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We use the mobile phone camera as a new spectral imaging device to

obtain raw responses of samples for spectral estimation and propose an

improved sequential adaptive weighted spectral estimation method. First,

we verify the linearity of the raw response of the cell phone camera and

investigate its feasibility for spectral estimation experiments. Then, we propose

a sequential adaptive spectral estimation method based on the CIE1976

L*a*b* (CIELAB) uniform color space color perception feature. The first

stage of the method is to weight the training samples and perform the first

spectral reflectance estimation by considering the Lab color space color

perception features differences between samples, and the second stage is

to adaptively select the locally optimal training samples and weight them by

the first estimated root mean square error (RMSE), and perform the second

spectral reconstruction. The novelty of the method is to weight the samples

by using the sample in CIELAB uniform color space perception features to

more accurately characterize the color difference. By comparing with several

existing methods, the results show that the method has the best performance

in both spectral error and chromaticity error. Finally, we apply this weighting

strategy based on the CIELAB color space color perception feature to the

existing method, and the spectral estimation performance is greatly improved

compared with that before the application, which proves the effectiveness of

this weighting method.
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spectral estimation, spectral reflectance, mobile phone camera, color perception
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Introduction

The surface spectral reflectance is known as the fingerprint
of object colors (Wang et al., 2020) and can characterize
colors more accurately than RGB trichromatic information,
enabling the replication and reproduction of color information.
Therefore, obtaining accurate spectral information through
spectral imaging is a hot topic in color science research.
This makes spectral imaging technology widely used in many
fields, such as heritage conservation, remote sensing mapping,
skin disease diagnosis, printing color management, food safety
monitoring, material non-destructive testing, etc. (Del Pozo
et al., 2017; Liang and Wan, 2017; Rateni et al., 2017; Huang
et al., 2021; Liang et al., 2021; Tominaga et al., 2022).

In the past decades, a large number of color scientists and
research institutions have constructed a large number of spectral
imaging systems that consist of monochromatic or multicolor
cameras, combined with filter sets, and multiple light sources
(Liang and Wan, 2017). However, due to the low imaging
efficiency, low spatial resolution, and high system construction
cost of such multichannel spectral imaging systems, color
scientist Murakami started to study the method of estimating
spectral reflectance from single RGB images of digital cameras
in 2002 (Murakami et al., 2002).

The spectral reflectance estimation method based on digital
camera responses is to solve the ill-posed inverse problem
mathematically and estimate the high-dimensional spectral
reflectance from the low-dimensional camera responses (Xiao
et al., 2019). Compared with multichannel spectral imaging
methods, this method has the advantages of fast imaging speed,
high spatial resolution, avoidance of geometric distortion, and
good economy (Liang et al., 2019) which makes professional
SLR digital cameras gradually become the new spectral
imaging devices.

Since Kyocera released the first camera-equipped mobile
phone in 1999 (Hussain and Bowden, 2021), camera technology
on mobile phones has developed rapidly. Today, the mainstream
high-end cell phone camera has a resolution of at least 64
megapixels. In terms of hardware, super large-area CMOS,
Optical Image Stabilizer, large aperture, Phase Auto Focus, 4-
in-1 Super Pixel, and many other new technologies have been
popularized. The software adds features like AI portrait, super
night photo, time-lapse mode, live photo, slow motion video
in 120 fps, etc. Hardware and software upgrades have greatly
improved the imaging capability of cameras on the cell phone,
and its gap with professional digital cameras is gradually being
smoothed out, making mobile phones gradually become a daily
shooting tool for most people, and also become the imaging
instrument for many scientific studies, used to replace the
heavy, expensive professional digital cameras (Kim et al., 2019;
Hussain and Bowden, 2021; Stuart et al., 2021; Liang et al., 2022;
Tominaga et al., 2022).

The spectral estimation methods based on a single RGB
image mainly include the Wiener method, Infinite-dimensional
model method, pseudo-inverse method, R matrix method,
principal component analysis (PCA) method, kernel method,
and so on. Since the camera sensitivity required by the Wiener
method and the infinite-dimensional model is difficult to obtain
directly (Tominaga et al., 2021), and the indirect method of
estimating sensitivity increases the error, these two methods
are less applied. In contrast, methods such as pseudo-inverse
estimation, R-matrix, and PCA have the advantages of no
prior data, simple processes, and small computational, but
the spectral estimation accuracy of these methods is relatively
low. To improve the estimation accuracy, a large number
of optimization methods have been proposed. Connah and
Hardeberg (2005) introduced the polynomial model to three-
channel and multi-channel spectral imaging systems. Heikkinen
et al. (2007) proposed an application of the regularization
framework to estimate spectral reflectance from digital camera
responses. Shen et al. (2010) proposed a partial least squares-
based spectral estimation method that improves on the least
square regression method. Xiao et al. (2016) combined the
polynomial model with the principal component analysis (PCA)
method in eigenvector space and applied it to skin color
detection (Xiao et al., 2016). These improved methods have
achieved some improvement in estimation accuracy, but they
are all based on global training, which poses a limitation on
the performance of the method. Subsequent studies in which
training samples were optimally selected and weighted emerged.
Cao proposed a spectral reflectance estimation method for
local linear estimation with sample selection optimization
(Cao et al., 2017). Zhang et al. (2017) proposed a spectral
estimation method based on local sample selection based on
CIEXYZ color space color difference under multiple light
sources. Shen proposed a scanner-based local training sample
weighted spectral estimation method (Shen and Xin, 2006).
Liang and Wan (2017) proposed a local inverse distance
weighted linear regression method for spectral estimation from
camera response. Amiri and Amirshahi (2014) also studied the
weighted non-linear regression models in the form of global
weighting. These methods weight the samples by calculating
the weight matrix based on the Euclidean distance between
the training samples and the test samples in the color space,
and although they have better spectral estimation accuracy
than previous methods, they still have certain shortcomings
because the RGB color space is device-dependent and not a
uniform color space, which has a large difference from the color
difference perceived by the human eye, and the above methods
perform sample selection and weighting by color difference. The
method ignores the spectral differences between samples. Wang
proposed a two-time sequence weighting method considering
the chromaticity and spectral error at the same time, and
adaptively optimized the sample selection, which achieved good
results (Wang et al., 2020).
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Through the development of spectral estimation methods,
we can conclude that the optimal selection of samples is
extremely important, and how the samples are optimally
selected and weighted largely determines the estimation
accuracy of the estimation method. The more similar the
training and testing samples are in the color space, the better
the estimation accuracy, so samples with similar colors should
be selected for training as much as possible (Liang and Wan,
2017; Liang et al., 2022). At the same time, the chromaticity
difference between the training and test samples is measured
precisely, and different weights are assigned to obtain better
estimation accuracy.

Meanwhile, we note that the existing methods using
Euclidean distance or chromaticity vector angle in color space
to measure the difference between training and testing samples
are still not accurate. If multiple training samples have the same
Euclidean distance to one test sample, but each training sample
does not have the same color perception features as the target
sample, the existing methods still assign the same weight to
these training samples, which will produce an error and the
phenomenon of Metamerism. This means that we can measure
the color differences between samples more accurately if we take
the differences in color perception features such as lightness,
hue, and chroma into account.

In this paper, we explore new spectral imaging devices
that use cell phone camera raw responses as a data source.
We propose an improved sequential adaptive weighted spectral
estimation method based on the color perception features of
CILAB uniform color space. The novelty of the study is mainly
in two aspects: (1) Using a cell phone camera to replace a
professional digital camera as an imaging device, the linearity
of the cell phone camera raw responses and its application to
spectral estimation are verified to be feasible. (2) Using three
perceptual features of CIE1976 L*a*b* (CIELAB) uniform color
space for local sample selection and calculation of the weighting
matrix to achieve a more accurate measure of color differences
between samples. By comparing the proposed method with
the existing method in a 10 times 10-fold cross-validation, all
using raw responses output from the same cell phone, the
experimental results show that the proposed method has the best
performance in two aspects of spectral error and chromaticity
error in four metrics. Finally, we apply the color perception
features weighting strategy of the proposed method to the
existing method, and the accuracy is significantly improved
compared with the original method.

Imaging model

Although the internal space of cell phones is small and
their camera components are different from professional digital
cameras, the imaging principle is still the same as that of digital
cameras. The light emitted from the light source, after reflecting

from the surface of the object, passes through the camera lens
set and is converted by CMOS for optoelectric conversion to
generate raw response signals, after processing by ISP chip, the
mobile phone camera output the photo. So the three-channel
response yi of the camera is determined by the spectral power
distribution l (λ) of the light source, the reflectance r (λ) of
the object surface, the sensitivity function m (λ) of the cell
phone camera system and the system noise ni together, and we
can write the imaging model of the cell phone camera as the
following integral calculation process of Equation (1).

yi = ∫ϕ l (λ) r (λ)m (λ) dλ+ ni (1)

Where the subscript i denotes the three channels of the camera,
ϕ denotes the wavelength range of the visible spectrum. If
we assume that the noise ni = 0, for mathematical simplicity,
Equation 1 can be written as the following matrix equation, as
in Equation (2).

y = Mr (2)

Where y denotes the camera response vector, M denotes the
spectral sensitivity matrix of the whole system including the
spectral power distribution of the light source, the sensitivity
function of the cell phone camera, and r is the surface spectral
reflectance of the target object.

Proposed method

Based on the imaging model of the camera, we can divide
the spectral estimation method into 2 steps: the first step is to
calculate the spectral conversion matrix by training samples.
The training sample spectral reflectance r̃ is obtained by
measurement, and the camera three-channel response value y
is extracted from the raw file, and the conversion matrix M is
calculated by the pseudo-inverse method, as in Equation (3).

r̃ = My (3)

The second step is to calculate the spectral reflectance of
the target sample using the conversion matrix M. The high-
dimensional spectral reflectance R of the target sample is
estimated from the known three-channel response Y of the
target sample, as in Equation (4).

R = MY (4)

The methods for calculating the conversion matrix M,
as described previously, mainly include: the pseudo-inverse
method, PCA, and other methods, and the calculation in this
paper use the pseudo-inverse method, as shown in Equation (5).

M = (RYT)(YYT)−1 (5)

Where the superscript T denotes matrix transpose and the
superscript -1 denotes matrix inverse operation.
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Extraction and verification of cell
phone camera raw response

JPG and HEIF format photos are processed and compressed
by the cell phone ISP processor. To ensure that raw response can
be obtained from the cell phone camera, we set the cell phone to
output the raw format file and then compared them with the
JPG format pictures of the same scene. Under the same light
source conditions, the Xrite ColorChecker CLASSIC color chart
(hereafter referred to as CC chart) was photographed using five
cell phones, and the RGB three channel values of the grayscale in
the fourth row of the CC chart were extracted separately to check
the raw response linearity of different models and different
brands of cell phone cameras (Liang et al., 2019) the results
show that the cell phone camera raw response has good linearity.
The experimental steps and results are detailed in “Imaging
conditions and raw response extraction” and “Verification of
cell phone camera raw response,” respectively.

Further, to verify the effect of the difference between the
raw response of the cell phone camera and the professional
digital camera on the spectral estimation, the above five cell
phones were photographed with the Xrite ColorChecker SG
chart (hereafter referred to as CCSG color chart) under the same
light source conditions as described above, and 140 color blocks
of the color charts were taken as the sample set, while the raw
response output from a Nikon D3x professional digital camera
was also used as a comparison benchmark. All six devices
were used for spectral estimation experiments in both OLS
and modified ALWLR methods, and the detailed experimental
procedures and results are described in “Imaging conditions and
raw response extraction” and “Verification of cell phone camera
raw response,” respectively.

The proposed method

The proposed method is based on the classical pseudo-
inverse method for improvement. It uses two sequential
adaptive sample weighting and optimal selection to improve
performance. Based on the extraction of raw response data from
cell phone cameras, the main process of the method is divided
into the following five steps: The first step is to perform the color
space conversion of the three-channel RGB values of the samples
and the calculation of the color perception features differences
in CIELAB uniform color space. The second step is to construct
a color difference weight matrix Wc using the color perception
feature differences and weighting the training samples. The
third step is to calculate the transformation matrix Qc using
the weighted test sample raw response and spectral data, and
then performing the first spectral estimation calculation using
Qc. The fourth step is to calculate the root mean square error
(RMSE) of the results of the first spectral estimation, to construct
the spectral difference weighting matrix Wr , and to select and

weight the training samples for the second time. The fifth step
uses the Wr matrix to weight the training samples and calculate
the conversion matrix Qr , the second spectral estimation of
the test samples is performed to obtain the spectral reflectance
results. Figure 1 shows the flow chart of the method.

Color space conversion and color perception
feature differences calculation

The RGB three-channel values of each sample are obtained
from the cell phone camera raw response by the method
described in “Extraction and verification of cell phone camera
raw response,” and at this time the response RGB color space
is related to the imaging device, and we choose the CIELAB
uniform color space as the color space for calculating the color
difference. First, the RGB stimulus values of the training samples
are converted to CIELAB color space, and the color space
conversion matrix T is obtained by the least square method, and
T is calculated as Equation (6).

T = (Ltrain D
T
train) (Dtrain D

T
train)

−1 (6)

Dtrain denotes the response of the training sample; Ltrain
denotes the CIELAB value matrix of the training sample,
and the superscript ’T’ denotes the matrix transpose; the
superscript ’–1’ denotes the pseudo-inverse operations. Then we
use this transformation matrix T to transform the camera RAW
responses of the test samples into the CIELAB color space as in
Equation (7).

Ltest = TDtest (7)

Dtest denotes the raw response matrix of the target sample
and Ltest denotes the color matrix of the test sample transformed
to CIELAB color space.

The metrics of sample color differences in existing studies
are mainly divided into 2 categories: one category is to use the
color difference in color space, which is the Euclidean distance to
measure the color difference between samples (Liang and Wan,
2017), and this method selects training samples with a similar
color to the test samples by the color difference in a certain
color space while giving different weights to different training
samples to achieve local sample selection and weighting, which
has the advantage of computational simplicity. Another category
is to use chromaticity vector angle to calculate the angular
difference between sample color vectors in some color space
for sample selection and weighting (Wang et al., 2020). The
advantage of this method is that a more uniform CIEXYZ
uniform color space is used, and the color differences are more
consistent with human eye perception, but the above two types
of methods still have the problem that the measure of sample
color differences is not accurate enough because this will enable
samples with the same or similar Euclidean distance to obtain
almost the same weight, while the actual situation is that there
may be large differences in color perception features of the
samples, which is the reason for the Metamerism phenomenon
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FIGURE 1

Flowchart of the proposed method.

in this type of methods; and the chromaticity vector angle
apparently has the same problem of being unable to characterize
and measure the color perception features, which is still not
accurate enough. Therefore, this study proposes to use three
color perception feature measures of CIELAB uniform color
space for sample color difference. In the CIELAB uniform color
space, we assume that the color values of the training and
test samples are (L∗trian, a

∗
trian, b

∗
trian)and (L∗test , , a∗test , b

∗

test), then
the color difference 1E∗ab between them can be calculated by
Euclidean distance in the color space, as in Equation (8) below.

1E∗ab =
√

(L∗trian − L∗test)2 + (a∗trian − a∗test)2 + (b∗trian − b∗test)2

(8)
Also, the color difference 1E∗ab can be expressed in terms

of the differences in the color perception feature measures of
the samples: lightness difference 1L∗, hue difference 1H∗, and
chroma difference 1C∗, as in Equation (9).

1E∗ab =
√

(1L∗)2 + (1H∗ab)
2 + (1C∗ab)

2 (9)

The color perception features 1L∗, 1H∗ab, and 1C∗ab are
calculated as Equations (10), (11), and (12).

1L∗ = L∗train − L∗test (10)

1H∗ab =
√

(1E∗ab)
2 − (1L∗)2

− (1C∗)2 (11)

1C∗ab =
∣∣∣∣√(a∗train)2 + (b∗train)2 −

√
(a∗test)2 + (b∗test)2

∣∣∣∣ (12)

Calculating the color perception feature
weighting matrix

We use the 1L∗, 1H∗ab, and 1C∗ab as our parameters for
the first weighting matrix of the training samples, which will
make the difference of any color perceptual feature directly affect
the value of the sample weight, and these differences may not
be expressed in the color difference of the Euclidean distance
so that the color difference can be measured more precisely.
The smaller the value means the smaller the difference in visual
perception, we use the inverse of the sum of 1L∗, 1H∗ab, and
1C∗ab to calculate the color perceptual feature weighting matrix
WC, and the weight of the i th training sample Wi is calculated
as in Equation (13).

Wi =
1∣∣1L∗i

∣∣+ ∣∣1H∗i
∣∣+ ∣∣1C∗i

∣∣+ α
, i ∈ {1, 2, · · · , k} (13)

To make the denominator non-zero, we introduce a very
small value α. In this study, α = 0.0001 is taken. k is the total
number of training samples. Then the weights of all training
samples are arranged in descending order and converted into a
diagonal matrix to form the color perception feature weighting
matrix WC, as shown in Equation (14).

WC =


W1 0 · · · 0
0
...

W2 0

0
. . .

...

0
0 · · · 0 Wi


k∗k

(14)

The first spectral estimation
Before the first spectral estimation, we performed a

polynomial expansion of the cell phone camera raw response,
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and in “mobile phone raw response spectral estimation
performance validation” we tested the effect of the number
of polynomial terms on the estimation accuracy, and finally
chose 18 terms to avoid the overfitting problem caused by
too many terms. The expanded form of 18 terms is shown in
Equation (15).

y =
[
1 r g b rg rb gb r2 g2 b2 r2g r2b g2b g2r b2g gb2 r3 g3]

(15)
After polynomial expansion, the weighted spectral

transition matrix is calculated as Equation 16 according to
Equation (16).

QC = (R̃trainỸT
train,exp)(Ỹtrain,expỸT

train,exp)
−1 (16)

Where R̃train =WCRtrain,Ỹtrain,exp =WCYtrain, R̃train denotes
the weighted training sample spectral reflectance matrix, and
ỸT
train,exp denotes the weighted polynomial expansion matrix of

the training sample. Finally, the transformation matrix QC is
used to estimate the spectral reflectance of the test samples as
in Equation (17).

r̂test = QCytest,exp (17)

where r̂test denotes the estimated spectral reflectance of the test
sample, and ytest,exp denotes the polynomially expanded raw
response matrix of the test sample.

Sample weighting and optimal selection based
on root mean square error

After the spectral reflectance results are obtained by the
previous step, the RMSE of spectral reflectance is calculated for
the second weighting and selection of the training samples, and
the RMSE of the spectral is calculated as Equation (18).

RMSEj =
√

1
n
(
r̂test − rj

)T (r̂test − rj
)
, j ∈ {1, 2, · · · , k} (18)

n denotes the sampling resolution of visible light wavelength
range, the range in this study is 400–700 nm, and the spectral
sampling resolution is 10 nm, so n is 31 in this study. The
training samples are arranged in ascending order according
to the RMSE of the samples, the smaller the RMSE means
the smaller the spectral difference between training samples
and testing samples, in this step we use the inverse of
the RMSE to construct the weight matrix, the weight Wj

of each training sample is calculated as in Equation (19).

Wj =
1

RMSEj + β
(19)

β is similar to α in Equation (12) and is a very small constant that
makes the denominator non-zero, taking β = 0.0001. Then the
first L local samples are selected by sample sorting according to
Wj and the second diagonal weight matrix WR is constructed
in the same way as the Equation (13) in Equation (20).

WR =


W1 0 · · · 0
0
...

W2 0

0
. . .

...

0
0 · · · 0 Wj


j∗j

(20)

The second spectral estimation
The response values of the training and testing samples

are weighted in the same way using WR to update to obtain
Ytrain and Rtrain, and then the new transformation matrix QR is
calculated using Equation (16). Finally, the spectral reflectance
of the testing sample r̂

′

test is calculated as in Equation (21).

r̂
′

test = QRytest,exp (21)

Experiment

To verify the usability of cell phone camera raw response.
First, linear verification experiments and spectral estimation
performance experiments of cell phone camera raw response
were conducted. Then, the optimization method of sequence
adaptive weighted spectral estimation based on color perception
features proposed in this paper has experimented with
the existing methods. Finally, the strategy based on color
perception features weighting is applied and compared with
the existing methods. The raw responses of the cell phone
camera for these experiments are obtained in the same
experimental environment.

Imaging conditions and raw response
extraction

To avoid interference of imaging by cluttered light, the
experiments were conducted in a completely shaded laboratory
with neutral gray walls. The experimental lighting source was a
fluorescent lamp set with a color temperature of about 6000 K.
The color chart was fixed on a vertical wall by magnets, and the
height of the color chart was adjusted so that the fluorescent
lamp irradiated to chart at an angle of 45 degrees, and the cell
phone was set on a tripod and fixed by a holder to avoid shaking.
The horizontal height of the cell phone was kept the same
as the center point of the color card. The cell phone imaging
scene is shown in Figure 2, and some of the pictures of the
color chart taken by five cell phones and one DSLR camera are
shown in Figure 3. These photos were taken in different formats
(including DNG raw files and JPG post-processed photos).

The experiments were conducted using the Xrite
ColorChecker CLASSIC color chart (hereafter referred to
as CC chart), which contains six grayscale gradient color blocks
in the last row. The distribution of the color blocks in the
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FIGURE 2

Mobile phone imaging scene.

CIELAB color space for the CC and SG color charts is depicted
in Figure 4.

The shooting phones contain three Android phones and
two Apple phones, while the Nikon D3x camera is used for
comparison. The main information and CMOS parameters of
the 6 shooting devices are shown in Table 1. Most of the phones
have built-in camera apps for taking photos, and for phones
where the camera app does not support the raw format output
function, Lightroom software was used to take photos to obtain
the raw response in DNG format 1111, and the raw file of the
Nikon D3x camera was in NEF format F22.

The data content of the raw file is mainly the four-channel
response of the CMOS Bayer filter array. We wrote a raw file
batch processing program based on the open source software
dcraw in MATLAB which contains three main steps: linear
normalization of the response value, white balance recovery and
demosaicing, and outputs a linear uncompressed three-channel
TIFF image after processing. Subsequently, the specified area
is intercepted to obtain the RGB three-channel average value.
Through the above steps, we convert the camera raw response
to three-channel RGB value and complete the extraction of raw
response color information, and the processing of raw data in
the above are linear transformations (Rob, 2014).

1 DNG format is a publicly available archival format for raw files. Details
in: https://helpx.adobe.com/camera-raw/digital-negative.html.

2 NEF format is the RAW format of Nikon DSLR Camera. Details in:
https://imaging.nikon.com/lineup/dslr/basics/26/01.htm.

Since the main camera of the phone is usually the best
CMOS on the phone with better imaging capability and better
optical components, the shots are taken using the main camera
of the phone. At the same time, the focal length and aperture
of cell phone CMOS are usually fixed, and the aperture size
of each cell phone main camera is not the same, so we
take a fixed ISO, adjust the shutter time of each device to
get the right camera response (D3x uses separate shooting
parameters), and try to make the maximum value of the three
channels of the white color block between 230 and 245 for
each photo to avoid overexposure or underexposure to ensure
a good dynamic range.

The spectral reflectance of each color block was measured
by Xrite CI64 spectrophotometer and Color iControl software.
The spectral reflectance was taken in the range of 400–700 nm
with a wavelength interval of 10 nm and a measurement
aperture of 6 mm.

Evaluation metrics

The spectral estimation methods were all run using a ten
times ten-fold cross-validation. The method randomly aliquots
the samples into 10 groups, with a training sample of 9 groups
and a test sample of 1 group, and cycles them 10 times to
ensure the stability of the estimation results. The evaluation of
the accuracy of the spectral estimation method includes four
indicators: (1) the root-mean-square error of the spectrum is
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FIGURE 3

JPG pictures of the Xrite CC chart and SG chart were taken by cell phones, photos of the CC chart are arranged on the top, SG color chart is
arranged on the bottom: (A) Huawei Mate10, (B) Meizu 17Pro, (C) Xiaomi12S Ultra, (D) iPhone 8, (E) iPhone 12, and (F) Nikon D3x.

calculated as the average difference in the values of the spectral
curves at each wavelength, and the calculation formula is the
same as the Equation (18) in 3.2.4, the value range is 0–1, the
smaller the value indicates the smaller the error; (2) The spectral
goodness-of-fit coefficient measures the similarity of the shape
of the spectral curves of the two samples by the angular cosine
difference of their spectral curves, and the result ranges from 0
to 1. The closer to 1 means that the estimated spectral curve fits
the actual spectral curve better, and the calculation formula is as
in Equation (21).

GFC =
r̂Tr

||r̂T r̂|| ||rTr||
(22)

(3) The CIELAB color difference is 1E∗ab for calculating the
Euclidean distance in CIELAB color space, the calculation
formula is the same as Equation 8; (4) The calculation of

CIEDE2000 color difference is 1E00 and similar to that of LAB
color difference, but some improvements based on subjective
visual perception experiments are carried out to establish
a linear relationship between the changes of lightness, hue,
saturation, and visual perception, which is considered to be the
best uniform color difference model in line with subjective visual
perception, and its calculation formula is as Equation (22).

1E00 =

√
(
1L′

kLSL
)2 + (

1C′

kCSC
)2 + (

1H′

kHSH
)2 + RT

1C′

kCSC
1H′

kHSH
(23)

kL, kC, kH are environment-related correction factors, where
kL = kC = kH = 1. The color perception differences 1L

′

,1H
′

and 1C
′

are calculated in the same way as Equations (10), (11),
and (12). SL, SC, and SH are the luminance, chromaticity, and
hue weighting factors, and RT is the rotation factor used to

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.1031505
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1031505 October 13, 2022 Time: 17:44 # 9

Liu et al. 10.3389/fnins.2022.1031505

FIGURE 4

Distribution of the Xrite ColorChecker chart samples in CIELAB color space: (A) The CC chart. (B) The SG chart.

correct for chromaticity differences to match visual perception
(Yang et al., 2022). The smaller values of 1E∗ab and 1E00 indicate
the smaller color perception differences of the samples.

Results and discussion

First, we compared and analyzed the linearity of the
mobile phone camera raw response. Then, spectral estimation
experiments were conducted using raw responses from a variety
of cell phone cameras, and professional DSLR cameras were
used as comparisons to analyze whether they could achieve
about the same estimation accuracy. Most importantly, the
proposed method is compared with seven existing methods
in experiments using the same sample data, and the error
results and distributions are compared and analyzed in detail
to demonstrate the superiority of the method. Finally, a color
perception features weighting strategy is applied to the existing
methods to demonstrate its positive effects.

Verification of cell phone camera raw
response

Linear test of raw response
For full validation, several brands of cell phones with

different operating systems and price ranges were used for
comparison, and the list of devices is presented in Table 1. The
Xrite ColorChecker CLASSIC color charts were photographed
under the same light source conditions, and the grayscale
response color blocks of CC charts were checked for their
linearity using the raw response extraction method described

in “Imaging conditions and raw response extraction,” as shown
in Figure 5.

The horizontal coordinate in Figure 5 is the luminance
factor of the XYZ color space of the grayscale color block of the
CC color card, and the vertical coordinate is the three-channel
value of the raw response. Figure 5 shows that the response
linearity of the three Android phones is the same as that of the
Nikon D3x. The response of the iPhone 8 and iPhone 12 also has
good linearity, but the slope of linearity is a little smaller than
that of the other four models. Overall, the raw response linearity
of all five experimental phones is relatively good.

Further, we added JPEG photos from six devices for
comparison, we present the R-squared values of the linear
fitting of each channel of each device in Table 2, and the data
show that the camera ISP post-processing significantly reduces
the three-channel linearity of the JPG pictures. and it can be
seen that the R-squared values of TIFF images of all devices
are above 99%, while the R-squared values of JPG images are
significantly lower. The above results show that the cell phone
camera raw response itself has good linear performance, but
after processing by the built-in chip and algorithm of the cell
phone, the linearity of the three-channel response values of
JPG images changes significantly and is difficult to simulate or
characterize accurately, so the data source using raw response
for spectral estimation is a better choice than images in formats
such as jpg.

Mobile phone raw response spectral estimation
performance validation

Due to the extremely small internal space of cell phones, the
CMOS sensor size is also several times smaller than that of DSLR
cameras, and there is a huge difference between the imaging
capability of cell phones and professional digital cameras, the
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TABLE 1 Six imaging devices information.

Mobile phone Release date CMOS CMOS size Aperture Resolution CFA pattern Quad-bayer
or not

Huawei Mate10 October 16, 2017 SONY IMX286 1/2.9′′ F1.6 12 MP rggb No

Meizu 17 Pro May 8, 2020 SONY IMX686 1/1.73′′ F1.8 64 MP rggb Yes

Xiaomi 12S Ultra July 8, 2022 SONY IMX989 1′′ F1.9 50 MP rggb Yes

Apple iPhone 8 September. 12,
2017

Unknown Unknown F1.8 12 MP rggb No

Apple iPhone 12 October 23, 2020 Unknown Unknown F1.6 12 MP rggb No

Nikon D3x December. 1,
2008

Unknown Full frame
(35.9*24 mm)

Depends on lens 24 MP rggb No

FIGURE 5

Linearity of the three channels of raw response for six imaging devices: (A) R channel, (B) G channel, and (C) B channel.

impact of these factors on the spectral estimation accuracy has
not been studied and verified. To verify the difference between
the two raw responses, we still use the above six imaging devices
and the same way to shoot SG color charts under the same
illumination environment, with their 140 color blocks as the
sample set, and use both the classical OLS method and the
improved ALWLR method. To verify the relationship between
the imaging capability and the spectral estimation accuracy
of different cell phones, the Nikon D3x was also used as
a comparison benchmark to evaluate the spectral estimation
performance of each cell phone. The above experiments still use

TABLE 2 R-squared values for each channel of TIFF and JPG for six
imaging devices.

R channel G channel B channel

Device name TIFF JPG TIFF JPG TIFF JPG

Huawei mate10 0.998 0.776 0.998 0.766 0.996 0.754

Meizu 17pro 0.998 0.853 0.998 0.841 0.997 0.834

Xiaomi 12s ultra 0.999 0.877 0.998 0.872 0.997 0.870

iPhone 8 0.995 0.950 0.996 0.942 0.997 0.936

iPhone 12 0.997 0.843 0.996 0.822 0.993 0.815

Nikon d3x 0.999 0.850 0.999 0.843 0.998 0.838

ten times ten-fold cross-validated to improve the stability of the
results, and the experimental results are shown in Table 3.

For the OLS method, the accuracy of all indicators of the
three Android phones is better than the D3x camera, with the
Xiaomi 12s ultra having a relatively better performance in the 3
areas of RMSE, 1E∗ab. and 1E00 errors; While the errors for two
iPhones only had GFC errors close to the other four devices, the
other three errors are all more than two times larger than the
Android phone errors. For the ALWLR method, the situation
changed because the samples were weighted and selected by
color difference, which led to a substantial improvement in the
estimation accuracy of all six devices, with a much smaller range
of error between devices. In terms of RMSE error, Nikon D3x
obtained the best overall estimation accuracy, with only the
maximum value of RMSE higher than Huawei mate10, and the
two iPhones are also very close to each other in the two items
of mean and median RMSE. In terms of GFC indicators, the
average value and the p80 error of Huawei mate10 were better
than D3x, and the performance of the three Android phones
was comparable, with Huawei mate10 being the best and slightly
better than D3x, Meizu 17pro, and Xiaomi 12s ultra having
the average value and the p80 GFC better than D3x, so three
Android phones were better than Nikon D3x in terms of GFC
mean and p80 error. The GFC errors of the 2 Apple phones were
also at the same level. The chromaticity error of 1E∗ab and 1E00
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TABLE 3 Performance comparison of raw responses in OLS method and ALWLR method for six devices: (A) RMSE, (B) GFC, (C) 1E∗
ab, and (D) 1 E00.

(A)

Device OLS ALWLR

Mean Max Med p80 Mean Max Med p80

Huawei mate10 4.804 12.573 3.892 5.277 2.784 7.908 2.302 3.940
Meizu 17pro 4.790 11.231 4.028 5.584 3.163 9.436 2.390 4.513
Xiaomi 12s ultra 4.636 12.423 3.714 5.276 2.938 8.518 2.360 4.088
iPhone 8 10.226 23.187 8.942 12.996 3.004 8.854 2.325 4.253
iPhone 12 8.830 18.212 8.183 11.212 2.977 8.898 2.353 4.131
Nikon d3x 5.000 12.712 4.255 5.496 2.756 8.477 2.087 3.868

(B)

Device OLS ALWLR

Mean Max Med p80 Mean Max Med p80

Huawei mate10 98.705 99.944 99.439 98.589 99.185 99.994 99.674 99.203
Meizu 17pro 98.835 99.962 99.557 98.743 99.131 99.990 99.723 99.056
Xiaomi 12s ultra 98.784 99.965 99.459 98.638 99.123 99.988 99.685 99.059
iPhone 8 96.841 99.845 98.328 94.789 99.144 99.996 99.729 99.066
iPhone 12 96.785 99.853 98.459 94.701 99.100 99.991 99.716 99.047
Nikon d3x 98.134 99.964 99.312 97.221 99.112 99.991 99.748 99.039

(C)

Device OLS ALWLR

Mean Max Med p80 Mean Max Med p80

Huawei mate10 3.956 9.814 3.006 5.419 1.408 2.857 1.345 1.937
Meizu 17pro 3.823 9.429 2.949 5.421 1.464 3.206 1.350 1.943
Xiaomi 12s ultra 3.745 9.857 2.651 5.456 1.384 3.184 1.244 1.905
iPhone 8 12.607 28.510 10.855 17.500 1.390 2.806 1.325 1.814
iPhone 12 11.502 25.330 9.920 16.215 1.284 2.732 1.200 1.761
Nikon d3x 4.597 13.444 3.147 6.631 1.139 2.881 0.991 1.487

(D)

Device OLS ALWLR

Mean Max Med p80 Mean Max Med p80

Huawei mate10 5.440 12.813 4.098 7.740 2.062 5.209 1.757 2.793
Meizu 17pro 5.469 14.634 3.979 7.538 2.134 5.601 1.629 2.943
Xiaomi 12s ultra 5.290 13.582 3.826 7.762 2.026 5.741 1.615 2.754
iPhone 8 18.961 70.409 12.750 23.881 2.003 4.942 1.641 2.758
iPhone 12 16.226 49.534 11.726 23.193 1.913 5.407 1.490 2.647
Nikon d3x 6.471 17.885 4.531 9.520 1.718 5.024 1.315 2.399

Nikon D3x performance is slightly better, the difference between
the color difference value of these six device were very small,
the 1E∗ab mean value range is within 0.4, and the range of mean
value of 1E00 is within 0.45.

In general, in the classical spectral estimation methods like
OLS, Android phones are better than professional cameras in

all four metrics. For the ALWLR method, after effective sample
selection and weighting using color difference, the spectral
estimation errors of all devices are significantly reduced, and
the p80 of each error is smaller than the mean error of the OLS
method. The mean value of the single error of some cell phones
is better than that of professional cameras, while other indicators
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TABLE 4 The estimation accuracy of the proposed method spectral estimation method with the number of polynomial expansions from 4 to 35
items.

Items RMSE GFC 1E∗
ab 1E00

Mean Med p80 Mean med p80 Mean Med p80 Mean Med p80

4 2.493 1.769 3.444 99.484 99.902 99.550 1.051 0.938 1.356 1.651 1.282 2.207

5 2.311 1.578 3.164 99.502 99.895 99.562 1.005 0.897 1.292 1.567 1.190 2.075

6 2.256 1.559 3.018 99.517 99.898 99.598 0.966 0.851 1.253 1.498 1.135 1.978

7 2.239 1.522 3.060 99.522 99.910 99.621 0.917 0.791 1.230 1.444 1.056 1.976

8 2.087 1.427 2.793 99.541 99.920 99.666 0.881 0.759 1.143 1.374 1.007 1.808

9 2.025 1.454 2.825 99.584 99.928 99.669 0.862 0.764 1.146 1.331 1.000 1.830

10 2.019 1.467 2.865 99.583 99.919 99.659 0.858 0.758 1.152 1.299 1.017 1.756

11 2.000 1.432 2.885 99.588 99.925 99.675 0.847 0.739 1.122 1.281 0.986 1.731
12 2.029 1.460 2.863 99.583 99.928 99.671 0.868 0.740 1.171 1.311 1.008 1.804

13 2.007 1.430 2.863 99.579 99.932 99.655 0.854 0.725 1.152 1.301 0.985 1.790

14 2.040 1.457 2.869 99.576 99.926 99.661 0.857 0.727 1.153 1.309 0.972 1.818

15 2.025 1.444 2.855 99.572 99.930 99.663 0.857 0.738 1.162 1.314 0.990 1.804

16 2.026 1.401 2.930 99.567 99.927 99.636 0.840 0.723 1.142 1.274 0.977 1.797

17 2.042 1.421 2.911 99.558 99.936 99.655 0.847 0.729 1.158 1.309 1.012 1.815

18 2.013 1.382 2.886 99.572 99.935 99.669 0.826 0.716 1.126 1.288 0.975 1.768

19 2.040 1.397 2.864 99.573 99.931 99.679 0.838 0.717 1.143 1.268 0.978 1.812

20 2.083 1.429 2.940 99.563 99.934 99.642 0.849 0.739 1.164 1.301 0.999 1.865

21 2.070 1.409 2.921 99.556 99.934 99.625 0.837 0.715 1.149 1.281 0.984 1.838

22 2.037 1.425 2.870 99.551 99.933 99.670 0.866 0.709 1.188 1.321 0.994 1.901

23 2.032 1.389 2.913 99.563 99.933 99.661 0.878 0.691 1.206 1.417 0.966 1.954

24 2.047 1.386 2.877 99.572 99.939 99.672 0.912 0.723 1.241 1.463 1.003 1.960

25 2.120 1.396 2.969 99.536 99.939 99.659 0.935 0.698 1.271 1.618 0.994 2.029

26 2.228 1.363 3.043 99.510 99.934 99.647 1.004 0.693 1.266 2.040 0.985 2.029

27 2.287 1.479 3.163 99.509 99.923 99.594 0.998 0.727 1.316 1.826 1.046 2.157

28 2.341 1.432 3.137 99.487 99.921 99.600 1.020 0.720 1.304 1.934 1.024 2.152

29 2.417 1.457 3.242 99.452 99.929 99.568 1.037 0.735 1.321 1.952 1.056 2.127

30 2.377 1.447 3.213 99.434 99.926 99.606 0.987 0.745 1.326 1.672 1.061 2.157

31 2.474 1.481 3.452 99.480 99.912 99.560 1.030 0.762 1.356 1.716 1.100 2.258

32 2.433 1.497 3.398 99.482 99.916 99.538 1.034 0.764 1.407 1.717 1.073 2.321

33 2.544 1.527 3.547 99.391 99.911 99.485 1.070 0.774 1.469 1.838 1.106 2.403

34 2.621 1.495 3.644 99.330 99.908 99.527 1.093 0.796 1.486 1.834 1.137 2.507

35 2.731 1.637 3.945 99.281 99.893 99.451 1.161 0.837 1.585 2.150 1.212 2.659

The bold values indicate the best estimation accuracy.

have a small difference with professional digital cameras, and
the chromaticity error is much smaller than the discriminatory
ability of the human eye.

The results show that, under the same conditions, the
influence of the estimation method on the estimation accuracy is
decisive, while under the more complex methods, the difference
in estimation accuracy between most cell phone camera raw
responses and professional digital cameras is very small, while
some evaluation indicators are better than professional cameras.
Therefore, we believe that it is feasible for cell phones to replace
professional digital cameras as spectral imaging devices overall.

Comparison of methods

In this section, the number of polynomial expansion items
of the proposed method is first experimented to determine the

optimal number of expansion terms. Then the proposed method
is compared and analyzed together with representative existing
methods. The methods that participated in the comparison
mainly include Ordinary least squares (OLS) (Connah and
Hardeberg, 2005), Partial least squares (PLS) (Shen et al.,
2010), PCA (Xiao et al., 2016), Local linear weighting method
(LLR) (Liang and Wan, 2017), Weighted non-linear regression
method (WNR) (Amiri and Amirshahi, 2014), the local adaptive
weighting method (ALWLR) (Liang et al., 2019), and the
sequential adaptive weighted non-linear regression method
(SWNR) (Wang et al., 2020). In addition, the running time of
the eight methods was also counted and compared.

Influence of the number of polynomial
expansion items on the proposed method

As described in the principle of the method in section “The
proposed method,” a polynomial expansion of the camera raw
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TABLE 5 Comparison of estimation accuracy between the proposed method and seven existing methods: (A) RMSE, (B) GFC, (C) 1E∗
ab, and (D) 1 E00.

(A)

Error Type WNR LLR ALWLR OLS PCA PLS Proposed SWNR

Mean 2.582 2.122 2.946 4.641 6.701 3.834 1.982 2.648

Max 10.731 7.510 8.482 11.824 12.733 10.574 7.216 9.282

Med 1.618 1.533 2.360 3.767 6.354 3.065 1.373 1.767

Min 0.217 0.108 0.320 2.028 2.306 1.439 0.063 0.145

p80 3.270 2.926 4.236 5.227 9.178 4.634 2.788 3.414

(B)

Error Type WNR LLR ALWLR OLS PCA PLS Proposed SWNR

Mean 99.381 99.399 99.141 98.781 95.424 98.674 99.552 99.425

Max 99.999 100.000 99.992 99.971 99.954 99.970 100.000 99.998

Med 99.882 99.911 99.683 99.429 98.838 99.368 99.937 99.921

Min 95.169 94.785 95.018 93.525 80.248 94.580 96.102 95.520

p80 99.507 99.583 99.116 98.557 92.665 97.936 99.704 99.636

(C)

Error Type WNR LLR ALWLR OLS PCA PLS Proposed SWNR

Mean 1.184 0.906 1.385 3.746 9.856 1.844 0.801 1.185

Max 3.401 2.244 3.171 9.596 24.557 3.529 2.103 2.964

Med 1.037 0.761 1.233 2.703 7.095 1.717 0.675 1.010

Min 0.154 0.187 0.268 0.782 1.698 0.758 0.116 0.313

p80 1.510 1.243 1.883 5.601 15.341 2.336 1.118 1.406

(D)

Error Type WNR LLR ALWLR OLS PCA PLS Proposed SWNR

Mean 1.725 1.381 2.036 5.295 16.197 2.532 1.250 1.671

Max 5.764 4.313 5.876 13.229 43.722 6.519 3.658 5.155

Med 1.262 1.002 1.620 3.906 10.821 2.127 0.964 1.258

Min 0.205 0.190 0.290 1.013 2.279 1.034 0.130 0.375

p80 2.146 1.900 2.793 8.078 24.929 2.905 1.798 2.032

The bold values indicate the best estimation accuracy.

response is performed, so the appropriate number of expansion
items needs to be determined, and we experimented with the
performance of the proposed method by ranging the number of
expansion items from 4 to 35, with the sample set of SG color
chart taken from the well-balanced Xiaomi 12S Ultra in section
“Mobile phone raw response spectral estimation performance
validation” and the same light source environment as described
before. The effect of the change in the number of items of the
polynomial expansion on the spectral estimation error of this
method is shown in Table 4.

The data in Table 4 show that the mean, median, and p80
errors of the four indicators have the same trend, decreasing
and then increasing as the number of items increases. In the

interval of 9–22 items, it is obvious that each error is in the
optimal interval and the differences is very small. As the number
of terms exceeds 22, the accuracy of each estimate decreases
gradually. After comparison, we choose 18 items with relatively
more balanced errors as the number of polynomial expansion
items for the subsequent study.

Comparison of estimation methods
We compare the proposed methods with seven existing

methods in detail, where the WNR, ALWLR, and SANR
methods contain polynomial expansions and the number of
terms we fix to 18. Some of the methods include the selection
of samples, and we fix the local sample selection parameter L
to be 100 for all methods, which means that the first 100 local
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FIGURE 6

Boxplots of estimation errors for the comparison of eight methods: (A) RMSE, (B) GFC, (C) 1E∗ab, and (D) 1E00.

samples are selected. All other aspects of the experiments were
kept consistent and used the same sample set of SG color chart
taken by Xiaomi 12S Ultra.

Ten times 10-fold cross-validation was used for all eight
methods to enhance the stability of the resulting data. The
estimated results are shown in Table 5.

In Table 5 we bold the data with the best accuracy in each
row, and it can be seen that the proposed method in this paper
obtains the best spectral reflectance estimation performance in
each of the four estimated accuracy metrics. From the data
in Table 5. We can also observe that the OLS, PCA, and
PLS methods have greater overall errors, while the improved
variants such as WNR, LLR, ALWLR, and SWNR methods
have better estimation accuracy performance and less difference
from the proposed method due to different forms of weighting
and sample selection. To further analyze the method estimation
error performance, we plotted boxplots for the four evaluation
indicators of the above eight methods, as in Figure 6.

From the four boxplots in Figure 6, it can be seen that
the distance between the upper and lower edges of the error
distribution and the height of the box of the proposed method
are more intensive, while the distance of the box from the
minimum value is the closest in all four evaluation indexes,
showing that the present method has a smaller overall error.
Also, the outlier data of this method are more concentrated near
the upper edge of the normal value (GFC is the lower edge).

Comparison of method running efficiency
We counted the running time of each method. All methods

count the computation time of 10 times 10-fold cross-validation
(excluding the time to save the results) as shown in Table 6,
and we counted the time of five runs of 10 times 10-fold cross-
validation to get the average time. The hardware is Lenovo
Legion R9000P2021H laptop, CPU is AMD Ryzen7 5800H
3.2GHz with 8 cores and 16 threads, memory is 16GB DDR4-
3200MHz, the software is MATLAB R2021a, the operating
system is 64-bit windows 10. It can be seen that the time of
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TABLE 6 Five running time of 10 times 10-fold cross-validation for eight methods and the average.

Method First Second Third Fourth Fifth Average time(s)

WNR 1.222 1.196 1.211 1.247 1.245 1.224

LLR 1.237 1.226 1.213 1.242 1.232 1.230

ALWLR 1.226 1.204 1.229 1.219 1.260 1.228

OLS 0.953 0.951 0.935 0.945 0.934 0.943

PCA 5.020 5.018 4.900 4.967 4.876 4.956

PLS 0.930 0.941 0.933 0.944 0.918 0.933

Proposed 2.005 1.991 1.948 1.975 1.989 1.981

SWNR 1.551 1.516 1.609 1.582 1.559 1.564

TABLE 7 Comparison of the estimation accuracy of four methods applying the weighting strategy: (A) RMSE, (B) GFC, (C) 1E∗
ab, and (D) 1 E00.

(A)

Error Type WNR LLR ALWLR OLS opt-WNR opt-LLR opt-ALWLR opt-OLS

Mean 2.648 2.046 2.979 4.643 2.056 2.094 2.043 2.461

Max 11.355 7.272 8.773 11.908 7.595 7.800 7.567 7.867

Median 1.662 1.508 2.361 3.739 1.401 1.423 1.536 1.949

Min 0.222 0.121 0.376 1.990 0.089 0.076 0.183 0.150

p80 3.321 2.857 4.103 5.241 2.841 2.914 2.564 3.415

(B)

Error type WNR LLR ALWLR OLS opt-WNR opt-LLR opt-ALWLR opt-OLS

Mean 99.3661 99.4465 99.0919 98.7684 99.4967 99.4681 99.5646 99.4520

Max 99.9992 99.9996 99.9903 99.9628 99.9999 99.9999 99.9994 99.9998

Median 99.8750 99.9206 99.6700 99.4620 99.9363 99.9297 99.9381 99.8967

Min 94.8655 95.3612 94.7806 93.7069 95.7146 95.5170 96.5514 95.9500

p80 99.5692 99.5902 98.9699 98.5126 99.6699 99.6536 99.6605 99.4762

(C)

Error type WNR LLR ALWLR OLS opt-WNR opt-LLR opt-ALWLR opt-OLS

Mean 1.189 0.893 1.392 3.743 0.840 0.846 0.949 1.318

Max 3.466 2.227 3.226 9.843 2.114 2.148 2.095 4.416

Median 1.029 0.766 1.224 2.629 0.735 0.706 0.874 0.919

Min 0.166 0.191 0.287 0.786 0.168 0.147 0.270 0.238

p80 1.504 1.215 1.906 5.648 1.163 1.160 1.228 1.668

(D)

Error type WNR LLR ALWLR OLS opt-WNR opt-LLR opt-ALWLR opt-OLS

Mean 1.747 1.350 2.053 5.286 1.332 1.328 1.383 2.003

Max 5.963 4.325 5.903 13.458 4.112 3.934 4.079 6.458

Median 1.265 1.041 1.649 3.865 1.007 1.023 1.116 1.374

Min 0.216 0.200 0.311 1.021 0.166 0.149 0.325 0.253

p80 2.256 1.808 2.783 8.040 1.856 1.877 1.800 2.831

The bold values indicate the best estimation accuracy.

the OLS and PLS methods without weighting and selection of
samples for ten times ten-fold cross-validation is within 1 s, and
the computing time of the WNR, LLR, and ALWLR methods
with one weighting and selection of samples is about more than

1.5 s, and the proposed method increases by 0.5 s compared with
the SANR method with the same two weightings because of the
addition of three color perception feature volume calculations,
and all The average time of all methods is within 2 s, which
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means that the difference in running time is very small even on
a home computer.

According to the comparison and analysis of the above three
aspects, the proposed method is ahead of the existing methods
in all aspects of estimation accuracy, and the overall error is
smaller and the error distribution is more intensive, while the
time cost is slightly increased than the existing methods, but the
difference is not significant, which proves the superiority of the
proposed method.

Application of color perception
features weighting strategy on existing
methods

The novelty of this method is to propose a strategy of
weighting color perceptual features based on CIELAB uniform
color space, which calculates the differences of color perceptual
features of samples in LAB color space instead of color
difference weighting and achieves better performance. In this
section, we try to apply the weighting strategy proposed
to the OLS method, the WNR method, and the ALWLR
method. The sample set still uses the SG color chart taken
by Xiaomi 12S Ultra. The estimated accuracies of the above
four methods before and after applying the proposed weighting
strategy are presented in Table 7. The methods containing
the ’opt-’ prefix are the methods after applying the proposed
weighting strategy.

From the overall view of the data in Table 7, all four
methods obtained a reduction in estimation error after applying
this weighting strategy. Among them, opt-OLS has a greater
improvement due to its relatively larger original error. The
errors of opt-WNR, opt-LLR, and opt-ALWLR methods were
also significantly reduced relative to the original methods in four
aspects, for example, in the GFC data in sub-table (B), the 80%
error of these three methods exceeded 99.6%; In sub-table (C)
1E∗ab, all three methods, opt-WNR, opt-LLR, and opt-ALWLR,
were reduced to within 1 in the mean and median values.

In summary, for OLS methods without sample
weighting and selection, the application of the present
weighting strategy brings a significant improvement. For
the methods such as WNR, LLR, and ALWLR that have
been optimized with sample weighting and selection, the
errors in each spectral and chromaticity are also noticeably
reduced. The good improvement of the proposed weighting
strategy is proved.

Discussion

The proposed method uses the idea of two-times sample
weighting and selection similar to the SWNR method. By
improving the weighting method of the first spectral estimation

and using the weighting method of color perception features in
CIELAB color space instead of the weighting method based on
color difference or based on chromaticity vector angle, a more
accurate measure of color difference between samples and a
better estimation accuracy are achieved.

The color perceptual features of CIELAB uniform color
space include hue, chroma, and lightness, which are closely
related to the visual perception of human eyes. The weights
are directly related to these three perceptual features in our
weighting approach, avoiding the problem of being given the
same weight because of the equal color difference Euclidean
distance, and thus being more effective than the weighting
approach of existing methods.

At the same time, this study also has the following
limitations: (1) The color sample sets for the experiments all
use the samples of 140 color blocks of the SG color chart, and
further adaptation experiments are needed on other sample sets.
(2) The validation of the method is conducted under the same
light source conditions, and the stability of the method needs to
be studied under more light source conditions.

Conclusion

This study starts with the cell phone camera raw
response. First, the linearity verification and spectral estimation
performance of the cell phone camera raw response are studied,
and it is confirmed that it has good linearity at the same
time, and the spectral estimation performance is comparable
to the professional digital cameras under the same conditions,
which proves the feasibility of using the cell phone camera
raw response for spectral estimation. Then a sequence adaptive
weighted optimal spectral estimation method based on color
perception features is proposed, and the effect of polynomial
expansion on the proposed method is investigated to obtain
the optimal number of expansion items. Most importantly, a
detailed comparison experiment based on the raw response of
the cell phone camera with the existing methods shows that
the proposed method has the best performance in all four
metrics of spectral error and chromaticity error. Further, we
apply the weighting strategy based on color perception features
to the existing method, and the comparison results show that
the estimation accuracy is improved after applying the strategy,
which fully demonstrates the superiority of the method and
the excellent effect of the weighting strategy on the estimation
error reduction.

In the future, further research is needed for cell phone
camera imaging characterization; based on more different types
of color sample sets, spectral estimation methods need to be
improved to enhance their generalization capabilities. Spectral
estimation methods based on cell phone cameras under different
light source conditions also need to be further studied.
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