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Background: Although various prediction models of the antidepressant

response have been established, the results have not been effectively applied

to heterogeneous depression populations, which has seriously limited their

clinical value. This study tried to build a more specific and stable model to

predict treatment response in depression based on short-term changes in

hippocampal metabolites.

Materials and methods: Seventy-four major depressive disorder (MDD)

patients and 20 healthy controls in the test set were prospectively collected

and retrospectively analyzed. Subjects underwent magnetic resonance

spectroscopy (MRS) once a week during 6 weeks of treatment. Hippocampal

regions of interest (ROIs) were extracted by using a voxel iteration scheme

combined with standard brain templates. The short-term differences in

hippocampal metabolites between and within groups were screened. Then,

the association between hippocampal metabolite changes and clinical

response was analyzed, and a prediction model based on logistic regression

was constructed. In addition, a validation set (n = 60) was collected from

another medical center to validate the predictive abilities.

Results: After 2–3 weeks of antidepressant treatment, the differences in

indicators (tChowee0−2, tChowee0−3 and NAA week0−3) were successfully

screened. Then, the predictive abilities of these three indicators were revealed

in the logistic regression model, and the optimal prediction effect was

found in d(tCho)week0−3-d(NAA)week0−3 (AUC = 0.841, 95%CI = 0.736-

0.946). In addition, their predictive abilities were further confirmed with

the validation set.

Limitations: The small sample size and the need for multiple follow-ups

limited the statistical ability to detect other findings.

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1025882
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1025882&domain=pdf&date_stamp=2022-11-29
https://doi.org/10.3389/fnins.2022.1025882
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1025882/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1025882 November 29, 2022 Time: 6:18 # 2

Wang et al. 10.3389/fnins.2022.1025882

Conclusion: The predictive model in this study presented accurate prediction

and strong verification effects, which may provide early guidance for adjusting

the treatment regimens of depression and serve as a checkpoint at which the

eventual treatment outcome can be predicted.

KEYWORDS

hippocampus, magnetic resonance spectroscopy, depression, prediction, treatment
response

Introduction

Unlike other diseases that have definitive diagnoses
(Barbaresi et al., 2022; Panza and Lozupone, 2022), the
mechanism of depression remains unclear (Li et al., 2022).
Thus, a variety of treatment programs have been explored.
Treatment response is the most important clinical indicator
that determines both the sensitivity and treatment outcomes
of antidepressant programs (Drysdale and Patel, 2022). In the
clinical practice of depression, at least 6 weeks of observation
must be taken to confirm an ineffective treatment response
(Thase and Rush, 1997; Souery et al., 1999; Berlim and Turecki,
2007). Therefore, breaking the time window of 6-weeks and
assessing the treatment response as early as possible will be
of great clinical significance, especially for patients who may
progress to refractory depression (RD). The earlier confirmation
of treatment response and timely selection of another regimen
(e.g., electroconvulsive therapy, magnetic stimulation, or new
combination therapies) (Mitchell and Loo, 2006; Subramanian
et al., 2022) may be more effective in improving their condition.

Presently, prediction is the practical solution to break the
time window of treatment response. Numerous prediction
studies from hospitals and laboratories have been carried
out with different test or experimental methods, following
a similar model: screening out the difference indicators
between responding and non-responding groups at endpoints
retrospectively or prospectively and predicting the treatment
response at baseline (Williams et al., 2016; Emam et al., 2019;
He et al., 2019). These studies can be further divided into
three indicator categories: 1) gene or molecular indicators, such
as inflammatory factors, VEGF (vascular endothelial growth
factor), and BDNF (brain-derived neurotrophic factor); 2) tissue

Abbreviations: AUC, area under curve; tCho, total choline
(phosphocholine and glycerophosphocholine); tCr, total creatine
(creatine and phosphocreatine); CSF, cerebrospinal fluid; PRESS, point
resolved spectroscopy; FC, functional connectivity; FOV, field of view;
FWHM, full width at half maximum; CRLBs, Cramér-Rao lower bounds;
GLM, general linear model; Glx, glutamate and glutamine; GM, gray
matter; HC, healthy control; HDRS-17, Hamilton Depression Rating
Scale-17; Ins, myo-inositol; MRS, magnetic resonance spectroscopy;
MDD, major depression disorder; NAA, N-acetyl-aspartate; n-RD,
non-refractory depression; RD, refractory depression; ROC, receiver
operating characteristic; ROI, region of interest; SNR, signal-to-noise
ratio; WM, white matter.

level indicators (mainly functional MRI), such as default mode
network and functional connectivity (FC); and 3) behavioral
indicators, such as childhood events and early life with parental
loss or separation.

These reports have provided positive clinical and academic
value for assessing and predicting depression treatment
response, which also introduces two questions worth exploring.
First, compared with the other two indicators (molecular and
behavioral indicators), the tissue level indicator (BOLD, blood
oxygenation level dependent) shows a significant advantage in
non-invasiveness, convenience, and repeatability but is limited
to the measurement of neural activity, which only provides
indirect rather than direct indicators (Siegle et al., 2007). Second,
one model showing good prediction ability in a certain sample
set or laboratory may not be applicable in other depression
populations that underwent different treatments or had different
patient characteristics because various cofactors cannot be
adequately corrected in this model based on baseline prediction.
Few reliable predictors indicate which depressed individuals
respond to antidepressants, as previously reported by Williams
et al. (2016). For example, a history of early life trauma predicts
a poorer response to antidepressant therapy, but the results are
variable and limited in adults (Dunn et al., 2022). In addition
to simple expansion of the sample size to improve the stability
of the predictive model, the above deficiencies may also be
overcome by optimizing the model.

In this study, we intended to explore the correlation between
short-term metabolite changes and subsequent treatment
response in depression by detecting the hippocampus (the
classical treatment response region of the brain) (Huang et al.,
2010) dynamically with quantitative MRS combined with a
novel voxel-placement technique. Then, we built a relatively
more specific and stable prediction model that provides a
reference upon which to break the 6-week window of treatment
response.

Materials and methods

Participants and procedure

Test set In total, 74 major depressive disorder (MDD)
patients and 20 healthy controls (HCs) were prospectively
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recruited from March 2017 to March 2019 at Zhenjiang Mental
Health Center. All participants were examined at baseline by
an experienced psychiatrist or clinical psychologist using the
Screening Interview from the Structured Clinical Interview
of the DSM-IV (SCID) to assess depression (Williams, 1988;
Maffei et al., 1997) and met the following inclusion criteria: (1)
aged 18–60 years; (2) Hamilton Depression Scale-17 (HDRS-
17) scores of depression ≥ 17; HDRS-17 scores of healthy
controls (HCs) < 7; (3) no general developmental disorder
or mental retardation; (4) educational level above junior
high school; (5) Chinese Han nationality and right-handed;
and (6) voluntary participation in the 6-week follow-up. In
addition, subject with any of the following condition was
excluded: (1) treatment from any other psychiatric disorders;
(2) pregnant or lactating female; (3) any other neurological
disorders; (4) organic disorders or somatic complaints in the
brain; (5)a history of alcohol or drug abuse; (6) magnetic
resonance contraindications; and (7) received any treatment
within 2 weeks before enrollment. After enrollment, all MDD
patients were treated with citalopram for 3 weeks to observe
the efficacy (n = 67, average dose 34.6 mg/d). Treatment
responders continued to maintain the medication (n = 29,
average dose 32.8 mg/d), and treatment non-responders were
switched to the next stage for augmented treatment with
bupropion (n = 38, average dose 237.6 mg/d) (Bech et al.,
2012). During the treatment, the drug dose was increased
or decreased according to the individual condition of the
patients. The antidepressant effect was judged by the HAMD
score reduction rate. Treatment responders were those who
showed either a partial or complete response to treatment,
conventionally defined as a 25–50% or >50% reduction in
HAMD scores, and treatment non-responders were those who
showed a < 25% reduction in HAMD scores (Drysdale et al.,
2017). The subjects were then divided into RD and n-RD
groups according to a HAMD score reduction rate of 50%
after 6 weeks of individualized treatment. After excluding
poor image quality and data of failure to follow-up, the
remaining follow-up data were used for analysis. Validation
set Another 60 depression subjects were recruited from the
Affiliated Hospital of Jiangsu University from June 2019 to
June 2021 for validation. The inclusion and exclusion criteria
were the same as those for the test set. These subjects
received corresponding treatment and underwent MRS scans
at baseline and during the second and third weeks. For
each patient, demographic information, past medical history
and medication information were collected. The information
helped the psychiatrist make decisions about individualized
treatment. The study protocol was approved by the institutional
ethics committee (ZJJS-2017017), and informed consent was
obtained from all participants. The study protocol conformed
to the ethical guidelines of the 1975 Declaration of Helsinki.
Participant details and follow-up procedures are shown in
Figure 1 and Table 1.

MRI acquisition

MRI acquisitions were performed on a Siemens 3.0T
Trio MR scanner using an eight-channel head coil. Subjects
were instructed to keep their eyes closed, relax, remain
immobile, think of nothing in particular, and avoid falling
asleep. Initial image acquisition included a T1-weighted
image scan acquired with a Magnetization Prepared
Rapid Gradient Echo (MPRAGE) sequence (TR/TE/flip
angle = 2,530 ms/2.26 ms/90◦; voxel size = 1 × 1 × 1 mm;
FOV = 256 × 256 mm2; matrix = 256 × 256; slice
thickness = 1 mm). Additional sequences (such as T2 and
FLAIR) were performed to ensure that all studied participants
were MRI-negative (no imaging findings of organic lesions).
Axial and coronal images were reconstructed based on the
sagittal images for MRS localization.

Firstly, the brain template (Montreal Neurological Institute)
was registered to the subject’s DICOM images to acquire the
transformation parameters (Dou et al., 2015). Simultaneously,
the subject’s standard hippocampus was extracted with the
FMRIB software library (FSL)1 and the ROI (the region of
interest) mask was created (size: 10 × 10 × 15 mm3).
Secondly, the in-house developed software was designed to
achieve maximum overlap between ROI and hippocampus.
The in-house developed software was based on the iterative
algorithm procedure, formulated in MATLAB (MATLAB
2015b; Mathworks, Natick, MA) and described as: 1.the
overlapping volume of ROI placement and hippocampus
area was calculated; 2. the spatial position of the ROI was
constantly adjusted, and its overlapping volume was recorded;
and 3. the position with the largest overlapping volume in all
calculation results was compared and determined. Then, Voxel’s
coordinates, size, angulation about each axis, image orientation
(“LAS”) were recorded in “Voxel_ Location. Txt” file for rapid
and accurate voxel placement of future follow-up (Woodcock
et al., 2018). Thirdly, the transformation parameters were used
to acquire the subject’s voxel placement mapped by the voxel
mask in atlas space (Figure 2A). The voxel overlap was defined
as the percentage of the week 0 voxel volume encompassed by
the follow-up voxel. The geometric voxel overlap suggested high
accuracy of voxel placement across all subjects (mean overlap
of each subject’s voxel = 93.4% ± 4.3% during the 6-week
follow-up).

Single-voxel spectra (SVS) were acquired by using a
standard point resolved spectroscopy (PRESS) sequence. Water-
suppressed SVS was performed with VAPOR water suppression
and the following parameters: echo time (TE) of 35 ms,
repetition time (TR) of 2,000 ms, nominal voxel size:
10 × 10 × 15 mm3, spectral width of 5,000 Hz, 2048 time
points, and 128 averages. Spatial saturation pulses were applied
to minimize contamination of the signal from outside the voxel.

1 www.fmrib.ox.ac.uk/fsl
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FIGURE 1

Flow chart of our study procedure. The boxes with red edge indicate excluded individuals. The light gray boxes indicate the baseline MRI scans.
The yellow boxes indicate the procedure for follow-up assessments, and the light orange boxes indicate the subjects included in diagnostic
model establishment and verification.

Linear shims were used to correct the B0 inhomogeneity across
the investigated voxel. Water MR spectroscopic spectra were
also acquired without water suppression on the same voxel, with
TE = 20 ms and all other parameters remaining the same. The
acquisition in the oblique coronal plane was perpendicular to
the long axis of the hippocampus.

Magnetic resonance spectroscopy data
processing

The spectra were pre-processed (including phased and
apodized 1 Hz) (Tiwari et al., 2020; Near et al., 2021) and
then analyzed with software jMRUI (version 5.2). The time-
domain quantification of metabolite signals was conducted
using AMARES algorithm with custom prior knowledge.
Metabolite concentrations were reported for tCr (creatine
plus phosphocreatine), NAA (N-acetyl-aspartate), tCho
(phosphocholine and glycerophosphocholine), Ins (myo-
inositol) and Glx (glutamate and glutamine). The AMARES
prior knowledge model consisted of peaks for NAA, choline
(Cho), creatine (Cr), glutamate + glutamine (Glx) and myo-
inositol (Ins). The amplitudes of NAA, Cho, Cr, Glx, and Ins
peak were estimated by the algorithm. The relative phases of
NAA, Cho, Cr, Glx, and Ins peak were fixed at 0. The linewidth

of NAA was estimated by the algorithm, and the linewidths of
the remaining peaks were set to be equal to that of NAA. The
frequencies of NAA, Cho, Cr, Glx, and Ins peak were estimated
by AMARES. All peak shapes were fixed at Lorentzian. Data
were subjected to quality control prior to inclusion in the
analysis. We required spectra to meet the following criteria to
be eligible for inclusion: the signal-to-noise ratio (SNR) ≥ 15,
the full width at half maximum (FWHM) ≤ 16 Hz, and the
Cramér-Rao lower bounds (CRLBs) < 20% (Supplementary
Table 3). The spectral analysis window was defined as 0–
4.0 ppm (Figure 2B). Absolute concentrations of metabolites
were calculated using water signal from the identical voxel
as internal reference. The relaxation times (T1 and T2)
of water and respective metabolites measured at 3 T were
used for relaxation correction. The concentrations were
calculated according to Kreis et al. (Kreis et al., 1997) as follows:
CM = (SM/SW )×CW × (nW /nM)× (fW

T 1/fM
T 1)× (fW

T 2/fM
T 2),

where indexes M for metabolite and W for water, C stands
for concentration, S for signal intensity, n for the number of
chemically equivalent protons (contributing to the signal), fT 1

for spin-lattice relaxation function (1-eTR/T 1), fT 2 for spin-spin
relaxation function (e−TR/T 2). CW stands for concentration
of water in white matter, which is 55.51 moles/kg.2 To correct
the metabolites’ concentration of cerebrospinal fluid (CSF)
contamination, the CSF, gray matter (GM) and white matter
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TABLE 1 Demographic and clinical characteristics.

Test set MDD (n= 67) Validation set MDD (n= 57)

HC
(n= 20)

RD
(n= 26)

n-RD
(n= 41)

t/x2-value, df
RD vs. n-RD

P-value
RD vs. n-RD

RD
(n= 22)

n-RD
(n= 35)

t/x2-value, df
RD vs. n-RD

P-value
RD vs. n-RD

Age, years 30.2± 6.8 32± 8.4 28± 7.8 1.985, 65 0.051 34± 8.8 31± 8.6 1.271, 55 0.209

Gender, male/female 9/11 10/16 15/26 0.024, 1 0.877 8/14 13/22 0.004, 1 0.953

Education time, years 15.2± 2.8 14.8± 2.7 13.9± 3.1 1.216, 65 0.228 14.5± 3.3 13.7± 2.8 0.980, 55 0.331

Marital status,
married/unmarried

11/9 12/14 18/23 0.033, 1 0.857 10/12 16/19 <0.001, 1 0.985

Age of onset, years NA 21.8± 3.8 24.7± 4.1 2.901, 65 0.005 22.6± 4.3 25.4± 3.4 2.73, 55 0.009

Total duration of illness,
years

NA 7.9± 3.2 6.2± 3.4 2.040, 65 0.045 8.1± 4.2 6.1± 3.7 1.886, 55 0.065

No medication (%) 20 18(69.23%) 28(68.29%) 0.007, 1 0.936 15(68.18%) 24(68.57%) <0.001, 1 0.975

Antidepressants (%) 8(30.77%) 13(31.71%) 7(31.82%) 11(31.43%)

SSRIs NA 4 8 0.364, 2 0.834 4 7 0.276, 2 0.871

SNRIs NA 2 3 2 2

NaSSAs NA 2 2 1 2

HDRS−17(week0) 5.5± 1.2 25.2± 4.1 24.6± 3.8 0.611 0.543 25.7± 3.7 24.8± 3.5 0.925 0.359

HDRS−17(week6) 5.4± 1.3 18.3± 5.4 7.6± 3.7 9.631 <0.001 16.8± 4.8 6.8± 3.2 9.450 <0.001

MDD, major depression disorder; HC, healthy control; RD, refractory depression; n-RD, non-refractory depression; HDRS-17, 17-item Hamilton Rating Scale for Depression; Antidepressants are taken at least 3 months ago; SSRIs, selective serotonin
reuptake inhibitors; SNRIs, serotonin–norepinephrine reuptake inhibitors; NaSSAs, noradrenergic and specific serotonergic antidepressant; df, degree of freedom; Data are shown as mean± SD; NA, not available.
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(WM) volumes were segmented and calculated from T1-
weighted images by FSL. The calibration formula (Near et al.,
2021) was as follows: Ccor = Craw × [Vtotal/Vtotal-VCSF)], where
Ccor denoted the corrected value; Craw, the uncorrected value;
Vtotal, the voxel volume; VCSF , the CSF volume (Supplementary
Table 4). In brief, voxel tissue composition and unsuppressed
endogenous water were used to calculate and calibrate
absolute concentrations of metabolites. The mean metabolite
concentration of bilateral ROI was used in analysis. Test-retest
reliability analysis gave ICC of 0.78, 0.75, 0.88, and 0.83 (NAA,
Cr, Cho, and Ins) in healthy control group according to the
metabolic measurements of week 0 and week 1, indicating
excellent reliability, while the Glx (0.64) was not.

Statistical analysis

Statistical analyses were performed using GraphPad Prism
7 (GraphPad Software Inc., La Jolla, CA) and R 3.1.2 software
(R Foundation for Statistical Computing, Vienna, Austria).
All analyses were two tailed with an alpha level of 5%. Data
were tested for normality (Shapiro–Wilk test) and homogeneity
(Levene’s test). Clinical and demographic data are presented
as the means and SD, with appropriate tests for intergroup
comparison (t-test for continuous data and X2 for categorical
data). Test-retest reliability was calculated in healthy control
group based on metabolites concentrations including NAA,
Cr, Cho, Ins and Glx in week 0 and week 1, which was
assessed with the intraclass correlation coefficient (ICC). The
ICC values > 0.7 indicated good reliability. Trend analyses
between groups were performed using ANOVA to detect
whether the metabolite levels changed with increasing treatment
time. The intragroup [RDweek(n) vs. RDbaseline, n-RDweek(n)

vs. n-RDbaseline) and intergroup (RDweek(n) vs. n-RDweek(n)]
differences in hippocampal metabolite concentrations were
assessed by t-test. All differences were further verified by a
general linear model (GLM) correcting covariates (age, gender,
age of onset, total duration of illness). All differentiated changes
were defined as the week of follow-up minus the week of
baseline. The relationship between the changed HDRS scores
and changed metabolite concentrations in the short term
was assessed using Pearson’s correlation coefficients. Stepwise
logistic regression was used to screen the changed hippocampal
metabolites with predictive capability in the short term to
discriminate RD and n-RD with correcting covariates (age,
gender, age of onset, total duration of illness). Then, the receiver
operating characteristic (ROC) curve was used to analyze
the performance of predictors in terms of AUC (area under
curve), sensitivity and specificity. The statistical methods used
in the validation cohort were consistent with those used in
the test cohort.

2 https://pubchem.ncbi.nlm.nih.gov/compound/Water

Results

Longitudinal evaluations of
hippocampal metabolites in week
0–week 6

Beginning in the second week, the tCho concentration
showed a gradual increase both in the RD (p for trend < 0.001;
tweek0−2 = 4.40, p < 0.001) and n-RD groups (p for
trend < 0.001; tweek0−2 = 7.75, p < 0.001). The Glx
concentration showed a similar trend beginning in the third
week (RD: p for trend < 0.001; tweek0−3 = 2.28, p = 0.027;
n-RD: p for trend < 0.001; tweek0−3 = 6.02, p < 0.001).
However, there was a slight difference in the trend of NAA
concentration between RD and n-RD; the former increased
after the third week (p for trend < 0.001; tweek0−3 = 2.36,
p = 0.022), while the latter increased after the second week (p
for trend < 0.001; tweek0−2 = 4.52, p < 0.001). Furthermore,
there was no significant longitudinal trend in Ins and tCr (all p
for trend > 0.05), which indicated that they might be unrelated
to the treatment response (Figure 3). Detailed data are shown in
Supplementary Material 1.

Metabolite changes after short-term
treatment

Given the above results, indicators of tCho, Glx, and
NAA were used for further observation of the treatment
response. In the intragroup comparison, after two weeks of
antidepressant treatment (week 0-week 2), the concentration of
tCho significantly increased in both the RD and n-RD groups,
and the NAA concentration only increased in the n-RD group
(Figures 4A,C and Supplementary Table 1). After three weeks
(week 0–week 3), significant increases in NAA, tCho, and Glx
concentrations were found in both the RD and n-RD groups
(Figures 4B,D and Supplementary Table 1). In the intergroup
comparison, compared with the RD group, the concentrations
of tCho and NAA in the n-RD group were significantly higher
at the second week (tCho t = 3.11, p = 0.003; NAA t = 4.53,
p < 0.001) (Figures 4E,F), and the tCho, NAA and Glx
concentrations were significantly higher at the third week (tCho
t = 5.62, p < 0.001; NAA t = 4.29, p < 0.001; Glx t = 3.02,
p= 0.004) (Figures 4G–I).

Correlation between metabolite
concentration and clinical response

Improved HDRS scores of MDD were found until the third
week (tweek0−3 = 5.71, p < 0.001), in which a definite decrease
in HRDS scores was found in the n-RD group since the second
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FIGURE 2

(A) Flow chart of the MRI data processing procedure. The blue part represents the bilateral hippocampus of the individual. The voxel box has the
largest overlap rate with the left hippocampus (red) and the right hippocampus (green). Coronal individual images showing the size (in voxels)
and the location of the left (red) and right (green) hippocampus. (B) 1H-MRS obtained from the voxels at the individual level (red line) and the
overlay of the spectral fit (purple line). All spectral data are analyzed with jMRUI version 5.2. NAA, N-acetyl-aspartate; Cho, phosphocholine and
glycerophosphocholine; Cr, creatine and phosphocreatine; Glx, glutamate and glutamine; Ins, myo-inositol; ppm, parts per million.

FIGURE 3

(A–E) Longitudinal concentration change of metabolites over the follow-up period. The mean concentrations of metabolites in hippocampus
for all subjects was divided into the following categories according to clinical diagnosis: healthy controls (HC/green, n = 20), refractory
depression group (RD/red, n = 26) and non-refractory depression group (n-RD/blue, n = 41). NAA, N-acetyl-aspartate; tCho, phosphocholine
and glycerophosphocholine; Glx, glutamate and glutamine; tCr, creatine and phosphocreatine; Ins, myo-inositol.

week (tweek0−2 = 2.15, p = 0.037) and the RD group since
the third week (tweek0−3 = 2.29, p = 0.024) (Figure 5A).
Subsequent correlation analysis showed that differentiated

HDRS (dHDRS) was in negatively correlated with differentiated
tCho [d(tCho)] (r = −0.639, p < 0.001) but not with
differentiated NAA (dNAA) (r = −0.169, p = 0.173) in week
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FIGURE 4

(A–D) The within-group comparisons of longitudinal metabolic change in refractory depression group and non-refractory depression group
show significant differences after 2 and 3 weeks of treatment. (E–I) The between-group comparisons of metabolic change in refractory
depression group and non-refractory depression group show significant differences after 2 and 3 weeks of treatment. NAA, N-acetyl-aspartate;
tCho, phosphocholine and glycerophosphocholine; tCr, creatine and phosphocreatine; Glx, glutamate and glutamine; Ins, myo-inositol;
*p < 0.05, **p < 0.01, ***p < 0.001.

0-week 2 (Figures 5B,C), and dHDRS was negatively correlated
with d(tCho) (r = −0.827, p < 0.001) and dNAA (r = −0.512,
p < 0.001), but not with differentiated Glx (dGlx)(r = −0.168,
p= 0.174) in week 0-week 3 (Figures 5D–F).

Prediction of treatment response

Based on the results of the correlation analysis,
dHDRSweek0−2 + d(tCho)week0−2 and dHDRSweek0−3 +

d(tCho)week0−3 + dNAAweek0−week3 were included in further
stepwise logistic regression analysis with other factors (age,
gender, age of onset, total duration of illness). The results
showed that d(tCho)week0−2 was an independent predictor
for treatment response at the second week (OR = 0.429,
p = 0.01; AUC = 0.684), but dHDRSweek0−2 was not
(OR = 1.495, p = 0.371). At the third week, although
dHDRSweek0−3 presented a non-neglectable predictive value
(OR = 3.179, p = 0.041; AUC = 0.708), better predictive
capabilities were found with d(tCho)week0−3 (OR = 0.115,
p < 0.001; AUC = 0.779) and dNAAweek0−3 (OR = 0.117,
p = 0.033; AUC = 0.752). Furthermore, improved capability
was obtained with the combined index [d(tCho)week0−3 and

dNAAweek0−3] (AUC = 0.841, p < 0.001) (Figure 6 and
Table 2).

Model validation

In the validation set of 57 subjects (22 RD and 35
n-RD patients), good diagnostic value was obtained with
d(tCho)week0−2 (accuracy = 68.42%, AUC = 0.708) after
two weeks of treatment, and better performance was found
in d(tCho)week0−3 (accuracy = 75.44%, AUC = 0.785),
dNAAweek0−3 (accuracy = 71.93%, AUC = 0.722)
and d(tCho)week0−3-dNAAweek0−3 (accuracy = 85.96%,
AUC = 0.837) after 3 weeks of treatment (Table 3). Detailed
data are shown in Supplementary Table 2.

Discussion

In this study, combining quantitative MRS with a new
method of ROI positioning, we conducted a longitudinal
follow-up from baseline to 6 weeks in MDD and constructed
an improved prediction model, in which several interesting
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FIGURE 5

(A) The within-group and between-group comparisons of Hamilton Rating Scale scores change in refractory depression group, non-refractory
depression group and major depression disorder group show significant differences. (B–F) Scatter plots depict the relationship between
metabolites changes (d(tCho), dNAA and dGlx) in hippocampus and the clinical treatment response (dHDRS) after 2 and 3 weeks. HDRS-17,
Hamilton Rating Scale 17-item for depression; NAA, N-acetyl-aspartate; tCho, phosphocholine and glycerophosphocholine; Glx, glutamate and
glutamine; *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 6

(A–C) ROC curves of hippocampal metabolites predictors in the second and third week are presented. ROC, receiver operating characteristic.
AUC, area under curve; NAA, N-acetyl-aspartate; tCho, phosphocholine and glycerophosphocholine; HDRS, Hamilton Rating Scale for
Depression.

findings were reported: (i) After 2 weeks of treatment, the
changed tCho concentration could accurately predict the
subsequent treatment response, but the changed HDRS score
could not. (ii) After 3 weeks of treatment, although the changed
HDRS score could predict treatment response, indicators from
MRS (changed tCho and NAA) showed a stronger predictive
power. (iii)The new ROI positioning strategy and predictive
model presented a more stable verification capability.

Previous studies have indicated that hippocampal
metabolites at baseline are positive predictors that suggest
functional conditions, which may dominate the treatment

responses (Block et al., 2009). In fact, this predictive model
was an ideal model based on standard conditions, in which
the individual differences, disease status and treatment plans
were ignored, which might be why the predictive results of
different laboratories could not be unified or well verified. In
our relatively conservative predictive model, the predicted time
point was placed 2 or 3 weeks after short-term treatment. In
other words, the change in indicators from week 0 to week 2 or
week 3 was used to predict the outcome of treatment response,
and our results also yielded a positive verification effect in the
validation group. In brief, the predictive model of this study was
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TABLE 2 Logistic regression analysis in check point
week 2 and week 3.

Variables β S.E. Wald P OR (95% CI)

dHDRSweek0−2 0.402 0.450 0.798 0.371 1.495
(0.619∼3.614)

d(tCho) week0−2 −0.846 0.328 6.704 0.01 0.429
(0.251∼0.735)

d(tCho) week0−3 −2.167 0.352 37.897 <0.001 0.115
(0.057∼0.228)

dNAAweek0−3 −2.145 1.002 4.582 0.033 0.117
(0.024∼0.608)

dHDRSweek0−3 1.156 0.544 3.672 0.041 3.179
(1.836∼5.501)

d(tCho)week0−2 , differentiated tCho (phosphocholine and glycerophosphocholine) after
two weeks of treatment; d(tCho)week0−3 , differentiated tCho after three weeks of
treatment; dNAAweek0−3 , differentiated NAA (N-acetyl-aspartate) after three weeks of
treatment; dHDRS week0−2 , differentiated HDRS (Hamilton Depression Rating Scale)
scores after 2 weeks of treatment; dHDRSweek0−3 , differentiated HDRS scores after
3 weeks of treatment.

reported for the first time in imaging research on depression,
which brings the novelty to the field.

In addition to the joint application of programming
language and FSL segmentation, this study also applied a novel
voxel-placement technique. The realization of ROI localization
with accurate overlap in multiple scans is the key and difficult
point of MRS studies. The perfect match was considered
impossible by hand sketching in the existing studies, especially
in the irregular and small gray matter nuclei such as the
hippocampus and amygdala. Compared with other existed
approaches, the highlight of our technique was the maximum
overlap region which was acquired by iterating the ROI and the
individual standard hippocampus. We meant to make the voxel
include as much hippocampus tissue and little contamination
from surrounding tissue as possible, which could make it more
representative. Other approaches were developed to improving
voxel placement technique for reliable voxel coregistration
within- and between-subjects, and we had benefited from these
approaches. For example, after the maximum overlap region
between ROI and hippocampus was determined, we also used
the transformation parameters which were calculated from the
registration of the atlas to the skull-stripped subject’s brain
to acquire the subject’s voxel placement mapped by the voxel
mask in atlas space (Park et al., 2018). And we also created
the file which includes specific individual voxel information
to ensure high precision division, maximum overlap and high
repeatability in future follow-up (Woodcock et al., 2018).
Besides, our technique has a similarity that the brain template
space was used for registration. However, other research
(Hancu et al., 2005; Dou et al., 2015) used the registration
technique based on the first scan session. This precise and stable
voxel placement method might deserve further improvement
and promotion in sensitive quantitative single-voxel NMR
spectroscopy.

In general, studies on hippocampal choline levels and
their changes during treatment have given conflicting findings.
Some studies have reported increased choline levels at baseline
(Milne et al., 2009), while others have shown different results:
major depressive disorder (MDD) patients with first episodes
had a trend toward lower choline levels, and those with
remitted recurrence had higher choline levels than controls
(de Diego-Adeliño et al., 2013). MDD patients with a first
episode accounted for a large proportion of the subjects in
our study. In addition, depression is a heterogeneous disease
in which different patients might have significant individual
differences (manifested in symptoms, treatment differences,
etc.), which might impede the consistency of choline level
reports. Above all, the contribution of surrounding tissue (non-
hippocampal region in voxel) to choline levels remains unclear.
We optimized the placement of voxels in the hippocampus to
include more hippocampal tissue and less surrounding tissue
to make it more representative, while the quantitative region
centered on the hippocampus contained more contributions
from surrounding tissues based on traditional voxel placement
(Milne et al., 2009). These may be the reasons why the
choline level in MDD patients reported by us was lower
than that in some other studies. Some studies have reported
no change in choline levels during treatment (Wang et al.,
2012). However, others have reported that the NAA and
choline increase in the hippocampus in association with
pharmacological treatment response and that these changes
are applicable particularly for patients with low NAA and
Cho baseline levels (Block et al., 2009). The different choline
levels and their change in treatment reported by different
studies may implicate different pathophysiological grounds
in MDD.

Cr, a significant marker of material metabolism, is
the buffer that maintains the cell energy-dependent system
by adjusting adenosine triphosphate (ATP) and adenosine
diphosphate (Mountford et al., 2010). Cr concentrations have
been considered to be relatively constant under normal
conditions; thus, the ratio to Cr is widely used as an internal
standard to scale other metabolites in traditional relative
quantitative MRS. In fact, emerging evidence has found Cr
concentrations in the brains of depressed patients are abnormal
because of decreased mitochondrial ATP production and
mitochondrial enzyme levels (Baxter et al., 1989; Gardner,
2003), which suggests that evaluating metabolism in depression
with relative quantification might not be accurate, highlighting
the necessity of absolute quantitative MRS. In this study,
we quantified metabolite intensities by referencing internal
water, which is the mature quantitative scheme preferred in
clinical 1H-MRS. Additionally, the metabolic concentration
of the hippocampus we measured was consistent with
existing reports.

Although our study found that the dHDRS score (after
3 weeks) was an independent positive predictor, the data from
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TABLE 3 Diagnosis accuracy of the MRS metabolites predictors.

Actual Predictor

d(tCho)week0−2 d(tCho)week0−3 dNAAweek0−3 d(tCho)week0−3-dNAAweek0−3

RD n-RD RD n-RD RD n-RD RD n-RD

RD 14 8 16 6 16 6 18 4

n-RD 10 25 8 27 10 25 4 31

Accuracy (%) 68.42 75.44 71.93 85.96

RD, refractory depression; n-RD, non-refractory depression; d(tCho)week0−2 , differentiated tCho (phosphocholine and glycerophosphocholine) after 2 weeks of treatment;
d(tCho)week0−3 , differentiated tCho after three weeks of treatment; dNAAweek0−3 , differentiated NAA (N-acetyl-aspartate) after three weeks of treatment; d(tCho)week0−3-dNAAweek0−3 ,
the combined detection of dNAA and d(tCho) after 3 weeks of treatment.

the spectrum clearly showed a stronger prediction ability,
which was reflected in the earlier time [2-week d(tCho)]
and higher accuracy (3-week d(tCho), dNAA). NAA is a
neuron internal marker that can reflect the functional status
and integrity of neurons in the brain. Choline reflects cell
membrane transport, which is generally assumed to play
a key role in energy metabolism and myelination and
has been proposed as a marker in pathological membrane
renewal and cell membrane transport (Moffett et al., 2007;
Oz et al., 2014). Patients who showed a > 50% reduction
in HAMD scores after 6 weeks had higher levels of NAA
or Cho and earlier clinical improvement, indicating that
an increase in NAA or Cho is associated with treatment
response. The differences in tCho and NAA between the
RD group and the n-RD group, as well as their excellent
predictive abilities, also indicated that the integrity of neurons,
energy metabolism and myelination might be treatment
targets for refractory depression in the future. In addition,
compared with the rating scale of the neuropsychiatric
disease evaluation system (HDRS), objective and sensitive
brain material metabolism indicators may provide strong
supplementary evidence.

Nevertheless, several limitations of this study should be
noted. Firstly, refractory depression was defined as having no
response to treatment with two antidepressants for 6–8 weeks.
Although it is a commonly held view by psychiatrists, the
optimal duration for a standard course of treatment has not
been fully defined, and the definition of non-response is not
completely clear. Therefore, the standard for the diagnosis
of refractory depression may not be completely accurate. In
addition, it is well demonstrated that glutamate and glutamine
at 3.0T MRS are difficult to resolve and that the measurement
of glutamate is likely to be affected by glutamine, albeit to a
small degree. Thus, we took glutamate and glutamine as the
whole Glx into consideration, but the change in glutamate
could not be accurately estimated, which possibly affect the
reliability. Poor test-retest reliability and difficult measurement
of glutamate possibly result in poor correlation between Glx
concentration and clinical improvement. We cannot rule out

the effect that the sample size is limited due to difficulties in
collecting clinical cases, and the need for multiple follow-ups
limits the statistical ability to detect other findings. Moreover,
due to the complexity of the pathogenesis of depression, a more
sensitive and more specific logistic model and ROC curve should
be generated, which requires further exploration. Despite these
limitations, this study provides a way to predict the efficacy
of antidepressants at an early stage with improved reliability.
Once validated, biomarkers and the clinical assessment of
patients with major depression could support psychiatrists’
diagnostic and treatment decisions and could increase the
rationality of treatment.

Conclusion

We developed a robust model to predict antidepressant
responses based on short-term treatment changes, which may
provide early guidance for adjusting treatment regimens
for depression and serve as a checkpoint upon which
the eventual outcome of conventional treatments can
be predicted, reducing the time and resources wasted on
ineffective treatment.
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