the mean relative absolute error (MRAE) (%) of different methods under different tested exposure levels.

Exposure ×1 Exposure ×0.25 Exposure ×0.5 Exposure ×2 Exposure ×4 Ave. Std.

Yan 2.43 70.20 26.37 5.27 8.02 22.46 28.28

Galliani 2.49 58.74 17.84 5.79 7.92 18.56 23.18

Zhang 1.85 47.56 16.61 5.09 6.94 15.61 18.69

HSCNN+ 1.39 51.81 15.50 4.86 8.00 16.31 20.52

Ours 2.28 2.64 2.31 2.32 2.61 2.43 0.18

The bold values indicate the best results with the smallest spectral reconstruction errors.

The proposed method is based on the neural network
model developed by Zhang et al. (2020). In the training stage,
the input RGB image is first randomly multiplied by the
exposure adjustment coefficient k to simulate the exposure
change. Secondly, to keep the RMSI exposure invariant, the

RMSI is multiplied by the reciprocal of the exposure adjustment
coefficient in the loss function. Finally, various evaluation
metrics are calculated using the RMSI and the ground truth
multispectral image (GMSI). The training process is shown in
Figure 2.
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TABLE 3 Comparison of the spectral angle mapping (SAM) errors of different methods under different tested exposure levels.

Exposure ×1 Exposure ×0.25 Exposure ×0.5 Exposure ×2 Exposure ×4 Ave. Std.

Yan 1.47 24.98 15.71 3.66 5.68 10.30 9.85

Galliani 1.55 38.86 11.63 3.98 5.28 12.26 15.33

Zhang 1.29 26.52 10.98 3.63 4.99 9.48 10.17

HSCNN+ 0.99 15.88 8.62 3.56 5.81 6.97 5.72

Ours 1.56 1.83 1.60 1.57 1.76 1.66 0.12

The bold values indicate the best results with the smallest spectral reconstruction errors.

FIGURE 4

The root-mean-square error (RMSE) map of a reconstructed multispectral image (RMSI) of different methods under different tested
exposure levels. The photos appearing in these figures are chosen from the public multispectral dataset from the NTIRE challenges
(https://icvl.cs.bgu.ac.il/projects/ntire2020/).

In addition, the attention mechanism is introduced into the
original model to further improve the spectral reconstruction
accuracy. Currently, the commonly used attention modules
include channel attention, spatial attention, and non-local

networks (Hu et al., 2018; Wang et al., 2018; Woo et al., 2018). If
the feature maps of each layer in the deep learning network are
fused into a total feature map, the weights of the feature maps of
each dimension relative to the total feature map are all different.
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FIGURE 5

Two reconstructed spectral reflectances under different exposure levels using a different method. The photos appearing in these figures are
chosen from the public multispectral dataset from the NTIRE challenges (https://icvl.cs.bgu.ac.il/projects/ntire2020/).

The attention mechanism is to learn the weight of each feature
map relative to the total feature map and then generate a weight
mask and weight the original feature map to realize the effective
use of feature information.

For the existing attention modules, Hu et al. (2018)
proposed a compressed excitation network, which has won the
championship in the ImageNet competition image classification
track, and its structure mainly includes compression (Squeeze),
excitation (Excitation), and feature weighting (Scale) modules.
The author first uses the pooling operation to compress
the feature map space and then outputs a real number on
each channel to extract the channel dimension information.

Secondly, the activation function will generate weights
for each feature channel through the excitation module,
including the fully connected layer and the activation
function. Finally, the initial feature map is scaled using
the weight mask, and the re-calibration of the original feature
is completed on the feature channel. The spatial attention
is to compress the channel information of the feature map
and excite it in the spatial dimension. The mask of the
spatial domain is calculated by compressing the channel,
and the mask is multiplied by the original feature value.
The non-local network can directly calculate the relationship
between any two positions on the feature image, but the
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FIGURE 6

The illumination distribution of non-uniformity points to the light source.

TABLE 4 Comparison of the spectral reconstruction errors of different methods under the illumination of non-uniformity point light source.

Galliani YAN HSCNN+ Zhang Ours

RMSE 0.85 0.76 0.73 0.72 0.36

MRAE 6.21 5.63 5.41 5.42 2.34

SAM 4.21 3.89 3.90 3.86 1.59

The bold values indicate the best results with the smallest spectral reconstruction errors.

TABLE 5 Comparison of root-mean-square error (RMSE) (%) of different optimization methods under different tested exposure levels.

Exposure ×1 Exposure ×0.25 Exposure ×0.5 Exposure ×2 Exposure ×4 Ave. Std.

Zhang 0.31 6.06 2.01 0.69 0.92 2.00 2.36

Data augment 0.36 0.43 0.39 0.37 0.39 0.39 0.27

Ours 0.36 0.42 0.37 0.36 0.38 0.38 0.25

The bold values indicate the best results with the smallest spectral reconstruction errors.

TABLE 6 Comparison of mean relative absolute error (MRAE) (%) of different optimization methods under different tested exposure levels.

Exposure ×1 Exposure ×0.25 Exposure ×0.5 Exposure ×2 Exposure ×4 Ave. Std.

Zhang 1.85 47.56 16.61 5.09 6.94 15.61 18.69

Data augment 2.30 2.72 2.53 2.49 2.73 2.55 0.18

Ours 2.28 2.64 2.31 2.32 2.61 2.43 0.18

The bold values indicate the best results with the smallest spectral reconstruction errors.

network will generate more parameters in the spectral
reconstruction task.

The convolutional block attention module (CBAM) is a
tandem hybrid attention module (Woo et al., 2018). It learns

the attention of the two dimensions in turn according to the
order of the channel domain attention and the spatial domain
attention. CBAM can be used as a plug-and-play module
in neural networks and is one of the most commonly used
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attention mechanism algorithms in the field of computer vision
research. The major difference between the CBAM module and
the SE (Hu et al., 2018) module is that a parallel max pooling
layer is added, and the attention mechanism is learned for more
than two domains, such as the spatial domain and the channel
domain, which makes its feature extraction more sufficient. This
article adopts the CBAM module and adds a residual structure
to it. The CBAM attention module is shown in Figure 3.

The feature channel information is first compressed into a
real number through the average pooling and max pooling layers
for the channel attention module. Then the feature weights
are extracted through two fully connected layers, including the
activation function. Among the fully connected layers, the first
fully connected layer can reduce the feature dimension to 1/s of
the input, where s is the compression parameter. In this article,
the values of s are 4, 32, and 16, respectively. After the feature
map output is by the first fully connected layer, it is activated by
the Relu function and restored to the original dimension by the
second fully connected layer. The Sigmoid function processes
the feature information processed by the second fully connected
layer. At this stage, the weight calibration of the original
features is completed. Then, the spatial attention mechanism
module takes the output of channel attention as input and uses
average pooling and maximum pooling to integrate channel
feature information. After that, the two parts of the features are
combined using 1× 1 convolution for dimensionality reduction,
and finally, the required mask is acquired through the Sigmoid
activation function. The overall expression for CBAM attention
is expressed as Eqs 6, 7:

C = δ
(
MLP

(
AvgPool (x)+MaxPool (x)

))
(6)

S = δ
(
f
(
AvgPool (x) ;MaxPool (x)

))
, (7)

where x, δ, and MLP are the input, activation function, and
multilayer perceptron, respectively. C is the output channel
attention feature, and S is the output spatial attention feature.
Based on Eqs 6, 7, the weight of each channel can be adaptively
learned and used to weigh the corresponding channel features
to improve spectral reconstruction accuracy.

This is plotted in Figure 2 of the overall architecture of the
proposed deep learning-based spectral reconstruction model.
For an RGB image of any input, the feature information of
the shallow layer of the input image is first extracted through
16 layers of convolution and then through 7 layers of dense
connection. Each dense connection layer has 16 convolution
kernels. The dense structure further improves the reuse rate
of channel features compared with the residual structure. The
size of the feature map remains unchanged, and the number of
channels gradually increases with the deepening of the network,
which greatly reduces the parameters of the network. Dense
connections also mitigate the vanishing gradient problem to
some extent.

After shallow feature extraction and a densely connected
network, a feature information map with 128 layers is obtained,
which is input into the reconstruction layer that includes
three layers of convolution. The kernel size of each layer of
convolution in the network is set at 3, the activation function
is Relu, and the CBAM module is added to the shallow
feature extraction and reconstruction layer to further improve
the robustness of the network. Finally, we obtain the RMSI
corresponding to the input of the RGB image.

Experiment

Experiment settings

To test the effectiveness and superiority of the proposed
method, we carried out the verification experiment. The
proposed deep learning-based spectral reconstruction
framework is implemented in TensorFlow and is trained
using the platform of Intel Xeon and Tesla V100. The database
for the experiments is NTIRE2018 (Arad et al., 2018), which is
extended from the ICVL dataset (Arad and Ben-Shahar, 2016).
The ICVL dataset consists of 203 multispectral images captured
with the hyperspectral camera Specim PS Kappa DX4. The
spatial resolution of each image is 1392 × 1300 pixels, and the
spectral sampling range of each multispectral image is from 400
to 700 nm with a sampling interval of 10 nm.

In addition, in the NTIRE2018 challenge, 53 multispectral
images with the same spatial and spectral resolution were
added to further expand the dataset, so the experiment finally
used 256 multispectral images as training data in this per, and
their corresponding RGB images were acquired using the same
method as NTIRE2018 and NTIRE2020 (Arad et al., 2018, 2020).
During model training, the data blocks with a size of 40 × 40
pixels are cropped from the training data as input. The learning
rate was initially set to 0.0001 and exponentially decayed to a
rate of 0.99. The max epoch number was set to 50, and other
hyperparameters in the model Zhang et al. (2020) remained
unchanged.

Evaluation metrics

In the experiment, the spectral root-mean-square error
(RMSE), the mean relative absolute error (MRAE), and the
spectral angle mapping (SAM) error are used to evaluate
and compare the spectral reconstruction accuracy of different
models. The smaller the value of the evaluation metrics, the
closer the RMSI is to the ground truth and the better the
performance of the method. Calculation of the evaluation
metrics is shown in Equs 8–10, where n represents the spectral
bands, i represents a pixel in a multispectral image, IR represents
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TABLE 7 Comparison of spectral angle mapping (SAM) errors of different optimization methods under different tested exposure levels.

Exposure ×1 Exposure ×0.25 Exposure ×0.5 Exposure ×2 Exposure ×4 Ave. Std.

Zhang 1.29 26.52 10.98 3.63 4.99 9.48 10.17

Data augment 1.57 1.84 1.72 1.71 1.86 1.74 0.12

Ours 1.56 1.83 1.60 1.57 1.76 1.66 0.12

The bold values indicate the best results with the smallest spectral reconstruction errors.

FIGURE 7

The root-mean-square error (RMSE) map of the reconstructed multispectral image (RMSI) of the original and proposed under different tested
exposure levels. The photos appearing in these figures are chosen from the public multispectral dataset from the NTIRE challenges
(https://icvl.cs.bgu.ac.il/projects/ntire2020/).

the reconstructed multispectral images, and IG represents the
ground-truth multispectral image.

MRAE = 1
n

n∑
i = 1

(|I(i)R − I(i)G |/I
(i)
G ) (8)

RMSE =
√

1
n
∑n

i = 1

(
I(i)R − I(i)G

)2
(9)

SAM = 1
n cos−1

(
n∑

i = 1

(
I(i)R
)T

I(i)G∣∣∣∣∣∣I(i)R ∣∣∣∣∣∣2∣∣∣∣∣∣I(i)G ∣∣∣∣∣∣2
)

(10)

Results and discussion

Comparison of spectral reconstruction
methods

Using the experimental conditions mentioned above, we
tested the effect of the proposed deep learning-based spectral
reconstruction method compared with several current advanced

methods, such as Yan et al. (2018), Galliani et al. (2017), Zhang
et al. (2020), and HSCNN+(Shi et al., 2018). The experimental
results are summarized in Tables 1–3, respectively. Where the
expression of Exposure × k means the exposure adjustment
coefficient k adjusts the exposure level of the test image before
it is fed into the framework. The value of k is used in 1, 0.25, 0.5,
2, and 4 during the testing stage. Additionally, when calculating
the spectral reconstruction error, the RMSI is corrected to 1/k of
the output.

It can be seen from the experimental results summarized
in Tables 1–3 that although the method of HSCNN +
showed the smallest reconstruction error when the exposure
adjustment coefficient was equal to 1, where the corresponding
errors of RMSE, MRAE, and SAM are 0.24, 1.39, and 0.99%
when the exposure adjustment coefficient k is equal to 0.25,
0.5, 2, and 4. The proposed method is significantly better
than the HSCNN+ and other methods. The overall average
spectral reconstruction error of all the tested exposure levels
is 0.38, 2.43, and 1.66%, respectively, which is significantly
better than the existing advanced deep learning spectral
reconstruction algorithms.
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FIGURE 8

Comparison of the number of learning parameters of
different models.

In addition, according to the standard deviation of each
method under different test exposure levels, there is no
significant difference in the spectral reconstruction error of
the proposed method under different test exposure levels.
However, the standard deviation of the compared methods
under different tested exposure levels is quite large. On the
one hand, the experimental results in Tables 1–3 show that
the existing deep learning-based spectral reconstruction model
cannot expose invariant. On the other hand, it also proves
that the proposed method not only achieves the ability of
exposure invariance but also its superiority to the existing
methods in spectral reconstruction accuracy. Furthermore, the
difference between the proposed and compared methods is
insignificant when the test exposure level is equal to 1, which
generally proves the effectiveness and superiority of this article’s
proposed deep learning-based spectral reconstruction model.
Moreover, it should be noted that among the several compared
spectral reconstruction algorithms in this article, the accuracy
of the HSCNN+ model is generally better than all the other
methods.

The RMSE map of the RMSI and the GMSI of each method
are plotted in Figure 4. The yellower the image color, the greater
the spectral reconstruction error, as indicated by the color bar,
and the bluer the color, the smaller the error.

From the results in Figure 4, we can see that the
RMSE map of the RMSI and the ground truth by each
method are consistent with the objective data in Table 1.
When the exposure level of the tested image is equal to
1, the HSCNN+ method performs the best, and the error
values in the RMSE map are lower than those of the
proposed method. However, in terms of the other four tested
exposure levels, the proposed method shows the best spectral
reconstruction accuracy, and the four compared methods
show very significant spectral reconstruction errors. To further

compare the performance of the methods, two reconstructed
spectral reflectances under different testing exposure levels
using the different methods are plotted in Figure 5. It is
easy to find that the spectral reflectance curves reconstructed
using the proposed method are closer to the ground truth
under different testing exposure levels, while the compared
methods only performed well when the exposure level
was 1 and performed badly under other testing exposure
levels.

In addition, the verification of the proposed method in
reconstructing the non-uniformity illuminated images is also
tested. As shown in Figure 6, the non-uniformity point light
source is simulated to illuminate an image. Table 4 shows that
the image illuminated by a non-uniformity point light source
is also well reconstructed. The results in Figures 5, 6 once
again prove the effectiveness and superiority of the proposed
method.

Analysis of the proposed method

The spectral reconstruction errors of the original method
developed by Zhang et al. (2020), the optimized method with
only the data enhancement, and the proposed method with
data enhancement and attention mechanism, are summarized
in Tables 5–7. It is easy to infer from Tables 5–7 that
when the tested exposure level is equal to 1, the original
method shows the best spectral reconstruction results; however,
when the tested exposure level changes to other values, the
spectral reconstruction error increases significantly when the
data augmentation and attention mechanisms are introduced
into the proposed method. Although the spectral reconstruction
error increases slightly when the tested exposure level is equal to
1, the new method generally has achieved the ability of exposure
invariant, as shown in Figure 1A and Eq. 5.

In addition, although the improvement in the spectral
reconstruction accuracy is not so significant when introducing
the attention mechanism into the proposed network, the
spectral reconstruction accuracy of the proposed method
does improve at some specific tested exposure levels. For
example, at the tested exposure level of 0.5, the error
of the evaluation metric MRAE is reduced by about 8%
compared with the only use of data enhancement in
the proposed method. At the tested exposure level of 2,
the error of the evaluation metric MRAE is reduced by
about 6% compared with the pure data enhancement.
Moreover, at the tested exposure level of 4, the error of
the evaluation metric SAM is reduced by about 5% compared
with the pure data enhancement in the proposed method.
The proposed method may be further improved based on
data enhancement.

Figure 7 shows the RMSE map of different methods of
an original method developed by Zhang et al. (2020), the
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optimized method with only the data enhancement, and the
proposed method with both data enhancement and an attention
mechanism. It can be seen from the results in Figure 7 that
the introduction of a data enhancement mechanism into the
original model can make the method achieve the ability of
exposure invariant for spectral reconstruction. And when the
attention mechanism is introduced into the proposed method,
the spectral reconstruction accuracy can be further improved,
but the overall improvement is not obvious, and further
optimization measures to improve the spectral reconstruction
accuracy can be considered in future studies.

At last, the number of learning parameters for each model
in this article is counted and plotted in Figure 8. It is easy to
infer from Figure 8 that the number of learning parameters of
the original model proposed by Zhang et al. (2020), as well as
the optimized model in this article, is very small compared with
other models, which means that the proposed method is easy to
distribute for practice using.

Conclusion

Multispectral image acquisition is the prerequisite for its
applications. In view of the problems of the existing deep
learning-based spectral reconstruction methods, such as a large
number of parameters and the exposure invariant. An optimized
lightweight neural network for spectral reconstruction is
proposed in this article, and the data augmentation and
attention mechanisms are introduced into the original method
to make it more efficient and exposure invariant. The
optimization of the proposed method makes it more robust
in practical applications in an open environment with variable
light sources and non-uniformity illumination. The shape
of the reconstructed spectral reflectance curve of the target
can be well preserved using the proposed method under
different exposure levels, which provides the foundation
for high-precision multispectral image acquisition in an
open environment. However, improving the module attention
mechanism proposed in the proposed method does not
significantly improve the spectral reconstruction accuracy.
More research will be carried out to further improve the
method in the future.
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