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Long-chain acyl-coenzyme A synthetases (ACSLs) are a family of CoA

synthetases that activate fatty acid (FA) with chain lengths of 12–20 carbon

atoms by forming the acyl-AMP derivative in an isozyme-specific manner.

This family mainly includes five members (ACSL1, ACSL3, ACSL4, ACSL5,

and ACSL6), which are thought to have specific and different functions in

FA metabolism and oxidative stress of mammals. Accumulating evidence

shows that the dysfunction of ACSLs is likely to affect cell proliferation and

lead to metabolic diseases in multiple organs and systems through different

signaling pathways and molecular mechanisms. Hence, a central theme of

this review is to emphasize the therapeutic implications of ACSLs in nervous

system disorders.
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long-chain acyl-coenzyme A synthetases (ACSLs), fatty acid (FA) metabolism,
ferroptosis, nervous system diseases, targeted therapy

Introduction

Long-chain acyl-coenzyme A synthetases (ACSLs) are composed of a CoA
synthetases family that activates fatty acid (FA) with chain lengths of 12–20 carbon atoms
by forming the acyl-AMP derivative in an isozyme-specific manner. ACSLs identified in
mammals mainly include five members—ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6
(ACSL2 has been deleted because its cDNAs correspond to the same gene as ACSL1)—
which encode the corresponding proteins and are essential for FA catabolism, de novo
lipid synthesis, and remodeling of membranes (Soupene and Kuypers, 2008; Tang et al.,
2018; Kuwata and Hara, 2019; Quan et al., 2021).

It is well-known that FA metabolism is the major source of energy in mammals since
it can release large quantities of adenosine triphosphate (Yan et al., 2015). The key step
of long chain FA metabolism depends on its activation, which requires specific ACSLs
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(Figure 1). ACSLs have individual functions in FA metabolism
among different types of cells, thus their dysregulation will
contribute to a variety of metabolic diseases, such as fatty
liver disease, obesity, atherosclerosis, diabetes, tumor, etc. (Yan
et al., 2015). Several ACSLs-related reviews have summarized
the mechanisms and function of the ACSLs in cancer: ACSL1
and ACSL3 may lead to cancer progression and worse prognosis,
while ASCL5 and ACSL6 act as key suppressor with the opposite
effect (Yan et al., 2015; Kuwata and Hara, 2019; Quan et al.,
2021).

For the past decade, ACSLs have drawn the researchers’
attention to the areas of brain tumor (Yee et al., 2020), stroke
(Chang et al., 2019; Chen J. et al., 2021; Cui et al., 2021),
injury (Qu et al., 2021; Pang et al., 2022; Yuan et al., 2022),
neurodegenerative disease (Yao et al., 2021; Ben-Zaken et al.,
2022) etc. (Table 1). However, there has been no special review
on the functions of ACSLs in nervous system diseases (NSDs) up
to now. Here, we aim to highlight the important roles of ACSLs
in NSDs.

ACSL1

ACSL1 has a marked preference for oleate and linoleate
(Kanter et al., 2012), and can promote ungoverned cell growth,
facilitate tumor invasion and evade programmed cell death
(Zhou et al., 2019; Xu et al., 2022). Several studies revealed
expression of ACSL1 is related to the progression and prognosis
of glioma and amyotrophic lateral sclerosis (ALS).

Glioma
A previous analysis based on The Cancer Genome Atlas

(TCGA) RNA sequencing data suggested lower expression of
ACSL1 influences metabolic reprogramming and contributes
to the better survival of patients with isocitrate dehydrogenase
1 (IDH1) mutant glioma (Zhou et al., 2019). In a recent
study on glioma, lower expression of ACSL1 was also found to
reverse the accelerated cellular metabolism and tumor growth
induced by PRADX (a novel lncRNA ENST00000449248.1
identified by Xu et al., 2022) overexpression in vivo and
in vitro. A total of six genes including ACSL1 (the other five
were TGFBR2, RUNX1, PPARG, GIT2, and RAP1B) have been
characterized in glioma, which can interact with each other
in both a competitive endogenous RNA-related manner and
were predicted as markers of the mesenchymal subtype in terms
of their protein functions (Wang et al., 2018). These findings
provide some potential therapeutic targets for the treatment of
human glioma.

Amyotrophic lateral sclerosis
ALS is a devastating progressive motor neuron disease that

affects people of all ethnicities. A recent study on ACSL1 found
that A/G rs6552828 polymorphism may be associated with ALS,
in which A-allele may be a risk factor for the development

of ALS (Ben-Zaken et al., 2022). The authors analyzed at
least 350 samples from 178 ALS patients and 172 athletes
(including soccer players, middle- and long-distance runners)
and found that the ACSL1 AA genotype was more prevalent
among ALS patients and soccer players compared to controls,
while ACSL1 GG carriers had a higher mortality rate (Ben-Zaken
et al., 2022). This result suggests that ALS patients and soccer
players may carry a common genetic predisposition, which is
related to impaired FA utilization. However, given that little
research on the connection between ACSL1 and ALS has been
published so far, more studies are needed to determine the
regulatory mechanisms and therapeutic implications of ACSL1
on ALS.

ACSL3

The preferred substrates of ACSL3 are myristate, palmitate,
arachidonate, and eicosapentaenoate (Grevengoed et al., 2014).
As one of two predominant ACSL isoforms in the brain (another
is ACSL6) (Van Horn et al., 2005), the expression of ACSL3
reaches a maximum level 15 days after birth, then declines
gradually to 10% of the maximum in the adult brain (Fujino
et al., 1996). Thus, ACSL3 may be closely related to the
development of the brain.

Glioma
Fujino et al. (1997) found ACSL3 existed in rat glioma

cell line KEG1 cells two decades ago. Recently, Qiu et al.
(2020) observed significant downregulation of ACSL3 in U251
cells (human glioma cells) treated with 1.42 µM CN-3 (a new
asterosaponin isolated from the starfish Culcita novaeguineae,
which is characterized as exhibiting antitumor activities at
low concentrations). It was reported that ACSL3 has relatively
complex functions in different types of cancer. For example, its
expression may vary in the different stages and types of cancer:
ACSL3 was increased in early carcinogenesis to promote lipid
anabolism and deposition, but deceased in advanced breast and
prostate cancer to increase lipid utilization. Especially in breast
cancer, ACSL3 was found to be upregulated in women with ER-
negative breast cancer (Wang et al., 2013), while downregulated
in triple-negative breast cancer (Wright et al., 2017). This
difference and change in expression may be closely related
to cancer cell survival and invasiveness (Tang et al., 2018).
Although the similar finding has not been found in glioma till
now, the ACSL3 gene has been shown to be downregulated
in U251 cells (as mentioned above) (Qiu et al., 2020). Future
studies may discover more meaningful details about the changes
in function of ACSL3 for glioma.

Stroke
A newly published article revealed that ACSL3 may play an

important role in ferroptosis after cerebral I/R injury through
GPX4/ACSL4/ACSL3 axis (Li et al., 2022). In transient middle
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FIGURE 1

Diagram for fatty acid (FA) metabolism. The first stage of FA metabolism is the activation of FA, which requires a two-step reaction catalyzed by
Acyl-CoA synthetases: an acyl-AMP intermediate is first formed from ATP, and then exchanged with CoA to yield the activated acyl-CoA.
(Gassler et al., 2007; Soupene and Kuypers, 2008; Golej et al., 2011; Nakahara et al., 2012; Rossi Sebastiano and Konstantinidou, 2019).
Subsequently, Acyl-CoA participates in the synthesis of lysophosphatidic acid (LPA), phosphatidic acid (PA), glycerol diester (DAG), and
triacylglycerol (TAG) (Coleman, 2019). Acyl-CoAs can also be converted to acyl-carnitines by carnitine palmitoyltransferase (CPT1) to enter the
mitochondria for β-oxidation and tricarboxylic acid cycle (TCA). The LPA, PA, and DAG intermediates may initiate signaling cascades, and PA and
DAG are also precursors of all the glycerophospholipids: phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylserine (PS), and cardiolipin (CL) (Coleman, 2019). The TAG may remain in the cytosol within a lipid droplet or, in liver, be secreted a
part of a very-low-density lipoprotein particle (VLDL) (Coleman, 2019). ACSS, short–chain acyl–CoA synthetase; ACSM, medium–chain
acyl–CoA synthetase; ACSL, long–chain acyl–CoA synthetase; ACSVL, very long–chain acyl–CoA synthetase; AMP, adenosine
monophosphate; PPi, pyrophosphoric acid; CoASH, coenzyme A; GPAT, glycerol-3-P acyltransferases; AGPAT, 1-acylglycerol-3-phosphate
acyltransferases (also known as LPA acyltransferase); PAPase/Lipin, PA hosphohydrolases; DGAT, diacylglycerol acyltransferases.

cerebral artery occlusion (tMCAO) mice, the authors found that
baicalein (an antioxidant from Scuetellaria baicalensis Georgi)
could significantly increase the expression level of ACSL3, which
suggested that ACSL3 is the negative regulator on ferroptosis
(Li et al., 2022). The possible explanation may be that ACSL3
can convert monounsaturated fatty acids (MUFA) into acyl
coenzyme A that binds to membrane phospholipids to protect
cells from ferroptosis (Magtanong et al., 2019).

ACSL4

ACSL4 has a marked preference for arachidonate and plays
an important role in neuronal differentiation in the brain (Cho,
2012; Klett et al., 2017). Knockout of ACSL4 in embryonic stem
cells markedly attenuated neuronal differentiation induced by
all-trans retinoic acids and nerve growth factors (Cho, 2012).
In the past decade, this enzyme has also been demonstrated
essential for the induction of ferroptosis (a newly found form
of programmed cell death) by facilitating arachidonic acid (AA)

oxidation, which makes it a desirable target of some NSDs-
related ferroptosis (Figure 2).

Glioma
Numerous glioma-associated studies have focused on

the determination of ferroptosis-related protein expression,
such as ACSL4, glutathione peroxidase (GPX4), system Xc−,
and ferroptosis suppressor protein 1/AIFM2 (FSP1), etc.
Mechanistically, ACSL4 is required for ferroptosis in glioma via
the regulation of proliferation, migration of glioblastoma, and
self-renewal of glia cells (Cheng et al., 2020; Bao C. et al., 2021;
Dattilo et al., 2021). The decrease in the expression level of
ACSL4 has been observed in isocitrate dehydrogenase (IDH)
1 wild-type and mutant gliomas (Zhou et al., 2019). The
chemical inhibition, stable silencing, or depletion of ACSL4
demonstrated it can diminish necrosis and aggressiveness of
glioblastoma (Yee et al., 2020). However, in the recurrent
glioma, the expression of ACSL4 was found significantly
increased, indicating glioblastoma relapses may be higher
vulnerable to ferroptosis (Kram et al., 2022).
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TABLE 1 Long-chain acyl-coenzyme A synthetases (ACSLs) and nervous system diseases (NSDs).

Genes* Proteins*

Name OMIM R© Location Size
(Amino
acids)

Molecular
mass (Da)

Function Nervous system diseases associated with ACSLs

ACSL1 152,425 4q35.1 698 77,943 B Catalyzes the conversion of long-chain FA to
acyl-CoAs for both synthesis of cellular lipids
B Preferred substrates: oleic acid and linoleic acid
(Kanter et al., 2012)

Glioma (Wang et al., 2018; Zhou et al., 2019; Xu et al., 2022)
Amyotrophic lateral sclerosis (ALS) (Ben-Zaken et al., 2022)

ACSL3 602,371 2q36.1 720 80,420 B Convert MUFAs (e.g.) into acyl-CoA that binds
to membrane phospholipids
B Preferred substrates: oleic acid, myristate,
palmitate, arachidonate and eicosapentaenoate
(Grevengoed et al., 2014)

Glioma (Fujino et al., 1996, 1997; Van Horn et al., 2005; Qiu et al., 2020)
Stroke (Li et al., 2022)

ACSL4 300,157 Xq23 711 79,188 B Catalyzing PUFAs metabolism and shaping
cellular lipid composition
BModulates glucose-stimulated insulin secretion
by regulating the levels of unesterified
epoxyeicosatrienoic acids
BModulates prostaglandin E2 secretion.
B Preferred substrates: arachidonate (Klett et al.,
2017)

�Central nervous system
Glioma (Zhou et al., 2019; Cheng et al., 2020; Tan et al., 2020; Yee et al.,

2020; Yi et al., 2020; Bao C. et al., 2021; Dattilo et al., 2021; Hacioglu and Kar,
2022; Kram et al., 2022; Miao et al., 2022)

Cerebrovascular diseases: ischemic stroke (Gubern et al., 2013; Li et al.,
2019; Chen J. et al., 2021; Cui et al., 2021; Guo H. et al., 2021; Li C. et al.,
2021; Liao et al., 2021; Hu et al., 2022; Tuo et al., 2022), hemorrhage (Chen B.
et al., 2021; Jin et al., 2021), subarachnoid hemorrhage (Qu et al., 2021;
Huang et al., 2022; Yuan et al., 2022)

Injury: traumatic brain injury (Kenny et al., 2019; Xiao et al., 2019; Bao Z.
et al., 2021), spinal cord injury (Zhou et al., 2020; Pang et al., 2022)

Intellectual disability: non-syndromic X-Linked intellectual developmental
disorder (Meloni et al., 2009; Zhang et al., 2009; Liu et al., 2011, 2014; Huang
et al., 2016; Chang et al., 2019; Jia et al., 2019), Alport syndrome with
intellectual disability (Rodriguez et al., 2010; Smetana et al., 2021)

Neurodegenerative diseases: Alzheimer’s disease (AD) (Rapoport, 2008;
Thomas et al., 2017; Gao et al., 2021; Peng et al., 2021; Yan et al., 2022; Zhu
et al., 2022), Parkinson’s disease (PD) (Li S. et al., 2021; Song et al., 2021)

Cognitive dysfunction: diabetic cognitive impairment (An et al., 2022),
postoperative cognitive dysfunction (POCD) (Cheng et al., 2021)

Others: epilepsy (Kahn-Kirby et al., 2019; Mao et al., 2019; Shao et al., 2020,
2022; Yang et al., 2020; Chen et al., 2022), ALS (Moujalled et al., 2021; Zilka
et al., 2021; Wang T. et al., 2022), cerebral malaria (Liang et al., 2022),
bipolar disorder (BD) (Modi et al., 2014, 2017), sepsis-associated
encephalopathy (SAE) (Wang J. et al., 2022)

�Peripheral nervous
system

Neuropathic pain
(NP) induced by
peripheral nerve
injury<ref>(Zhang
X. et al., 2022; Guo
Y. et al., 2021; Wang
et al., 2021)

ACSL5 605,677 10q25.2 683 75,991 B Activates FA from exogenous sources for the
synthesis of triacylglycerol destined for
intracellular storage
B Preferred substrates: palmitate, palmitoleate,
oleate, linoleate (Klett et al., 2017)

Glioma (Yamashita et al., 2000; Mashima et al., 2009a,b)
ALS (Iacoangeli et al., 2020; Nakamura et al., 2020; Saez-Atienzar et al.,

2021)

ACSL6 604,443 5q31 697 77,752 FA metabolism in brain
Preferred substrates: It has equal preference for

saturated and PUFAs with a backbone of C16–C20
(Lopes-Marques et al., 2013)

AD (Pontifex et al., 2021)
Schizophrenia (Chen et al., 2006, 2011; Chowdari et al., 2007)

ACSL, long-chain acyl-coenzyme A synthetase; FA, fatty acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; OMIM, Online Mendelian Inheritance in Man. *Data from GeneCards (http://www.genecards.org/) and OMIM
(https://omim.org/about).
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FIGURE 2

Long-chain acyl-coenzyme A synthetases family member 1, 3–5 (ACSL1, 3–5) and ferroptosis. E-cadherin–NF2–Hippo–YAP pathway
suppresses ferroptosis by attenuating YAP-mediated transcription and translation of ACSL4. Lipogenesis involving production of phospholipids
containing polyunsaturated fatty acid chains (PUFA-PLs) that are mediated by ACSL4 and multiple other enzymes is required for phospholipid
peroxidation and ferroptosis (Jiang et al., 2021). Some pathological states (such as cerebral ischemia) would lead to an unexpected increase in
thrombin within neurons, promote the mobilization of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the phospholipid
membrane of neuronal cells through cytosolic phospholipase A2alpha (cPLA2α), and accelerate the production of polyunsaturated fatty acid,
such as arachidonic acid (AA) (Tuo et al., 2022). Besides, ferroptosis inducers promote a slight accumulation of lipid peroxide, which induces the
activation of protein kinase C βII (PKCβII). Subsequently, activated PKCβII interacts directly with and phosphorylates ACSL4 at Thr328, which
activates ACSL4, triggering the biosynthesis of PUFA-containing lipids and then promoting the generation of lipid-peroxidation products
(Zhang H. L. et al., 2022). NF2, neurofibromin 2; YAP, Yes-associated protein; PLOOH, phospholipid hydroperoxide.

Subsequently, some targeting molecular mechanisms
had been put up based on ACSL4, which shed light on the
treatment of glioma. For example, miR-670-3p was found
to suppress ferroptosis of human glioblastoma by inhibiting
ACSL4, suggesting that inhibition of miR-670-3p can be an
adjuvant strategy to treat glioblastoma (Bao C. et al., 2021).
Dihydrotanshinone I (DHI) can inhibit the proliferation
of human glioma cells via the induction of ferroptosis
(Tan et al., 2020), while capsaicin can induce ferroptosis
through the increase in expression of ACSL4 (Hacioglu and
Kar, 2022). Besides, in erastin-induced ferroptosis in gliomas,
heat shock protein 90 (Hsp90) and dynamin-related protein
1 (Drp1) were reported to actively stabilize and regulate
ACSL4 expression. Hsp90 overexpression or calcineurin (CN)-
mediated Drp1 dephosphorylation at serine 637 (Ser637) can
promote ferroptosis via alteration of mitochondrial morphology

and increase of ACSL4-mediated lipid peroxidation (Miao et al.,
2022). These mechanisms might be used as potential anticancer
agents or targets with ferroptosis-induced anti-proliferative
effects.

Ischemic stroke
The increase of ACSL4 expression is frequently observed

in the stroke models simulating ischemia/reperfusion neuronal
injury (Li C. et al., 2021; Liao et al., 2021). Ischemia-induced
ACSL4 activation can exacerbate ischemic stroke and contribute
to ferroptosis-mediated tissue injury in ischemia/reperfusion
(Cui et al., 2021). The up-regulation of ACSL4 may facilitate
or hinder neurological recovery after stroke through the
regulation of ferroptosis (Chen J. et al., 2021). Therefore,
interventions of ACSL4 expression have been predicted to
be the potential therapeutic target (Gubern et al., 2013). For
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example, a recent ferroptosis study pointed out that thrombin
can induce ACSL4-dependent ferroptosis during cerebral
ischemia/reperfusion, which suggested thrombin-ACSL4 axis
may be an important therapeutic target to ameliorate ferroptotic
neuronal injury during ischemic stroke (Tuo et al., 2022).
Moreover, transcription factor special protein 1 (Sp1) has
been identified as an important factor in promoting ACSL4
expression and exacerbating ferroptosis (Li et al., 2019). Pomelo
peel essential oil (PPEO) also has a neuroprotective effect
after cerebral ischemia/reperfusion injury by inhibiting the
expression of ACSL4 and ferroptosis (Hu et al., 2022). Besides,
carthamin yellow (CY) treatment can indirectly reverse ACSL4
expression level in the brain by the inhibition of Fe2+ and
reactive oxygen species accumulation (Guo H. et al., 2021).

Intracerebral hemorrhage
Intracerebral hemorrhage (ICH) is one of the most

refractory and lethal NSDs. Two ACSL4-associated mechanisms
on ICH have been proposed, including lncRNA H19/miR-106b-
5p/ACSL4 axis and HOTAIR/UPF1/ACSL4 axis (Chen B. et al.,
2021; Jin et al., 2021), which may play a crucial role in ICH.
In the first mechanism, miR-106b-5p is a target of H19, while
ACSL4 is a target gene of miR-106b-5p. This kind of regulation
effect among H19, miR-106b-5p, and ACSL4 implicates ACSL4
may be downstream of this axis. With the use of the ICH model
(glucose deprivation hemin-treated, OGD/H-treated), Chen B.
et al. (2021) verified the knockdown of H19 can promote cell
proliferation and suppress ferroptosis in the brain microvascular
endothelial cells by regulating the lncRNA H19/miR-106b-
5p/ACSL4 axis. Besides, HOTAIR/UPF1/ACSL4 axis has been
also reported to play an important role in the ferroptosis of
neuronal cells in the progression of ICH, which can be mediated
by Paeonol (2′-hydroxy-4′-methoxyacetophenone), the main
active compound of the radix of Paeonia suffruticosa (Jin
et al., 2021). Paeonol notably inhibited ferroptosis in hemin-
treated neuronal cells via inhibition of ACSL4. In short, the
intervention of the axis may be a promising therapeutic strategy
for ICH.

Subarachnoid hemorrhage
ACSL4 can exacerbate subarachnoid hemorrhage (SAH)-

induced early brain injury (EBI) by mediating ferroptosis
(Qu et al., 2021; Yuan et al., 2022). After SAH, the
expression of ACSL4 in brain tissue increased significantly.
Inhibiting the expression of ACSL4 using small interfering
RNAs has been proven to alleviate inflammation, oxidative
stress, brain edema, blood-brain barrier impairment, etc.,
and increase the number of surviving neurons (Qu et al.,
2021). Furthermore, activation of SIRT1 (Sirtuin 1, a class
III histone deacetylase) was found to suppress SAH-induced
ferroptosis by deregulating the expression of ACSL4 (Yuan
et al., 2022). Another study also demonstrated puerarin
[8-(β-d-glucopyranosyl-daidzein)] can remarkably inhibit the

expression of ACSL4 and ferroptosis, which is associated with
EBI after SAH (Huang et al., 2022). The above evidence
suggested ACSL4 could be a potential therapeutic target
for SAH.

Traumatic brain injury
Increased expression of ACSL4 and other biomarkers

of ferroptosis have been found in traumatic brain injury
(TBI), which indicated ferroptosis is implicated in this
pathological state and may contribute to neuronal death and
worse functional outcome (Kenny et al., 2019; Xiao et al.,
2019; Bao Z. et al., 2021). In a mice-based experimental
study, the authors proved that cortical impact injury can
result in accumulation of oxidized phosphatidylethanolamine,
increased expression of 15-lipoxygenase and ACSL4, and
depletion of glutathione in the ipsilateral cortex. These
results can be reversed with the use of baicalein (12/15-
lipoxygenase inhibitor) (Kenny et al., 2019). Another two
mice-based studies also identified the increased expression of
ACSL4 and the occurrence of ferroptosis in TBI, in which
ferroptotic neuronal death can be attenuated by miR-212-
5p and prokineticin-2 (Prok2) (Xiao et al., 2019; Bao Z.
et al., 2021). Prokineticin-2 (Prok2) is an important secreted
protein likely involved in the pathogenesis of TBI, which can
suppress the biosynthesis of lipid peroxidation substrates, AA-
phospholipids, via accelerated degradation of ACSL4 (Bao Z.
et al., 2021).

Spinal cord injury
Edaravone, a lipid peroxidation scavenger, has

been approved by Food and Drug Administration as a
neuroprotective effect on spinal cord injury (SCI) and many
other central nervous system diseases. It can downregulate
pro-ferroptosis proteins ACSL4 and 5-lipoxygenase (5-
LOX), and reduce microgliosis and astrogliosis to promote
recovery after SCI (Pang et al., 2022). Proanthocyanidins
(PACs) treatment has also been shown to mediate ferroptosis
by significantly decreasing the levels of ACSL4 and iron
in traumatic spinal cords and improving the locomotive
function of SCI mice (Zhou et al., 2020). Lipoxin A4
(LXA4) can exert a protective role in SCI by inhibiting
the expression of ferroptosis biomarkers including ACSL4
(Wei et al., 2021).

Non-syndromic X-Linked intellectual
developmental disorder

Deletions or mutations of ACSL4 are a rare cause of non-
syndromic X-linked intellectual disability (Gazou et al., 2013).
Zhang et al. (2009) and Jia et al. (2019) demonstrated that
Drosophila ACSL-like protein, dAcsl, is highly homologous to
human ACSL3 and ACSL4; and the mutation of dAcsl can
lead to the dramatical decrease of number of glial cells and
neurons, which may further result in developmental defects.
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Liu et al. (2011) demonstrated that dAcsl can regulate axonal
transport of synaptic vesicles and is required for synaptic
development and function. Three years later, they further
revealed that dAcsl can inhibit synapse growth by attenuating
bone morphogenetic protein signaling via endocytic recycling
(Liu et al., 2014). Another relevant study revealed that ACSL4
can inhibit neuromuscular junction growth by stimulating
C16:1 fatty acyl production and concomitantly suppressing raft-
associated lipid levels (Huang et al., 2016). Besides, Meloni
et al. (2009) found the reduced levels of ACSL4 in the
brain would induce a significant reduction in dendritic spine
density and an alteration in spine/filopodia distribution. Chang
et al. (2019) reported a very rare childhood stroke with
ACSL4 hemizygous intragenic deletion. These findings provide
insights into the pathogenesis of ACSL4-related intellectual
disability.

Alport syndrome with intellectual disability
Alport syndrome with intellectual disability (ATS-ID) is

an X-linked contiguous gene deletion syndrome associated
with an Xq22.3 locus, which is mainly characterized by
neurodevelopmental disorder (NDD), hearing loss/deafness,
hematuria, renal failure, midface retrusion, and elliptocytosis.
It is thought that ATS-ID is caused by the loss of function
of ACSL4 genes through the interstitial (micro) deletion of
chromosomal band Xq22.3 (Smetana et al., 2021). Another
research reported a family with two males with this disorder,
which is characterized by ID with absent or severely delayed
speech, midface hypoplasia, and facial hypotonia (Rodriguez
et al., 2010).

Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive, age-related

neurodegenerative disease. The expression of ACSL4 in the
hippocampus in patients with AD has been shown to be related
to dietary AA (Thomas et al., 2017). AA consumption is elevated
in patients with AD, indicating an excess of AA in the human
diet could constitute a risk factor for AD (Rapoport, 2008).
In APP/PS1 mice (APPswe/PSEN1dE9 transgenic mice model
of AD), transcriptome analysis identified the enriched ACSL4
(Yan et al., 2022), which can be inhibited by tetrahydroxy
stilbene glycoside (TSG) (Gao et al., 2021). Besides, N2L, a
novel lipoic acid-niacin dimer regulating lipid metabolism with
multifunction, was also proved to exert neuroprotective effects
by blocking the increase of ACSL4 protein expression (Peng
et al., 2021). Interestingly, ACSL4 was also found to participate
in AD-related cardiac contractile dysfunction, which can be
rescued by mitochondrial aldehyde dehydrogenase (ALDH2)
(Zhu et al., 2022).

Parkinson’s disease
Parkinson’s disease (PD) is another age-related degenerative

brain disorder characterized by the loss of dopaminergic

neurons in the substantia nigra and striatum. Recently, in 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
PD mouse models, up-regulation of ACSL4 has been found
and could be inhibited by apoferritin, a typical iron storage
protein with a diameter of 12.5 nm. Apoferritin can improve
motor deficits by preventing ferroptosis (Song et al., 2021). In
another experiment stimulating cellular senescence, 1-methyl-
4-phenylpyridinium (MPP) induced upregulation of ACSL4
expression and enhanced levels of oxidative stress, which were
important characteristics of ferroptosis (Li S. et al., 2021).

Cognitive impairment
Diabetes has been shown to result in neurodegenerative

diseases and cognitive decline, which can be alleviated by
liraglutide (An et al., 2022). This drug mainly exerts its
therapeutic effect by preventing the excessive amount of
ACSL4 and inhibiting ferroptosis in the hippocampus (An
et al., 2022). ACSL4 was also identified to be implicated
in sevoflurane-induced postoperative cognitive dysfunction
(POCD). In SH-SY5Y cells, increased ACSL4 expression
can lead to ferroptotic neuronal death via the 5′ AMP-
activated protein kinase/mammalian target of the rapamycin
(AMPK/mTOR) pathway, while its downregulation has the
opposite effect, providing a potential therapeutic approach to
alleviate sev-induced POCD (Cheng et al., 2021).

Other central nervous system diseases
As ACSL4 dictates ferroptosis sensitivity via shaping cellular

lipid composition, its inactivation has been considered a key
mechanism for suppressing ferroptosis in diverse contexts (Doll
et al., 2017). Ferroptosis has been shown to be involved in
the neuronal damage, aberrant electrical brain activity (Shao
et al., 2020, 2022; Chen et al., 2022), and the progressive death
of motor neurons (Moujalled et al., 2021; Wang T. et al.,
2022). Therefore, targeting ferroptosis-related protein ACSL4
may shed new light on the therapy of some other CNS diseases,
including epilepsy (Kahn-Kirby et al., 2019; Mao et al., 2019;
Shao et al., 2020, 2022; Yang et al., 2020; Chen et al., 2022), ALS
(Moujalled et al., 2021; Wang T. et al., 2022), cerebral malaria
(Liang et al., 2022), bipolar disorder (Modi et al., 2014, 2017),
and sepsis-associated encephalopathy (Wang J. et al., 2022).
For example, mood stabilizer valproic acid and chiral isomer
valnoctamide have been shown to take effect in the treatment
of bipolar disorder by inhibiting recombinant ACSL4, brain AA
turnover in brain phospholipids, and AA activation to AA-CoA
(Modi et al., 2014, 2017).

Neuropathic pain induced by peripheral nerve
injury

Neuropathic pain (NP) induced by peripheral nerve injury
has been shown to be associated with the over-expression
of ACSL4 and ferroptosis (Guo Y. et al., 2021; Wang
et al., 2021; Zhang X. et al., 2022). Here we introduce two
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identical NP models, including spared nerve injury (SNI)
and chronic constriction injury (CCI). In the first rat models
of NP, the expression of ACSL4 was found significantly
increased in the spinal cord after SNI, which can be reversed
by intrathecal injection of sirtuin 2 (SIRT2) overexpressed
recombinant adenovirus, indicating that SIRT2 may achieve a
neuroprotective effect via the suppression of ferroptosis (Zhang
X. et al., 2022). In another CCI model of the sciatic nerve, Guo
H. et al. (2021) also observed a similar phenomenon: the level
of ACSL4 significantly increased in the corresponding spinal
cord segment after injury. They further revealed that spinal
ferroptosis-like cell death was involved in the development of
NP resulting from injury, and inhibition of ferroptosis could
alleviate mechanical and thermal hypersensitivities (Guo Y.
et al., 2021). However, they failed to further reveal the inner
molecule mechanism that affected ferroptosis, and Schwann
cells (SCs), the basic cells of the myelin sheath of the axis
cylinder, were not mentioned.

Several SCs-related studies have tried to clarify the
mechanism of ferroptosis in peripheral nerve injury (Chang
et al., 2021; Gao et al., 2022). Chang et al. (2021) pointed
out complex IV subunit 4 isoform 2 (Cox4i2) can trigger an
increase in reactive oxygen species, leading to ferroptosis and
apoptosis in human herpesvirus 7 (HHV7) infected SCs. Gao
et al. (2022) found the overexpression of c-Jun, a key regulator of
the response of SCs to peripheral nerve injury, inhibits erastin-
induced ferroptosis in SCs and promotes repair of facial nerve
function.

Previous analysis of ferroptosis-resistant cell lines and
a CRISPR suppression screen independently yielded ACSL4
inactivation as a key mechanism for suppressing ferroptosis in
diverse contexts (Doll et al., 2017). ACSL4 may be more akin to
caspase-3, the executioner of apoptosis, than to a housekeeping
protein (Stockwell, 2022). These results implied there may exist
a close relationship between ACSL4 and ferroptosis in the SCs,
although changes in the expression of ACSL4 were not detected
directly in the above two studies.

ACSL5

ACSL5 is encoded by ACSL5 gene, of which the preferred
substrates are palmitate, palmitoleate, oleate, and linoleate (Klett
et al., 2017). The current studies mainly reported its correlation
with glioma and ALS.

Glioma
Mashima et al. (2009b) reported that ACSL5 is

overexpressed in malignant glioma, and can selectively
enhance human glioma cell survival through its ACS catalytic
activity under extracellular acidosis. cDNA microarray analysis
further suggested that ACSL5 was critical to the expression
of tumor-related factors including midkine (MDK), and

the knockdown of MDK expression significantly attenuated
ACSL5-mediated survival under an acidic state (Mashima
et al., 2009b). Mashima et al. (2009a) also found that ACSL5
inhibition can synergistically potentiate the glioma cell death
induced by etoposide, a well-known activator of apoptosis. In
another earlier study, Yamashita et al. (2000) found FA-induced
glioma cell growth is mediated by the ACSL5 gene located
on chromosome 10q25.1-q25.2, where deletion frequently
happened in malignant gliomas. This evidence demonstrated
the important role of ACSL5 on glioma cell growth.

Amyotrophic lateral sclerosis
In a study on genome-wide data analysis, ACSL5 was

identified as one of six differentially expressed genes through
two-sample Mendelian randomization (Saez-Atienzar et al.,
2021). Another genome-wide meta-analysis on data from
European and Chinese populations (84,694 individuals) also
found the ACSL5-ZDHHC6 locus is associated with ALS and
links weight loss to the disease genetics—body weight loss is
a frequent complication in ALS patients and is reported to be
associated with shorter survival (Iacoangeli et al., 2020). This
connection between ACSL5 and ALS was also confirmed by
Nakamura et al. (2020) in a genome-wide association study
using 1,173 sporadic ALS cases and 8,925 controls in a Japanese
population.

ACSL6

ACSL6 is reported to have an equal preference for saturated
and polyunsaturated FA with a backbone of C16–C20 (Lopes-
Marques et al., 2013). ACSL6 is enriched in the brain and highly
critical for maintaining brain omega-3 FA docosahexaenoic
acid (DHA) levels (Chouinard-Watkins and Bazinet, 2018;
Fernandez et al., 2018). DHA is also abundant in the brain and
helpful in protection against numerous neurological disorders,
and this type of protective effect can be enhanced by ACSL6
(Fernandez et al., 2018). However, it is noteworthy that the
neuroprotection effect was confirmed to be confined only to
neurons, not in astrocytes (Fernandez et al., 2021). Besides,
ACSL6-related NSDs mainly include AD and schizophrenia.

Alzheimer’s disease
As one of the DHA transporters (another known is Fatp4),

the alteration in the expression of ACSL6 may be a risk
factor for an exacerbation of cognitive and neurological deficits
in patients with AD (Pontifex et al., 2021). It was reported
that overexpression of ACSL6 in nerve cells can significantly
increase DHA and AA internalization within the first 24 h of
neuronal differentiation to stimulate and enhance phospholipids
synthesis and neurite outgrowth (Marszalek et al., 2005).
Silencing ACSL6 inhibits axon outgrowth of mouse neural
cells. ACSL6-induced activation of acetylcholinesterase may
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be involved in this process, as acetylcholinesterase promotes
neural differentiation. The insufficiency of ACSL6 can lead
to neuronal degeneration, while its over-expression is closely
associated with neurite outgrowth (Kim et al., 2009). Lipid
profiling of ACSL6−/− (loss of ACSL6) tissues reveals consistent
reductions in DHA-containing lipids in tissues highly abundant
with ACSL6 (Fernandez et al., 2018), and ACSL6−/− depletes
brain membrane phospholipid DHA levels, which is related to
motor function, memory, and age-related neuroinflammation
(Fernandez et al., 2021).

Schizophrenia
ACSL6 gene is also reported to be associated with

schizophrenia (Chen et al., 2006, 2011). Its variation may
contribute to the number of cigarettes smoked in patients (Chen
et al., 2011). For example, nicotine exposure can stimulate the
expression of ACSL6 in the prefrontal cortex and hippocampus
of mice (in vivo), which can be suppressed by injection of the
nicotinic receptor antagonist mecamylamine (Chen et al., 2011).
However, in another candidate gene association analysis, the
authors claimed their results did not yield convincing evidence
for associations of schizophrenia with ACSL6 (Chowdari et al.,
2007).

Conclusion

ACSLs are involved in some biological responses by
activating long-chain FAs in the nervous system, such as
tumor development, progression and cell death. Several diseases
are related to more than one subtype. For example, the
progression of glioma is regulated by four members of ACSLs,
including ACSL1, 3, 4, and 5; ALS is associated with the
dysregulation of at least three subtypes of ACSLs, including
ACSL1, 4, and 5.

However, most of the previous studies mainly focused on
the central nervous system and presented encouraging results,
while little evidence on the relationship between ACSLs and
peripheral nervous diseases has been provided. Although some
recent studies have proposed the key roles of ACSL4 in the
mechanism of neuropathic pain induced by peripheral nerve
injury, few studies are involved in the regulation effect of
ACSLs in the SCs.

Furthermore, ACSL4 is universal in numerous NSDs
because it correlates with ferroptosis and has been predicted
to be the potential therapeutic target in some NSDs. It is
noteworthy that ferroptosis was not mentioned in studies
that suggested ACSL4 gene dysfunction leads to intellectual
disability. However, this doesn’t mean ferroptosis is not relevant
to these diseases due to its close relationship with ACSL4.
Further studies are needed to verify the inner correlation
between ferroptosis and these neurological disorders.

What’s more, ACSL1, 3, and 5 are also reported to be
ferroptosis-relevant isoforms. For example, ACSL1 can mediate
α-eleostearic acid (ESA) -triggered ferroptosis as well as αESA
incorporation into specific lipid species including DAGs and
TAGs. ACSL3 can activate MUFAs (e.g., oleic acid) and promote
a ferroptosis-resistant cell state. ACSL5 has also been identified
as the ferroptosis-related gene in cancer. Although they play
important roles in non-NSDs, their functions in the nervous
system have not been well proven.

In conclusion, plenty of encouraging findings
indicated that targeting ACSLs and ferroptosis may be
a novel potential therapeutic strategy, especially in the
situation of NSDs.
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