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Structural changes and neuropathology in the hypothalamus have been

suggested to contribute to the non-motor manifestations of Huntington’s

disease (HD), a neurodegenerative disorder caused by an expanded cytosine-

adenine-guanine (CAG) repeat in the huntingtin (HTT) gene. In this study,

we investigated whether hypothalamic HTT expression causes transcriptional

changes. Hypothalamic RNA was isolated from two different HD mouse

models and their littermate controls; BACHD mice with ubiquitous expression

of full-length mutant HTT (mHTT) and wild-type mice with targeted

hypothalamic overexpression of either wild-type HTT (wtHTT) or mHTT

fragments. The mHTT and wtHTT groups showed the highest number

of differentially expressed genes compared to the BACHD mouse model.

Gene Set Enrichment Analysis (GSEA) with leading-edge analysis showed

that suppressed sterol- and cholesterol metabolism were shared between

hypothalamic wtHTT and mHTT overexpression. Most distinctive for mHTT

overexpression was the suppression of neuroendocrine networks, in which

qRT-PCR validation confirmed significant downregulation of neuropeptides

with roles in feeding behavior; hypocretin neuropeptide precursor (Hcrt),

tachykinin receptor 3 (Tacr3), cocaine and amphetamine-regulated transcript

(Cart) and catecholamine-related biological processes; dopa decarboxylase

(Ddc), histidine decarboxylase (Hdc), tyrosine hydroxylase (Th), and vasoactive

intestinal peptide (Vip). In BACHD mice, few hypothalamic genes were

differentially expressed compared to age-matched WT controls. However,

GSEA indicated an enrichment of inflammatory- and gonadotropin-related

processes at 10 months. In conclusion, we show that both wtHTT and

mHTT overexpression change hypothalamic transcriptome profile, specifically
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mHTT, altering neuroendocrine circuits. In contrast, the ubiquitous expression

of full-length mHTT in the BACHD hypothalamus moderately affects the

transcriptomic profile.

KEYWORDS

Huntington’s disease, neuroendocrine, hypothalamus, microarray, HD mouse
models, huntingtin, differential expression

Background

Huntington’s disease (HD) is a fatal neurodegenerative
disorder caused by a CAG repeat expansion in exon one
in the huntingtin (HTT) gene (The Huntington’s Disease
Collaborative Research Group, 1993). The expanded repeat
results in the formation of a mutant HTT protein (mHTT) with
an abnormally long polyglutamine (polyQ) stretch, associated
with protein misfolding and aggregation of the mutant protein
in neurons (The Huntington’s Disease Collaborative Research
Group, 1993; Bates et al., 2015). The length of CAG repeats
is inversely correlated to the age of onset, with 40 or more
CAG repeats resulting in full-penetrance and 60 or more repeats
to juvenile HD (Rubinsztein et al., 1996; Brinkman et al.,
1997). Currently, there is no cure for HD. Gene-silencing
approaches are tested in clinical trials, including interventions
that either selectively silence the mutant HTT or both mutant
and normal alleles (Wild and Tabrizi, 2017; Tabrizi et al., 2019),
which stresses the need for further understanding of normal
HTT function in cells. Several in vitro and in vivo studies
showed that normal HTT is involved in numerous cellular
processes, including cell maturation, vesicle trafficking, synaptic
transmission, and neuroprotection [reviewed in Cattaneo et al.
(2005), van der Burg et al. (2009), Saudou and Humbert (2016),
and Barron et al. (2021)].

Abbreviations: AAV, adeno-associated viruses; BAC, bacterial artificial
chromosome; BACHD, bacterial artificial chromosome (BAC)-mediated
transgenic mouse model; BMI, body mass index; BP, biological process;
Cart, cocaine- and amphetamine-regulated transcript; Cxcl, C-X-C
motif chemokines; DAVID, database for annotation, visualization, and
integrated discovery; Ddc, dopa decarboxylase; ES, enrichment score;
FA, fatty acid; FC, fold change; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; GO, gene ontology; GFP, green fluorescent protein;
Ghrh, growth hormone-releasing hormone; Gnrh, gonadotropin-
releasing hormone; GSEA, gene set enrichment analysis; Hcrt,
orexin/hypocretin protein; HD, Huntington’s disease; Hdc, histidine
decarboxylase; HTT, huntingtin; Idi1, isopentenyl-diphosphate delta
isomerase 1; Limma, linear models for microarray analysis; Ldlr,
low-density lipoprotein receptor; Mfsd2a, major facilitator superfamily
domain-containing 2A; NES, normalized enrichment score; Nm,
neuromedin; Oprm1, opioid receptor mu 1; PCA, principal component
analysis; qRT-PCR, quantitative real-time polymerase chain reaction;
rAAV5, recombinant AAV vector serotype 5; RIN, RNA integrity number;
RMA, robust multi-array average; Slc18a2, the gene encoding the
vesicular monoamine transporter 2 (VMAT); Stoml3, stomatin-like
protein 3; Syn-1, synapsin-1; Sv2c, synaptic vesicle glycoprotein 2C;

The hypothalamus plays a primary role in the central-
peripheral regulatory network that maintains body homeostasis,
including regulating whole-body energy metabolism (Anand
and Brobeck, 1951; Brown et al., 2012; Waterson and Horvath,
2015; Feldman et al., 2016). Metabolic alterations and other
non-motor symptoms with a hypothalamic link are present
throughout all stages of HD and have been shown in HD
animal models (Kirkwood et al., 2001; Djoussé et al., 2002; Duff
et al., 2007; Mochel et al., 2007; Hult et al., 2011; Hult Lundh
et al., 2013; Dickson et al., 2022). Imaging and post-mortem
studies in clinical and animal models revealed pathological
changes such as atrophy, reduced gray matter content, and loss
of neuropeptides in the hypothalamus, some of that can be
detected even before the onset of motor features (Kassubek et al.,
2004; Petersén et al., 2004; Kotliarova et al., 2005; Aziz et al.,
2008; Politis et al., 2008; Soneson et al., 2010). In addition,
a higher baseline body mass index (BMI) is associated with
slower disease progression (van der Burg et al., 2017). However,
prior studies on high caloric diets and the use of transgenic
mice to induce weight gain appear insufficient to significantly
modify disease features in HD animal models (Sanberg et al.,
1981; Fain et al., 2001; Trejo et al., 2004; van der Burg et al.,
2008; Marder et al., 2009; Sjögren et al., 2019). In line with
this, van der Burg et al. followed up on results from the
original BMI and disease progression study (van der Burg
et al., 2017) and reported no causal relation between BMI
and age of onset in clinical HD (van der Burg et al., 2021).
Further studies are required on the normal HTT and mHTT
functions in crucial areas for metabolic control, including the
hypothalamus, to elucidate mechanisms underlying metabolic
changes in HD.

Transcriptional dysregulation in the striatum is one of the
hallmarks of HD (Zucker et al., 2005; Thomas, 2006; Malaiya
et al., 2021). Specific gene expression changes using qRT-PCR
have also been reported in the HD hypothalamus (Hult et al.,
2011; Soylu-Kucharz et al., 2015; Baldo et al., 2019). Large-
scale transcriptome analysis has not been performed to identify
the hypothalamic alterations after targeted wtHTT and mHTT

Tacr3, tachykinin receptor 3; Th, tyrosine-hydroxylase; Vip, vasoactive
intestinal peptide; WT, wild-type; wtHTT, wild-type huntingtin; mHTT,
mutant huntingtin.
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expression. Therefore, in this study, we performed microarray
profiling of hypothalamic samples from two different HD
mouse models; the transgenic BACHD mice [bacterial artificial
chromosome (BAC)-mediated; full-length mHTT] and wild-
type mice with hypothalamus targeted overexpression of
N-terminal HTT fragments (wtHTT 18Q; AAV-HTT853-18Q
or mHTT 79Q; AAV-HTT853-79Q). Both models share the
feature of increased food intake and early weight gain but differ
in the rate of disease progression and extent of hypothalamic
pathology (Gray et al., 2008; Hult et al., 2011). We analyzed
each mouse model using their age-matched wild-type (WT)
littermates as control groups. The AAV datasets wtHTT 18Q
vs. WT and mHTT 79Q vs. WT had the highest number of
significantly altered genes across models. Gene Set Enrichment
Analysis (GSEA) identified a set of shared genes between
wtHTT 18Q vs. WT and mHTT 79Q vs. WT related to sterol-
and cholesterol processes. Further, gene sets associated with
suppressed feeding behavior were among the top-ranked KEGG
pathways in the mHTT 79Q vs. WT dataset. Taken together,
our data support transcriptional dysregulation as an essential
mechanism of action for mHTT in inducing hypothalamic
pathology in HD animal models.

Materials and methods

Ethical considerations

All the mice used in the study were housed in groups and
maintained at a 12 h light/dark cycle with free access to a
standard chow diet and water. All the experimental procedures
performed on mice were carried out in accordance with the
approved guidelines in the ethical permits approved by Lund
University Animal Welfare and Ethics committee in the Lund-
Malmö region (Ethical permit numbers: 12585/2017, M20-11,
M65-13, and M135-14).

Animals

Microarray profiling of the hypothalamic transcriptome was
performed in Adeno-associated viral (AAV) vector-mediated
groups of WT mice with targeted expression of wtHTT (AAV-
HTT853-18Q) or mHTT (AAV-HTT853-79Q) fragments and
BACHD mice that express full-length mHTT (97Q) (Gray et al.,
2008). Both HD models were compared to age-matched WT
controls. All mice used in the study were females from the
FVB/N strain.

AAV vector-mediated HD models achieve region-specific
overexpression of HTT fragments in the brain through targeted
injections using stereotactic surgery. AAV groups were assessed
at 4 weeks post-injection since this was the earliest timepoint
for a significant weight gain, as shown in previous studies

(Hult et al., 2011; Dickson et al., 2022). The vector constructs
used in the present study was a recombinant AAV vector of
serotype 5 (rAAV5) carrying an 853 amino acid N-terminal
HTT fragment corresponding to either wtHTT (18 CAG
repeats; AAV-HTT853-18Q) or mHTT (79 CAG repeats; AAV-
HTT853-79Q) under control by the human Synapsin-1 (Syn-
1) promoter (de Almeida et al., 2002). Stereotactic injections
in the hypothalamus were performed as described previously
(Hult et al., 2011). In brief, 8 weeks old WT female mice were
bilaterally injected, and the surgeries were performed under
isoflurane anesthesia. The anterior-posterior (AP) and medial-
lateral (ML) stereotaxic coordinates for the hypothalamus
were determined according to bregma, and dorsal-ventral
(DV) coordinates were calculated from the dura mater. The
hypothalamic coordinates were AP = 0.6 mm, ML = 0.6 mm, and
DV = 5.3 mm. A total viral vector volume of 0.5 µl was delivered
in each hemisphere. Following an initial injection of 0.1 µl of
viral vector solution, 0.05 µl of viral vectors were delivered in
intervals of 15 s. Following the injection, the glass capillary was
left in the target for an additional 5 min. The vectors and titers
were as follows: rAAV5-hSyn-HTT853-18Q: 1.3E + 14 GC/ml,
and rAAV5-hSyn-HTT853-79Q: 1.2Ex14 GC/ml. A group of
WT littermates (uninjected mice) was kept as a control group.
Group numbers for each AAV group were: 18Q: n = 5, 79Q: n = 8
and WT control: n = 5.

Bacterial artificial chromosome-mediated transgenic mouse
model is a transgenic mouse model of HD and ubiquitously
expresses a full-length human mHTT (97 CAG repeats; 97Q)
(Gray et al., 2008). In the study, BACHD mice were assessed at
two time points, one group representing the early (2 months
of age) and the second group late stages (10 months of age)
of the disease in comparison to their WT littermate controls
(Gray et al., 2008; Hult et al., 2011). For 2 months of age, group
numbers were the following: BACHD: n = 6 and WT: n = 6, and
for 10 months of age: BACHD: n = 5 and WT: n = 3.

Tissue collection and RNA extraction

Hypothalamic tissue was dissected on ice and snap-
frozen in liquid nitrogen after a terminal dose of sodium
pentobarbital (600 mg/kg, Apoteksbolaget, Lund, Sweden)
via intraperitoneal injection. Total RNA was extracted using
the RNeasy Lipid Tissue Mini Kit (Qiagen Inc, Hilden,
Germany) according to the manufacturer’s instructions. RNA
concentration and RNA quality measured in terms of RNA
integrity number (RIN) were determined using the Agilent 2,100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Samples with poor RIN (<7) were omitted from further analysis.
Microarray analysis was performed on total hypothalamic RNA
using the Affymetrix platform (Mouse Gene ST 1.0 array;
Affymetrix platform - Thermo Fisher Scientific, Santa Clara, CA,
USA).
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FIGURE 1

Limma of microarray datasets show the most pronounced effect on gene expression in mouse groups overexpressing huntingtin (HTT) in the
hypothalamus. A total of 34,760 variables (probe IDs) from the Affymetrix platform were analyzed by limma. (A) Principal Component Analysis
(PCA) of all samples from the AAV groups was analyzed at 4 weeks post-injection. (B) PCA of samples from bacterial artificial chromosome
(BAC)-mediated transgenic mouse model (BACHD) mice compared to age-matched controls at 2 months of age. (C) PCA of samples from
BACHD mice compared to age-matched controls at 10 months of age. (D–F) Volcano plots for the AAV groups. Color key for variables:
gray = non-significant (p-value > 0.05), blue = p-value < 0.05, and red = p-value < 0.05 and log2(FC) > 1 or log2(FC) < −1. Gene names of the
top 10 upregulated and top 10 down-regulated genes when filtered for adj. p-value and log2(FC) are displayed. For the 79Q vs. 18Q dataset, no
gene passed adj. p-value < 0.05, instead the top genes are marked based on only log2(FC) (Supplementary Data Sheet 1). (G,H) Volcano plots
for the BACHD groups; 2 months of age (early stage of disease) and 10 months of age (late stage) (Supplementary Data Sheet 1). No gene
passed adj. p-value < 0.05; displayed are the top 10 upregulated and top 10-downregulated genes based on only log2(FC). AAV,
adeno-associated viral vector; 79Q, HTT853-79Q vector; 18Q, HTT853-18Q vector; Limma, linear models for microarray data.

Data pre-processing and limma

Analyses were made using R v.4.1.1 (R Core Team, 2022).
Raw .CEL-files obtained from the microarray analysis using
the Affymetrix platform (34,760 variables) were imported using

ReadAffy, followed by pre-processing of the raw data set using
Robust Multi-Array Averaging (RMA); both functions were
from the affy package (v. 1.70.0) (Gautier et al., 2004). A design
matrix was created to illustrate analysis groups for the samples.
WT samples were used as a reference level. A linear model was
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fitted for each gene using lmFit. MakeContrasts was used to
specify which groups to compare, followed by contrasts.fit to
perform the comparison (Phipson et al., 2016). Subsequently,
empirical Bayes smoothing was applied to the standard errors
(limma, v.3.48.3) (Ritchie et al., 2015). This resulted in a result
matrix for each contrast comparison. For downstream analyses,
probe IDs with “NA” were excluded. Outputs from limma can be
found in Supplementary Data Sheet 1.

Heatmaps

Limma output files for 18Q vs. WT and 79Q vs. WT were
sorted based on adj. p-value followed by sorting it from the
highest log2 (FC) to the lowest. The top 10 most upregulated and
top 10 most downregulated significantly differentially expressed
genes were identified, and their respective RMA-limma values
were used to construct and color the heatmap. Heatmaps
were generated using the pheatmap package in R1 (v. 1.0.12)
(Warnes et al., 2015). Hierarchical clustering was performed
using Euclidean distance and average linkage. RMA-limma
values were scaled using the function scale().

Functional Annotation Clustering in
database for annotation, visualization,
and integrated discovery

Gene lists of 18Q vs. WT and 79Q vs. WT used for
DAVID Functional Annotation Clustering were retrieved by
filtering each limma dataset to only retrieve genes with an adj.
p-value < 0.05. The 18Q vs. WT and 79Q vs. WT datasets were
subsequently sorted into three gene sets: shared genes, unique
genes for 18Q vs. WT, and unique genes for 79Q vs. WT. The
shared and unique gene lists (ENTREZ IDs) were imported
into DAVID2 (Huang da et al., 2009; Sherman et al., 2022) for
Functional Annotation Clustering. Three categories were used:
UP_KW_BP, GOTERM_BP_DIRECT, and KEGG_PATHWAY.
The default settings for Functional Annotation Clustering were
used, including the Classification Stringency of “Medium.”
Gene lists with Annotation Summary Results and Functional
Annotation Clustering outputs from DAVID are listed in
Supplementary Data Sheet 2.

Gene set enrichment analysis

ClusterProfiler (v.4.0.5) was used to perform GSEA (Yu
et al., 2012; Wu et al., 2021). The function gseGO was used
to assess the enrichment of GO terms and gseKEGG to assess

1 https://cran.r-project.org/web/packages/pheatmap/index.html

2 https://david.ncifcrf.gov/

enrichment of KEGG pathways. The analysis was performed on
the entire gene list obtained from the limma analysis, besides
the removal of probe IDs to which no gene could be mapped
(“NA”). As organism, mogene10sttranscriptcluster.db was used,
and mmu for KEGG (Kanehisa et al., 2016; MacDonald, 2017)
(KEGG34). The reported p-values were further adjusted using
the Benjamini-Hochberg procedure to correct for multiple
testing. Outputs from GSEA can be found in Supplementary
Data Sheet 3 (GO) and Supplementary Data Sheet 4 (KEGG).

Quantitative real-time polymerase
chain reaction validation of microarray
data

To synthesize cDNA, 1 µg of RNA from each sample was
reverse transcribed using SuperScript IV Reverse Transcriptase
SuperScript IV kit (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. Mouse qRT-PCR primers were
designed using Primer3Plus software (Untergasser et al., 2012).
qRT-PCR reactions were carried out in triplicates following
a three-step amplification protocol using the LightCycler
480 system (Roche, Basel, Switzerland). The 11CT method
(Livak and Schmittgen, 2001) was used to calculate gene
expression changes relative to housekeeping genes β-actin and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Primer
sequences are listed in Supplementary Table 1.

Statistical analyses

Statistical analysis of qRT-PCR data was performed using
Graphpad Prism 9 (Version 9.4.1, San Diego, CA USA).
(GraphPad software - San Diego, CA USA). Data were
analyzed using non-parametric Mann-Whitney U tests with a
p-value < 0.05 considered statistically significant.

Results

Differential expression analysis of
microarray profiling data from
adeno-associated viruses and bacterial
artificial chromosome-mediated
transgenic mouse models using linear
models for microarray data analysis

Principal component analysis (PCA) of the microarray data
showed a clear separation of the AAV-HTT groups from the WT

3 https://www.kegg.jp/

4 https://www.genome.jp/kegg/
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samples (Figure 1A). PCA of BACHD mice at 2 and 10 months
showed no clear separation compared to WT (Figures 1B,C).
Volcano plots of log2 (FC) and the p-value in the limma
datasets comparing injected mice to uninjected (18Q vs. WT and
79Q vs. WT) showed a skewed distribution with a preference
for upregulated genes in the injected mice (Figures 1D,E).
Filtering the dataset based on Benjamini-Hochberg adjusted
p-values < 0.05 resulted in 735 variables in 18Q vs. WT and
721 in 79Q vs. WT. In the 79Q vs. 18Q dataset that compares
the HTT vector injected groups, none of the variables passed the
adj. p < 0.05 cutoff (Figure 1F).

With a p < 0.05 cutoff, 1,422 variables remained for BACHD
2 months vs. WT (Figure 1G) and 1,648 variables for BACHD
10 months vs. WT (Figure 1H), but none of the variables passed
filtering for adj. p < 0.05.

A set of significantly altered genes
related to sterol- and cholesterol
processes are shared between mice
overexpressing wild-type and mutant
huntingtin fragments

The 18Q vs. WT and 79Q vs. WT datasets had the
highest number of significant (adj. p < 0.05) variables, and we
further analyzed the data using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (see text
footnote 2) (Huang da et al., 2009; Sherman et al., 2022).
Previous studies have shown that wtHTT and mHTT impact
the body to varying degrees [reviewed in Cattaneo et al. (2005),
van der Burg et al. (2009), and Saudou and Humbert (2016)],
highlighting the effects of both gain and loss of HTT functions.
However, increased body weight can be caused by both wtHTT
and mHTT expression in mice, where the most notable increase
is displayed by mice expressing mHTT (Van Raamsdonk et al.,
2006; Hult et al., 2011; Baldo et al., 2013; Dickson et al., 2022).
Furthermore, HD mouse models expressing full-length HTT
(i.e., BACHD, YAC18) also share a similar phenotype (Pouladi
et al., 2010; Hult et al., 2011). Therefore, we compared significant
genes (adj. p < 0.05) identified by limma between the 18Q vs.
WT and 79Q vs. WT datasets (Supplementary Data Sheet 1),
using the DAVID tool to investigate the functional annotation
of shared and unique genes between the HTT groups (18Q
vs. WT and 79Q vs. WT) (Figure 2A). DAVID Functional
Annotation Clustering was performed using three categories:
Biological Process (BP) from gene ontology (GO), BP keywords
from Uniprot, and KEGG pathways.

For 18Q vs. WT, the unique gene set consisted of 216
genes, 155 with log2(FC) > 0 and 61 with log2(FC) < 0
(Figure 2A). Functional Annotation Clustering of the 18Q vs.
WT unique gene set showed clusters related to inflammation
and the immune system in the top 10 [enrichment score (ES)
range = 8.40–1.16] (Figure 2B). Comparing log2(FC) of genes

in the top cluster in 18Q vs. WT [n = 51 genes, (adj. p < 0.05)
to 79Q vs. WT (adj. p > 0.05)] showed that the gene with the
highest difference in log2(FC) was immunoglobulin heavy chain
(X24 family) (Igh-VX24) followed by tripartite motif-containing
30D (Trim30d) and toll-like-receptor 7 (Tlr7) [log2(FC): (18Q
vs. WT–79Q vs. WT); Igh-Vx24: 1.04, Trim30d: 0.42, Tlr7: 0.34].
Across all 51 genes, the mean difference with 95% CI was 0.135
(0.090, 0.181) (Supplementary Data Sheet 1, 2).

For 79Q vs. WT, the unique gene set consisted of 185
genes, 54 with log2(FC) > 0 and 131 with log2(FC) < 0
(Figure 2A). Among the top 10 annotation clusters for 79Q
vs. WT were sterol- and cholesterol-related terms, neuropeptide
function, and immune-related pathways (ES range = 1.83–
1.03) (Figure 2C). Comparison of the log2(FC) of genes
in the top cluster (sterol- and cholesterol-related) in 79Q
vs. WT (n = 12 genes, adj. p < 0.05) to 18Q vs. WT
(adj. p > 0.05) showed a mean difference with 95% CI
of -0.042 (-0.078, -0.006). In the top 5/10 cluster related
to neuroactive ligands (GO:0032355∼response to estradiol,
GO:0007568∼aging, mmu04080∼Neuroactive ligand-receptor
interaction, n = 12 genes), we found a mean difference in
log2(FC) of -0.067 (-0.141, 0.006) between the 79Q vs. WT and
18Q vs. WT datasets, where the genes with the highest difference
were proenkephalin (Penk) and tachykinin receptor 3 (Tacr3)
[log2(FC): (79Q vs. WT-18Q vs. WT); Penk: -0.26, Tacr3: -0.24]
(Supplementary Data Sheets 1, 2).

The shared gene list between 18Q vs. WT and 79Q vs. WT
consisted of 410 genes with log2(FC) > 0 and 39 genes with
log2(FC) < 0 (Figure 2D and Supplementary Data Sheet 2).
An immune system-related annotation cluster was top-ranked
(ES = 61.36), followed by enrichment of clusters involving
immune system components and diseases related to immunity
(Figure 4D). Sterol-and cholesterol-related terms constituted
annotation cluster 10 (ES = 2.99) containing 37 genes such as
low-density lipoprotein receptor [Ldlr; log2(FC) 18Q vs. WT:
−0.49, 79Q vs. WT: −0.54] (Supplementary Data Sheets 1, 2).

Top-ranked downregulated genes in
mice overexpressing huntingtin show
functional associations with
biosynthetic- and neuroendocrine
processes

Next, we assessed the top 10 up- and top 10 downregulated
genes [adj. p and log2(FC)] in the 18Q vs. WT and 79Q vs.
WT datasets (Supplementary Data Sheet 1). For 18Q vs. WT,
among the top 10 downregulated genes were Ldlr, isopentenyl-
diphosphate delta isomerase 1 (Idi1), and major facilitator
superfamily domain-containing 2A (Mfsd2a) (Figure 3A), genes
that were also among top 10 downregulated in the 79Q vs. WT
dataset. In addition, part of the top 10 downregulated genes in
79Q vs. WT were neuromedin S (Nms), Hdc, synaptic vesicle
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FIGURE 2

DAVID Functional Annotation Clustering of unique and shared genes between the 18Q vs. WT and 79Q vs. Wild type (WT) datasets. 18Q vs. WT
and 79Q vs. WT datasets were filtered based on adj. p < 0.05 and separated into three gene sets: shared genes, genes unique for 18Q vs. WT,
and genes unique for 79Q vs. WT. Functional Annotation Clustering was performed using the DAVID bioinformatics resource (Huang da et al.,
2009; Sherman et al., 2022) on each gene set. Categories used for clustering were KEGG pathways and Biological process (BP) from GO and
keyword BP from Uniprot. (A) Venn diagram showing the number of shared and unique genes between 18Q vs. WT and 79Q vs. WT, shown as
separated by log2(FC) < 0 and log2(FC) > 0. (B–D) The top 10 DAVID annotation clusters (based on enrichment score, ES). The y-axis denotes
annotation clusters; the full output and lists of each respective gene set can be found in Supplementary Data Sheet 2. (B) Unique gene set (adj.
p < 0.05) in 18Q vs. WT, (C) unique gene set (adj. p < 0.05) in 79Q vs. WT, and (D) shared gene set (adj. p < 0.05) between the 18Q vs. WT and
79Q vs. WT datasets. DAVID, database for annotation, visualization, and integrated discovery; GO, gene ontology; ES, enrichment score; 79Q,
HTT853-79Q vector; 18Q, HTT853-18Q vector; limma, linear models for microarray data, FC, fold change.

glycoprotein 2C (Sv2c), and Tacr3 (Figure 3B). Comparing the
top 10 upregulated genes between 18Q vs. WT and 79Q vs. WT
showed that seven out of 10 were shared and related to the
immune system.

Next, we elaborated further on the functional implications
of the differences in the top 10 downregulated genes between

18Q vs. WT and 79Q vs. WT. GSEA of GO-BP with leading-
edge analysis (Subramanian et al., 2005) was used to consider
the cross-correlation of the top 10 downregulated genes with
changes across the whole limma dataset and relation to
biological processes (Supplementary Data Sheet 3). The top
10 downregulated genes were compared to leading-edge gene
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FIGURE 3

Top-ranked downregulated genes in the 79Q vs. wild type (WT) dataset include histidine decarboxylase (Hdc), tachykinin receptor 3 (Tacr3), and
neuromedin S (Nms). Heatmap of scaled RMA-limma values [scale(rows)] with hierarchical clustering showing the top 10 up- and top 10
downregulated genes, based on adj. p and log2(FC) in (A) 18Q vs. WT and (B) 79Q vs. WT. Hdc, Tacr, Nms, and Sv2c, associated with
neuroendocrine signaling, were significantly altered (criteria adj. p < 0.05) in the 79Q vs. WT limma dataset. 79Q, HTT853-79Q vector; 18Q,
HTT853-18Q vector; Sv2c, synaptic vesicle glycoprotein 2C.

sets in the GSEA-GO BP outputs. For the top five GSEA-GO
BP (ranked by normalized enrichment score: NES), the top
10 downregulated genes were related to biosynthesis and/or
metabolism of sterol, cholesterol, isopentenyl diphosphate,
and phosphatidylcholine. For 79Q vs. WT, multiple of the
top 10 downregulated genes could be attenuated in leading-
edge subsets (top five GSEA-GO BP per gene) for behavioral
processes (“behavior,” “circadian behavior,” “feeding behavior”)
and neuropeptide signaling pathways. Taken together, at 4 weeks
post-injection, wtHTT and mHTT overexpression groups share
genes that are involved in biosynthetic pathways. However,
specific to mHTT overexpression are significant decreases in
key neuropeptides, an effect that is not found or of a lower
magnitude for wtHTT overexpression.

Hypothalamic wild-type and mutant
huntingtin overexpression causes
widespread alteration of biosynthetic
pathways

Next, we used GSEA with a leading-edge analysis of KEGG
pathways (Subramanian et al., 2005). As shown in Figure 1,
none of the genes passed adj. p-value < 0.05 for the 79Q vs.

18Q and BACHD datasets. By using GSEA, we may still identify
biologically relevant pathways that exhibit noteworthy cross-
correlation between genes with a subtle change in expression
levels or weak statistical significance (Supplementary Data
Sheet 4).

GSEA-KEGG of 18Q vs. WT and 79Q vs. WT datasets
showed that the majority of the significantly enriched KEGG
pathways in the top-ranked list (the top 10 NES > 0 and
top 10 NES < 0: Figures 4A,B) were shared and related
to biosynthesis (“Terpenoid backbone synthesis,” “Steroid
biosynthesis”), inflammation and immune system (“Antigen
processing and presentation,” “Cytokine-cytokine receptor
interaction”), and neuroendocrine signaling (“Endocrine and
other factor-regulated calcium reabsorption,” “Neuroactive
ligand-receptor interaction”).

In the 79Q vs. 18Q dataset, all significantly enriched
pathways identified by GSEA (n = 38, Supplementary Data
Sheet 4) had a negative NES score, indicating suppression.
The top 10 pathways were related to the immune system
and “Neuroactive ligand-receptor interaction” (Figure 4C).
For “Neuroactive ligand-receptor interaction” (mmu04080,
NES = −1.93) the mean with 95% CI of the leading-edge gene set
(n = 108, adj. p > 0.05) was -0.156 (-0.192, -0.121). The leading-
edge gene with the lowest log2(FC) was prolactin (Prl) at -1.63
followed by growth hormone (Gh) -1.02, Vip -0.59, the alpha
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subunit of glycoprotein hormones (Cga) -0.53 and hypocretin
(Hcrt) -0.35 (Supplementary Data Sheets 1, 4).

For 2 months old BACHD vs. WT, GSEA-KEGG identified
three pathways; “Glutamatergic synapse” (mmu04724,
NES = 1.69), “Biosynthesis of unsaturated fatty acids”
(mmu01040, NES = −2.03) and “Fatty acid elongation”
(mmu00062, NES = −2.06) (Supplementary Image 1A).
Among leading-edge genes that had high fold change vs. WT
and difference in the 10 months old BACHD vs. WT dataset
were acyl-CoA thioesterase 5 (Acot5) and vesicular glutamate
transporter 1 (Slc17a7) that were respectively part of the fatty-
acid related and “Glutamatergic synapse” pathways [log2(FC);
Acot5: 2 months vs. WT: 0.33, 10 months vs. WT: -0.09; Slc17a7:
2 months vs. WT: -0.46, 10 months vs. WT: 0.43]. None of
the three pathways identified in 2 months old BACHD vs. WT
were significant in GSEA-KEGG for 10 months old BACHD vs.
WT. When comparing each leading-edge gene set in 2 months
old BACHD vs. WT to the same genes in 10 months BACHD
vs. WT, the mean log2(FC) difference was <0.2 for all three
pathways. Instead, for 10 months old BACHD vs. WT, fourteen
KEGG pathways were identified (Supplementary Image 1B).
Immune-related pathways such as “Antigen processing and
presentation” (mmu04612, NES = 1.90) had the highest number
of leading-edge gene overlap (Supplementary Data Sheet 4).
Histocompatibility 2, class II antigen A, alpha (H2-Aa), and
Cd74 were among the leading-edge genes with the highest
log2(FC) and difference from the 2 months of age vs. WT
dataset [log2(FC); H2-Aa: 10 months vs. WT: 0.73, 2 months
vs. WT: 0.09 and Cd74: 10 months vs. WT: 0.99, 2 months
vs. vs. WT: 0.05]. Pathways related to gonadotropin-releasing
hormone (Gnrh), all NES > 0, were also found in 10 months
old BACHD vs. WT, where the alpha subunit of glycoprotein
hormones (Cga) was among the leading-edge genes with the
highest fold change [log2(FC); Cga: 10 months vs. WT: 1.66,
2 months vs. WT: -0.35]. Only one of the 14 KEGG pathways
identified by GSEA had a negative NES of -1.95, indicating
suppression; “Oxidative phosphorylation” (mmu00190). The
overall change of the 59 genes in the leading-edge gene set was
-0.056 (-0.067, -0.045) [mean log2(FC) with 95% confidence
interval (95% CI)].

Quantitative real-time polymerase
chain reaction confirms selective
mutant huntingtin-mediated loss of
key enzymes in dopamine- and
histamine synthesis in the
hypothalamus of mice overexpressing
mutant huntingtin

Using qRT-PCR, we validated a set of candidate genes.
As described above, for 79Q vs. WT examined at 4 weeks

post-injection, we found transcriptional downregulation in GO-
terms and pathways related to the neuroendocrine system,
in particular for feeding responses. The leading-edge gene
set for “Feeding behavior” (GO:008631) that was among the
top suppressed processes in GSEA-GO BP consisted of 57
genes (Supplementary Data Sheet 3). We have previously
shown significant downregulation of hypocretin neuropeptide
precursor (Hcrt) in mice with mHTT 79Q overexpression
compared to wtHTT 18Q groups and uninjected WT controls
(Soylu-Kucharz et al., 2015; Baldo et al., 2019). Here, in addition
to Hcrt, we quantified mRNA levels of other neuropeptides.
At the 4 weeks post-injection, Cart, Tacr3, and Hcrt gene
expressions were significantly downregulated in the 79Q group
compared to the WT control, while no significant differences
were found for the 18Q group in the same comparison
(Figures 5A–C).

We also observed associations to the catecholamine system
that were most prominent in 79Q, such as Hdc as part of the
top 10 downregulated genes and related leading-edge subsets
in GSEA. Comparing GSEA-GO BP outputs between the 79Q
vs. WT and 18Q vs. WT datasets showed a higher number of
catecholamine-related processes that were only significant for
the 79Q vs. WT dataset (Supplementary Data Sheet 3). We
therefore expanded the qRT-PCR analysis to include critical
genes involved in the catecholamine system. The 79Q group
displayed significant downregulations in Ddc, Vip, Hdc, and Th
compared to the WT control (Figures 5D–G). No significant
difference was found for the vesicular monoamine transporter
2 (Vmat2, Slc18a2) or Growth hormone-releasing hormone
(Ghrh) (Figures 5H,I). A match of validated genes with leading-
edge subsets in GSEA-GO BP showed that Ddc, Th, Tacr3,
and Hdc were part of catecholamine and catechol-containing
metabolic processes while Vip and Cartpt in catecholamine
secretion and transport (Supplementary Data Sheet 3).

Next, we performed qRT-PCR of a subset of genes analyzed
for the HTT-AAV groups in the BACHD 2 months group
(Supplementary Image 2). Among Cart, Tacr3, Hcrt, Vip, Th,
and Ghrh, only Tacr3 was significantly downregulated compared
to the age-matched WT controls.

Discussion

Using Affymetrix microarray profiling for large-scale gene
expression analysis, we assessed changes in hypothalamic
transcriptome profiles in mice with overexpression of
wtHTT or mHTT in the hypothalamus and the full-length
mHTT-expressing transgenic BACHD model. These HD
mouse models share a similar metabolic phenotype: an
increased food intake and body weight (Hult et al., 2011;
Dickson et al., 2022). Understanding hypothalamic changes
in HD is relevant as the hypothalamus controls whole body
homeostasis through a vast central-peripheral network,
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FIGURE 4

Gene set enrichment analysis (GSEA) of KEGG pathways comparing mutant huntingtin (mHTT) 79Q to wild-type huntingtin (wtHTT) 18Q
indicate suppressed pathways related to the immune system and neuroendocrine signaling. GSEA of KEGG pathways was performed on the
limma output files for the AAV datasets (79Q vs. 18Q, 18Q vs. WT and 79Q vs. WT). (A) The top 10 up- and top 10 downregulated KEGG
pathways in AAV-853HTT-18Q vs. WT and (B) AAV-853HTT-79Q vs. WT. (C) For AAV-853HTT-79Q vs. AAV-853HTT-18Q, all pathways identified
by GSEA-KEGG had a negative normalized enrichment score (NES), indicating suppression. The top 10 are shown. AAV, adeno-associated viral
vector; 79Q, HTT853-79Q vector; 18Q, HTT853-18Q vector.

and both clinical HD and animal models manifest non-
motor symptoms and signs, including metabolic alterations
[reviewed in van der Burg et al. (2009) and Cheong et al.
(2019)]. We previously showed that overexpression of mHTT
(79Q) in the hypothalamus leads to the development
of an obese phenotype with leptin resistance. In this

study, we show that mHTT (79Q) overexpression in the
hypothalamus elicits a more pronounced effect on the
local loss of neuropeptides compared to wtHTT (18Q)
overexpression, a property of mHTT that is in line with
previous work (Hult et al., 2011; Baldo et al., 2013; Dickson
et al., 2022). Key hypothalamic populations, including
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FIGURE 5

Quantitative real-time polymerase chain reaction (qRT-PCR) validation of differentially expressed genes in wtHTT 18Q and mHTT 79Q groups.
Gene expression analysis of candidate genes was performed with hypothalamic RNA samples from mice with targeted mutant HTT (79Q)
overexpression and wild-type HTT (18Q) overexpression (4 weeks post-injection). Data are expressed as mRNA expression relative to the mean
of uninjected WT controls. (A) Cocaine and amphetamine-regulated transcript (Cart, p = 0.0031), (B) Tachykinin receptor 3 (Tacr3, p = 0.0148),
(C) Hypocretin neuropeptide precursor (Hcrt, WT vs. 79Q: p = 0.0326, 18Q vs. 79Q: p = 0.0393), (D) Dopa decarboxylase (Ddc, p = 0.0136),
(E) Vasoactive intestinal peptide (Vip, p = 0.0149), (F) Histidine decarboxylase (Hdc, p = 0.0032), (G) Tyrosine hydroxylase (Th, p = 0.0257),
(H) Vesicular monoamine transporter 2 (Vmat2; encoded by Slc18a2), and (I) Growth hormone-releasing hormone (Ghrh). The data are
represented as scatter dot plots, and bars represent mean ± SEM, and the Kruskal-Wallis test, followed by Dunn’s multiple comparisons, was
used to compare the groups. *Denotes p-value is 0.01 to 0.05 and **denotes p-value is 0.001 to 0.01.

genes involved in catecholamine synthesis and feeding
responses, were significantly affected by mHTT 79Q
overexpression. Higher levels of Hdc mRNA have been
reported in HD patients (van Wamelen et al., 2011). In
contrast, we report the downregulation of Hdc in the
overexpression model. Notably, such discrepancies in the
histamine systems have also been seen in the study of
narcolepsy between patients and animal models (Shan et al.,
2015). Hypothalamic neuron populations are versatile in
function and communication networks, such as Hcrt and
Hdc, known to regulate both the sleep/wake cycle and
feeding (Itowi et al., 1988; Sakai et al., 1995; Jorgensen et al.,
2006; Panula and Nuutinen, 2013; Shan et al., 2015). Taken
together, more work is needed to map the deleterious route
of mHTT in hypothalamic networks and to assess its linkage
to non-motor phenotypes. In addition, we highlight the
difference between wtHTT and mHTT despite the AAV-
mediated dose-increase of HTT protein in both groups,
encouraging future studies of a transcriptional link to disease
features.

Genes and pathways related to inflammation were
prominent across analyses in the AAV datasets and indicated

by GSEA in BACHD at 10 months of age. Even though
AAV vectors elicit a minimal immunogenic response, high
doses of AAV capsid proteins could activate inflammatory
pathways, particularly at 4 weeks post-injection, which is an
early stage of the transgene expression (Liu and Muruve, 2003).
Therefore, an early prominent hypothalamic inflammatory
response could be a consequence of viral vector expression
rather than HTT-related effects. Future transcriptome analysis
with a viral vector control group [i.e., AAV vectors expressing
green fluorescent protein (GFP)] is required to discriminate
between HTT and viral vector-related inflammatory response.
However, notably, in a prior study, we showed that long-
term expression of GFP using AAV vectors in mice did not
change body weight (Hult et al., 2011). Differential expression
analysis of 79Q vs. 18Q revealed no genes passing an adj.
p < 0.05, however, GSEA indicated suppression of immune-
related pathways in the top-ranked outputs. In contrast to
the AAV vector model focusing on dose increase selectively
in the hypothalamus, BACHD mice express a transgenic
full-length mHTT throughout the whole body. This enables
us to study how the regional variations in mHTT expression
and the extent of disturbed brain-body crosstalk modify
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disease features. Despite the shared features of increased
weight gain and food intake in the two models, there are
differences in metabolic profiles (Gray et al., 2008; Hult
et al., 2011). Microarray analysis of the hypothalamus in
both BACHD groups found genes with a lower magnitude
of expression and all adj. p > 0.05. Notably, no pathways
identified by GSEA-KEGG were shared between the early-
and late stage of disease in BACHD compared to their
respective age-matched WT littermates. GSEA indicated
that gonadotropins and luteinizing hormone signaling
pathways might be affected toward the late stage of the
disease (10 months). Among leading-edge genes was Cga,
which encodes the alpha subunit of glycoprotein hormones (in
humans: chorionic gonadotropin, luteinizing hormone, follicle-
stimulating hormone, and thyroid stimulating hormone)
(Bellisario et al., 1973; Querat, 2021). Furthermore, a significant
enrichment of inflammatory pathways was only present in
10 months old BACHD vs. WT, where the inflammatory
genes such as H2-Aa and Cd74 had comparable expression
levels in 2 months old BACHD to WT littermates. Taken
together, we can conclude that there is an induction of
inflammatory response in the hypothalamus of the AAV
model and BACHD model of HD. However, due to the
limitations of using only transcriptomics in the present
study, interpretation of a pro- versus anti-inflammatory
state needs to be conducted in future studies. Hypothalamic
inflammation can be caused by obesity and dictated by
residential microglia by integrating dietary and hormonal
signals from the periphery (Gao et al., 2014; Valdearcos
et al., 2014; Dorfman and Thaler, 2015; Jais and Brüning,
2017), notable for the BACHD model and their hyperphagic
obesity phenotype (Gray et al., 2008). Expressing mHTT in
peripheral tissues can also contribute to metabolic alterations
(i.e., adipose tissue) and modify susceptibility to obesity
(Lee and Shin, 2017). Furthermore, previous hypothalamic
transcriptome analysis of diabetic obese mice with insulin and
leptin resistance showed that the top overrepresented pathways
included “oxidative phosphorylation” (Gao et al., 2012).
Similarly, GSEA-KEGG datasets showed that the “Oxidative
phosphorylation” pathway was in the leading-edge gene set in
BACHD 10 months old vs. WT, while log2(FC) was lower at
2 months old BACHD vs. WT group. These findings suggest
alterations in the “Oxidative phosphorylation” pathway in
10 months old BACHD mice might be a consequence of
the BACHD metabolic disturbances, which are prominent
at 10 months of age (Gray et al., 2008). In line with this,
strikingly, none of the pathways were shared between 2
months and 10 months old BACHD datasets. The obese
phenotype of BACHD mice could be a confounding factor
influencing the hypothalamic transcriptome profile. However,
one of the disease hallmarks is the biphasic changes in both
tissue-specific transcriptional dysregulation and movement
symptoms at different HD stages (Kirkwood et al., 2001;

Chen et al., 2013). As HD progresses, a significant shift
from one direction to another is well-known to occur in
DA transmission and corticostriatal glutamate transmission
(Cepeda et al., 2007; Laprairie et al., 2015). Therefore, the HD
biphasic and time-dependent changes could also cause the
non-linear transcriptome profile of 2–10 months-old BACHD
hypothalami.

Alterations of sterol- and cholesterol metabolism that
provide the main components of the myelin sheath and
precursors of steroid hormones (Zhang and Liu, 2015) have
been found in several brain areas of HD, including the
striatum (Sipione et al., 2002; Valenza et al., 2005; Block
et al., 2010). In both 18Q vs. WT and 79Q vs. WT, we
found a significant impact on genes and pathways related
to terpenoid, sterol, and cholesterol metabolism. Stoml3 and
Sv2c associated with dopaminergic signal transmission were
among the top 10 differentially downregulated in 79Q vs.
WT (Janz and Südhof, 1999; Dardou et al., 2011; Schmitt
et al., 2016; Dunn et al., 2017). DAVID Functional Annotation
Clustering of genes with adj. p < 0.05 found a gene set of
37 genes that were shared between 18Q vs. WT and 79Q vs.
WT. Loss of cholesterol and FA in the hypothalamus would
have a critical impact on several biosynthetic processes of
the neuroendocrine system. Further, disruption of neuronal
signaling, autophagy, and insulin resistance that have been
reported in HD (Lalic et al., 2008; Milnerwood and Raymond,
2010; Martin et al., 2015; Blumenstock and Dudanova, 2020),
can be caused by cholesterol depletion in neurons (Fukui et al.,
2015).

Conclusion

We show that significant transcriptional changes in the
hypothalamus can be induced by both wtHTT and mHTT
overexpression. Sterol- and cholesterol metabolism alterations
found in other brain areas of HD can be induced in the
hypothalamus by selective overexpression of wtHTT 18Q and
mHTT 79Q fragments. We further show that overexpression of
mHTT causes pronounced downregulation in catecholamine-
and other hypothalamic populations that could have functional
implications for the early body weight gain and food intake
observed in mHTT 79Q mice. Lastly, the ubiquitous expression
of full-length mHTT in BACHD mice causes a milder
effect on the hypothalamic transcriptome. Taken together,
this further verifies the hypothalamus, with its extensive
communications in the brain and periphery, as a candidate
area to consider in diseases with ubiquitous expression of
the mutant protein, as in HD. Further studies are warranted
to validate the biological roles of processes and pathways
reported here and assess the significance of disease features
in each HD model.
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SUPPLEMENTARY IMAGE 1

Gene set enrichment analysis (GSEA) with a leading-edge analysis of
KEGG pathways in the bacterial artificial chromosome (BAC)-mediated
transgenic mouse model (BACHD) datasets. In the limma of microarray
datasets, none of the genes in BACHD datasets passed adj.
p-value < 0.05. GSEA of KEGG pathways was performed. (A)
GSEA-KEGG of the BACHD vs. WT (2 months of age) dataset. (B) BACHD
vs. WT (10 months of age). For NES > 0, 13 KEGG pathways were
identified by GSEA, of which the top 10 are shown here. One KEGG
pathway, “Oxidative phosphorylation” was found for NES < 0 in BACHD
vs. WT (10 months of age). Limma, linear models for microarray data,
NES, normalized enrichment score, WT, wild type.

SUPPLEMENTARY IMAGE 2

Quantitative real-time polymerase chain reaction (qRT-PCR) of
hypothalamic genes in bacterial artificial chromosome (BAC)-mediated
transgenic mouse model (BACHD) mice at 2 months of age. Gene
expression analysis was performed with hypothalamic RNA samples
from BACHD mice at 2 months of age (early stage of disease
progression) and age-matched wild type (WT) controls. (A) Cocaine and
amphetamine-regulated transcript (Cart), (B) Tachykinin receptor 3
(Tacr3, p = 0.0173), (C) Hypocretin neuropeptide precursor (Hcrt), (D)
Vasoactive intestinal peptide (Vip), (E) Tyrosine hydroxylase (Th), and (F)
Growth hormone-releasing hormone (Ghrh). Data are expressed as
mRNA expression relative to the mean of age-matched WT controls.
The data are represented as scatter dot plots, bars represent
mean ± SEM, and a two-tailed Mann-Whitney test was used to
analyze the data.

SUPPLEMENTARY TABLE 1

The list of primer sequences used for qRT-PCR analysis.

SUPPLEMENTARY DATA SHEET 1

The limma analysis datasets of 18Q vs. WT, 79Q vs. WT, 79Q vs. 18Q,
BACHD vs. WT 2 months of age, and BACHD vs. WT 10 months of age.
In addition, supplementary data from Figure 1, the 79Q vs. 18Q and
BACHD groups’ volcano plots, where no gene passed adj.
p-value < 0.05 in the limma, a list for the top genes filtered on only
log2(FC) and log2(FC) > 1 or log2(FC) < −1 is provided.

SUPPLEMENTARY DATA SHEET 2

DAVID Functional Annotation Analyses in 18Q vs. WT and 79Q vs. WT.

SUPPLEMENTARY DATA SHEET 3

Gene Set Enrichment Analysis (GSEA) of gene ontology (GO).

SUPPLEMENTARY DATA SHEET 4

Gene Set Enrichment Analysis (GSEA) of KEGG pathways.
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(2008). Glucose homeostasis in Huntington disease: Abnormalities in insulin
sensitivity and early-phase insulin secretion. Arch. Neurol. 65, 476–480. doi: 10.
1001/archneur.65.4.476

Laprairie, R. B., Bagher, A. M., Precious, S. V., and Denovan-Wright,
E. M. (2015). Components of the endocannabinoid and dopamine systems are
dysregulated in Huntington’s disease: Analysis of publicly available microarray
datasets. Pharmacol. Res. Perspect. 3:e00104. doi: 10.1002/prp2.104

Lee, S. J., and Shin, S. W. (2017). Mechanisms, pathophysiology, and
management of obesity. N. Engl. J. Med. 376, 1491–1492. doi: 10.1056/
NEJMc1701944

Liu, Q., and Muruve, D. A. (2003). Molecular basis of the inflammatory response
to adenovirus vectors. Gene. Ther. 10, 935–940. doi: 10.1038/sj.gt.3302036

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression
data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
Methods 25, 402–408. doi: 10.1006/meth.2001.1262

MacDonald, J. W. (2017). mogene10sttranscriptcluster.db: Affymetrix mogene10
annotation data (chip mogene10sttranscriptcluster). R package version 8.7.0.

Malaiya, S., Cortes-Gutierrez, M., Herb, B. R., Coffey, S. R., Legg, S. R. W.,
Cantle, J. P., et al. (2021). Single-nucleus RNA-Seq reveals dysregulation of striatal
cell identity due to Huntington’s disease mutations. J. Neurosci. 41, 5534–5552.
doi: 10.1523/JNEUROSCI.2074-20.2021

Marder, K., Zhao, H., Eberly, S., Tanner, C. M., Oakes, D., Shoulson, I.,
et al. (2009). Dietary intake in adults at risk for Huntington disease: Analysis
of PHAROS research participants. Neurology 73, 385–392. doi: 10.1212/WNL.
0b013e3181b04aa2

Martin, D. D. O., Ladha, S., Ehrnhoefer, D. E., and Hayden, M. R. (2015).
Autophagy in Huntington disease and huntingtin in autophagy. Trend Neurosci.
38, 26–35. doi: 10.1016/j.tins.2014.09.003

Milnerwood, A. J., and Raymond, L. A. (2010). Early synaptic pathophysiology
in neurodegeneration: Insights from Huntington’s disease. Trend Neurosci. 33,
513–523. doi: 10.1016/j.tins.2010.08.002

Mochel, F., Charles, P., Seguin, F., Barritault, J., Coussieu, C., Perin, L., et al.
(2007). Early energy deficit in Huntington disease: Identification of a plasma
biomarker traceable during disease progression. PLoS One 2:e647. doi: 10.1371/
journal.pone.0000647

Panula, P., and Nuutinen, S. (2013). The histaminergic network in the brain:
Basic organization and role in disease. Nat. Rev. Neurosci. 14, 472–487. doi:
10.1038/nrn3526

Petersén, Å, Gil, J., Maat-Schieman, M. L., Björkqvist, M., Tanila, H., Araújo,
I. M., et al. (2004). Orexin loss in Huntington’s disease. Hum. Mol. Genet. 14,
39–47. doi: 10.1093/hmg/ddi004

Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S., and Smyth, G. K.
(2016). Robust hyperparameter estimation protects against hypervariable genes
and improves power to detect differential expression. Ann. Appl. Stat. 10, 946–963.
doi: 10.1214/16-AOAS920

Politis, M., Pavese, N., Tai, Y. F., Tabrizi, S. J., Barker, R. A., and Piccini, P. (2008).
Hypothalamic involvement in Huntington’s disease: An in vivo PET study. Brain
131, 2860–2869. doi: 10.1093/brain/awn244

Pouladi, M. A., Xie, Y., Skotte, N. H., Ehrnhoefer, D. E., Graham, R. K.,
Kim, J. E., et al. (2010). Full-length huntingtin levels modulate body weight
by influencing insulin-like growth factor 1 expression. Hum. Mol. Genet. 19,
1528–1538. doi: 10.1093/hmg/ddq026

Querat, B. (2021). Unconventional actions of glycoprotein hormone subunits:
A comprehensive review. Front. Endocrinol. 12:731966. doi: 10.3389/fendo.2021.
731966

R Core Team (2022). in R: A language and environment for statistical computing,
ed. R.C. Team (Vienna, Austria: R Foundation for Statistical Computing).

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., and Shi, W.
(2015). limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res. 43, e47–e47. doi: 10.1093/nar/
gkv007

Rubinsztein, D. C., Coles, R., Leggo, J., Almqvist, E., Biancalana, V., Cassiman,
J. J., et al. (1996). Phenotypic characterization of individuals with 30-40 CAG
repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats
and apparently normal elderly individuals with 36-39 repeats. Am. J. Hum. Genet.
59, 16–22.

Sakai, N., Sakurai, E., Onodera, K., Sakurai, E., Asada, H., Miura, Y., et al. (1995).
Long-term depletion of brain histamine induced by alpha-fluoromethylhistidine
increases feeding-associated locomotor activity in mice with a modulation of brain
amino acid levels. Behav. Brain Res. 72, 83–88. doi: 10.1016/0166-4328(96)00
059-9

Sanberg, P. R., Fibiger, H. C., and Mark, R. F. (1981). Body weight and dietary
factors in Huntington’s disease patients compared with matched controls. Med. J.
Aust. 1, 407–409. doi: 10.5694/j.1326-5377.1981.tb135681.x

Saudou, F., and Humbert, S. (2016). The biology of huntingtin. Neuron 89,
910–926. doi: 10.1016/j.neuron.2016.02.003

Schmitt, M., Dehay, B., Bezard, E., and Garcia-Ladona, F. J. (2016). Harnessing
the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse
70, 71–86. doi: 10.1002/syn.21881

Shan, L., Dauvilliers, Y., and Siegel, J. M. (2015). Interactions of the histamine
and hypocretin systems in CNS disorders. Nat. Rev. Neurol. 11, 401–413. doi:
10.1038/nrneurol.2015.99

Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., et al.
(2022). DAVID: A web server for functional enrichment analysis and functional
annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221. doi:
10.1093/nar/gkac194

Sipione, S., Rigamonti, D., Valenza, M., Zuccato, C., Conti, L., Pritchard, J.,
et al. (2002). Early transcriptional profiles in huntingtin-inducible striatal cells by
microarray analyses. Hum. Mol. Genet. 11, 1953–1965. doi: 10.1093/hmg/11.17.
1953

Sjögren, M., Soylu-Kucharz, R., Dandunna, U., Stan, T. L., Cavalera, M.,
Sandelius, Å, et al. (2019). Leptin deficiency reverses high metabolic state and
weight loss without affecting central pathology in the R6/2 mouse model of
Huntington’s disease. Neurobiol. Dis. 132:104560. doi: 10.1016/j.nbd.2019.10
4560

Soneson, C., Fontes, M., Zhou, Y., Denisov, V., Paulsen, J. S., Kirik, D., et al.
(2010). Early changes in the hypothalamic region in prodromal Huntington
disease revealed by MRI analysis. Neurobiol. Dis. 40, 531–543. doi: 10.1016/j.nbd.
2010.07.013

Soylu-Kucharz, R., Adlesic, N., Baldo, B., Kirik, D., and Petersén, Å (2015).
Hypothalamic overexpression of mutant huntingtin causes dysregulation of brown
adipose tissue. Sci. Rep. 5:14598. doi: 10.1038/srep14598

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102,
15545–15550. doi: 10.1073/pnas.0506580102

Tabrizi, S. J., Leavitt, B. R., Landwehrmeyer, G. B., Wild, E. J., Saft, C., Barker,
R. A., et al. (2019). Targeting huntingtin expression in patients with Huntington’s
disease. N. Engl. J. Med. 380, 2307–2316. doi: 10.1056/NEJMoa1900907

The Huntington’s Disease Collaborative Research Group (1993). A novel gene
containing a trinucleotide repeat that is expanded and unstable on Huntington’s
disease chromosomes. Cell 72, 971–983. doi: 10.1016/0092-8674(93)90585-E

Thomas, E. A. (2006). Striatal specificity of gene expression dysregulation in
Huntington’s disease. J. Neurosci. Res. 84, 1151–1164. doi: 10.1002/jnr.21046

Trejo, A., Alonso, M. E., Boll, M. C., Ochoa, A., and Velásquez, L. (2004).
Assessment of the nutrition status of patients with Huntington’s disease. Nutrition
20, 192–196. doi: 10.1016/j.nut.2003.10.007

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm,
M., et al. (2012). Primer3–new capabilities and interfaces. Nucleic Acids Res. 40,
e115–e115. doi: 10.1093/nar/gks596

Valdearcos, M., Robblee, M. M., Benjamin, D. I., Nomura, D. K., Xu, A. W., and
Koliwad, S. K. (2014). Microglia dictate the impact of saturated fat consumption
on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124–2138.
doi: 10.1016/j.celrep.2014.11.018

Valenza, M., Rigamonti, D., Goffredo, D., Zuccato, C., Fenu, S., Jamot, L., et al.
(2005). Dysfunction of the cholesterol biosynthetic pathway in Huntington’s
disease. J. Neurosci. 25, 9932–9939. doi: 10.1523/JNEUROSCI.3355-05.
2005

van der Burg, J. M. M., Bacos, K., Wood, N. I., Lindqvist, A., Wierup, N.,
Woodman, B., et al. (2008). Increased metabolism in the R6/2 mouse model of
Huntington’s disease. Neurobiol. Dis. 29, 41–51. doi: 10.1016/j.nbd.2007.07.029

Frontiers in Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.1027269
https://doi.org/10.1001/archneur.58.2.273
https://doi.org/10.1001/archneur.58.2.273
https://doi.org/10.1111/j.1471-4159.2005.03035.x
https://doi.org/10.1111/j.1471-4159.2005.03035.x
https://doi.org/10.1001/archneur.65.4.476
https://doi.org/10.1001/archneur.65.4.476
https://doi.org/10.1002/prp2.104
https://doi.org/10.1056/NEJMc1701944
https://doi.org/10.1056/NEJMc1701944
https://doi.org/10.1038/sj.gt.3302036
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1523/JNEUROSCI.2074-20.2021
https://doi.org/10.1212/WNL.0b013e3181b04aa2
https://doi.org/10.1212/WNL.0b013e3181b04aa2
https://doi.org/10.1016/j.tins.2014.09.003
https://doi.org/10.1016/j.tins.2010.08.002
https://doi.org/10.1371/journal.pone.0000647
https://doi.org/10.1371/journal.pone.0000647
https://doi.org/10.1038/nrn3526
https://doi.org/10.1038/nrn3526
https://doi.org/10.1093/hmg/ddi004
https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1093/brain/awn244
https://doi.org/10.1093/hmg/ddq026
https://doi.org/10.3389/fendo.2021.731966
https://doi.org/10.3389/fendo.2021.731966
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/0166-4328(96)00059-9
https://doi.org/10.1016/0166-4328(96)00059-9
https://doi.org/10.5694/j.1326-5377.1981.tb135681.x
https://doi.org/10.1016/j.neuron.2016.02.003
https://doi.org/10.1002/syn.21881
https://doi.org/10.1038/nrneurol.2015.99
https://doi.org/10.1038/nrneurol.2015.99
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1093/hmg/11.17.1953
https://doi.org/10.1093/hmg/11.17.1953
https://doi.org/10.1016/j.nbd.2019.104560
https://doi.org/10.1016/j.nbd.2019.104560
https://doi.org/10.1016/j.nbd.2010.07.013
https://doi.org/10.1016/j.nbd.2010.07.013
https://doi.org/10.1038/srep14598
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1056/NEJMoa1900907
https://doi.org/10.1016/0092-8674(93)90585-E
https://doi.org/10.1002/jnr.21046
https://doi.org/10.1016/j.nut.2003.10.007
https://doi.org/10.1093/nar/gks596
https://doi.org/10.1016/j.celrep.2014.11.018
https://doi.org/10.1523/JNEUROSCI.3355-05.2005
https://doi.org/10.1523/JNEUROSCI.3355-05.2005
https://doi.org/10.1016/j.nbd.2007.07.029
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1027269 November 3, 2022 Time: 10:0 # 16

Dickson et al. 10.3389/fnins.2022.1027269

van der Burg, J. M. M., Björkqvist, M., and Brundin, P. (2009). Beyond the
brain: Widespread pathology in Huntington’s disease. Lancet Neurol. 8, 765–774.
doi: 10.1016/S1474-4422(09)70178-4

van der Burg, J. M. M., Gardiner, S. L., Ludolph, A. C., Landwehrmeyer, G. B.,
Roos, R. A. C., and Aziz, N. A. (2017). Body weight is a robust predictor of clinical
progression in Huntington disease. Ann. Neurol. 82, 479–483. doi: 10.1002/ana.
25007

van der Burg, J. M. M., Weydt, P., Landwehrmeyer, G. B., and Aziz,
N. A. (2021). Effect of body weight on age at onset in huntington disease:
A mendelian randomization study. Neurol. Genet. 7:e603. doi: 10.1212/NXG.
0000000000000603

Van Raamsdonk, J. M., Gibson, W. T., Pearson, J., Murphy, Z., Lu,
G., Leavitt, B. R., et al. (2006). Body weight is modulated by levels of
full-length Huntingtin. Hum. Mol. Genet. 15, 1513–1523. doi: 10.1093/hmg/
ddl072

van Wamelen, D. J., Shan, L., Aziz, N. A., Anink, J. J., Bao, A. M., Roos, R. A.,
et al. (2011). Functional increase of brain histaminergic signaling in Huntington’s
disease. Brain Pathol. 21, 419–427. doi: 10.1111/j.1750-3639.2010.00465.x

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Wha Liaw, T., Lumley,
M., et al. (2015). gplots: Various R programming tools for plotting data. R package
Version 3.1.1. Available online at: http://cran.r-project.org/web/packages/gplots/

Waterson, M. J., and Horvath, T. L. (2015). Neuronal regulation of energy
homeostasis: Beyond the hypothalamus and feeding. Cell Metab. 22, 962–970. doi:
10.1016/j.cmet.2015.09.026

Wild, E. J., and Tabrizi, S. J. (2017). Therapies targeting DNA and RNA in
Huntington’s disease. Lancet Neurol. 16, 837–847. doi: 10.1016/S1474-4422(17)
30280-6

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler
4.0: A universal enrichment tool for interpreting omics data. Innovation 2:100141.
doi: 10.1016/j.xinn.2021.100141

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012).
clusterProfiler: An R package for comparing biological themes
among gene clusters. OMICS 16, 284–287. doi: 10.1089/omi.2011.
0118

Zhang, J., and Liu, Q. (2015). Cholesterol metabolism and homeostasis
in the brain. Protein Cell 6, 254–264. doi: 10.1007/s13238-014-
0131-3

Zucker, B., Luthi-Carter, R., Kama, J. A., Dunah, A. W., Stern, E. A., Fox, J. H.,
et al. (2005). Transcriptional dysregulation in striatal projection- and interneurons
in a mouse model of Huntington’s disease: Neuronal selectivity and potential
neuroprotective role of HAP1. Hum. Mol. Genet. 14, 179–189. doi: 10.1093/hmg/
ddi014

Frontiers in Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2022.1027269
https://doi.org/10.1016/S1474-4422(09)70178-4
https://doi.org/10.1002/ana.25007
https://doi.org/10.1002/ana.25007
https://doi.org/10.1212/NXG.0000000000000603
https://doi.org/10.1212/NXG.0000000000000603
https://doi.org/10.1093/hmg/ddl072
https://doi.org/10.1093/hmg/ddl072
https://doi.org/10.1111/j.1750-3639.2010.00465.x
http://cran.r-project.org/web/packages/gplots/
https://doi.org/10.1016/j.cmet.2015.09.026
https://doi.org/10.1016/j.cmet.2015.09.026
https://doi.org/10.1016/S1474-4422(17)30280-6
https://doi.org/10.1016/S1474-4422(17)30280-6
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1007/s13238-014-0131-3
https://doi.org/10.1007/s13238-014-0131-3
https://doi.org/10.1093/hmg/ddi014
https://doi.org/10.1093/hmg/ddi014
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Microarray profiling of hypothalamic gene expression changes in Huntington's disease mouse models
	Background
	Materials and methods
	Ethical considerations
	Animals
	Tissue collection and RNA extraction
	Data pre-processing and limma
	Heatmaps
	Functional Annotation Clustering in database for annotation, visualization, and integrated discovery
	Gene set enrichment analysis
	Quantitative real-time polymerase chain reaction validation of microarray data
	Statistical analyses

	Results
	Differential expression analysis of microarray profiling data from adeno-associated viruses and bacterial artificial chromosome-mediated transgenic mouse models using linear models for microarray data analysis
	A set of significantly altered genes related to sterol- and cholesterol processes are shared between mice overexpressing wild-type and mutant huntingtin fragments
	Top-ranked downregulated genes in mice overexpressing huntingtin show functional associations with biosynthetic- and neuroendocrine processes
	Hypothalamic wild-type and mutant huntingtin overexpression causes widespread alteration of biosynthetic pathways
	Quantitative real-time polymerase chain reaction confirms selective mutant huntingtin-mediated loss of key enzymes in dopamine- and histamine synthesis in the hypothalamus of mice overexpressing mutant huntingtin

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


