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Mismatch negativity (MMN) studies were initiated as part of a well-controlled

experimental research tradition with the aim to identify some key principles

of auditory processing and memory. During the past two decades, empirical

paradigms have moved toward more ecologically valid ones while retaining

rigid experimental control. In this paper, I will introduce this development of

MMN stimulation paradigms starting from the paradigms used in basic science

and then moving to paradigms that have been particularly relevant for studies

on music learning and musical expertise. Via these historical and thematic

perspectives, I wish to stimulate paradigm development further to meet the

demands of naturalistic ecologically valid studies also when using MMN in

the context of event-related potential technique that necessarily requires

averaging across several stimulus presentations.
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Introduction

Thanks to versatile development in theoretical and methodological domains,
auditory cognitive neuroscience has witnessed immense progress in past decades. When
considering the development of methodology in the field, the main emphasis of scientific
discussion is commonly given on methods in data acquisition and analyses. However,
when considering the key questions of the field (specifically brain basis underlying
neuroplasticity particularly in the domains of auditory learning, development, and
aging), it is evident that validity of the stimulation paradigms is also of utmost
importance. If these paradigms (that is, their sounds and the auditory soundscapes
created by them) fail to address the neurocognitive processes of interest, the results are
of minimal use in scientific or applied perspectives.

Notably, while a transition from well-controlled laboratory-based studies toward
ecologically valid stimulation and recording paradigms has occurred in several related
research traditions such as social and emotion neuroscience, it is questionable whether
this is a feasible framework for studies in auditory cognitive neuroscience, particularly
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when event-related potential (ERP) technique and the mismatch
negativity (MMN) are of interest. This perspectives paper
aims to offer a framework for observing the development of
stimulation paradigms of the MMN field since the 1970s and to
propose some future novel advancements. The discussion will be
divided into two main sections, the first on basic MMN studies
and the second on MMN studies in music-related contexts.
After them, the brain generators of the MMN will be briefly
illuminated. In the end of the paper, future directions of the
MMN will be discussed.

Historical overview on mismatch
negativity studies in oddball and
multi-feature paradigms

When pioneering studies that launched mismatch
negativity (MMN) were conducted (Näätänen et al., 1978),
the fundamental question of the highest theoretical relevance
was actually quite simple: is it possible to isolate a difference
signal from the human brain? In other words, is there a neural
signal that can differentiate acoustically different frequent
standard and rare deviant sounds from each other? At that time,
EEG recording and sound stimulation technologies were rather
limited, and studies were conducted using sinusoidal sounds
in an oddball paradigm. Once MMN had been established
as a general index of the difference monitoring and sensory
memory, empirical studies were conducted to indicate those
sound parameters that are encoded in the sensory memory
(e.g., Paavilainen et al., 1993 for duration, and Näätänen
et al., 1987 for intensity). Further, parametric studies were
conducted to indicate the accuracy of the sensory memory
in this encoding (Sams et al., 1985 for frequency) and the
correspondence between the MMN parameters and perceptual
accuracy (Tiitinen et al., 1994 for frequency; Amenedo and
Escera, 2000, for duration).

The next generation of studies aimed to avoid the co-
occurrence of acoustical deviance and rareness of the deviant
stimulus. This may sound simple, but it is less so since perceptual
deviance is most often coupled by acoustical features. The
solutions were diverse. First, Yabe et al. (1997) and Tervaniemi
et al. (1994a) used sound omission as the deviant stimulus in
isochronous sequences and in tone pairs, respectively. They both
showed that MMN can be generated by a sound omission but
only within a definite window enabling integration of incoming
auditory information for some hundreds of milliseconds only.
Second, Winkler et al. (1995) used a phenomenon called
missing fundamental that denotes an “illusion” of the sound’s
fundamental frequency being identified even if this specific
frequency is not present in the sound at all; it is computed in the
brain based on the spectrum of the harmonic overtones. They
showed that the MMN indeed reflects perceived fundamental
frequency that can be created by several combinations of

overtones, while a subset of the same overtones in a different
constellation causes a perception of a different fundamental
frequency and, subsequently, the MMN. Third, Tervaniemi et al.
(1994b) utilized another auditory illusion created by Shepard
tones. They can be presented in an ascending or descending
manner in a loop to give an impression of an endlessly ascending
or descending pitch (Figure 1). In the MMN experiment, these
Shepard tones were looped to create an illusion of continuous
pitch decrement that was eventually interrupted by a pitch
repetition or by an ascending pitch. It was found that both pitch
repetition and ascending pitch evoked the MMN when using
Shepard tones. This was taken as evidence of the MMN being an
index of violated prediction of the pitch of the sound-to-come
rather than an index of sensory memory representation only.

Despite the theoretical relevance of the paradigms
mentioned above, they had less to offer for applications of
the MMN in clinical studies or studies with child participants.
In traditional oddball paradigms, one sequence had one or
maximally three deviants, making the studies rather long and
repetitive, particularly if the signal-to-noise ratio was to be
optimized by maximizing the number of sound presentations.
As a solution, Näätänen introduced the idea of having several
deviants in one sequence with one standard. Here, the basic
assumption is that a standard sound is encoded as a sum of
its acoustic features. Thus, one deviant can differ from this
standard “template” independently by one or several features,
as shown by so-called additivity studies by Schröger (1995) in
which the MMN parameters sensitively reflected the number of
violated sound features. When MMN recorded in a traditional
oddball paradigm was compared with an MMN recorded in
this multi-feature paradigm, there was no significant difference
in the MMN parameters (Pakarinen et al., 2010). However, the
recording time was remarkably shorter and thus the MMN

FIGURE 1

Visual analogue (endless Penrose stairs) of ever
ascending/descending sound sequence created by Shepard
(reproduced from Wikipedia).
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recordings became more feasible with many clinical populations
and in children.

Mismatch negativity paradigms in
music-related studies

Based on the paradigm development described above, about
15 years ago interests emerged to develop “musical” MMN
stimulation paradigms to probe the neural basis of musical
skills. The first of these paradigms was based on the idea
about multiple acoustical features being encoded in parallel
and thus being behind the generation of the MMN. In the
group of prof. Vuust, the starting point was an Alberti bass—
a looped sound sequence often used in the classical era as
an arpeggio. There, the sounds of a given triad chord were
presented in the order “lowest, highest, middle, highest” in
a looped manner (Vuust et al., 2012; Figure 2A). In this
paradigm, the recording time was less than 15 min for a total
of six different deviants, thus data collection is considerably
faster than in traditional paradigms. In the melodic multi-
feature paradigm developed by prof. Huotilainen, a looped 2-s
melody was used as the starting point (Putkinen et al., 2014;
Figure 2B). This melody also included a total of six deviants,
three of which modulated the structure of the melody for its
successive presentations. The data collection here also took less
than 15 min.

By employing these musical multi-feature paradigms, it was
shown that the MMN reflects the musical expertise and their
participant background in a genre-specific manner; the sound
parameters that are most important in a performance of a given
musician evoke the largest MMN, P3a response, or both [for
a review, see Putkinen and Tervaniemi (2018)]. The MMN
was also shown to emerge in a gradual feature-specific manner
during music training in children learning to play an instrument
during their school years from 9 to 13 years of age (Putkinen
et al., 2014). Furthermore, implicit vs. explicit forms of expertise
were shown to have different neural trajectories as reflected by
the MMN; while enthusiastic jazz listeners had a diminished
MMN to a slide deviant, professional jazz performers showed an
enlarged MMN to this deviant and to timbre and pitch deviants
(Kliuchko et al., 2019). Thus, these paradigms highlighted the
complexity of music learning and have also been helpful in
differentiating implicit and explicit profiles in music listeners
vs. performers.

In addition to looped melodic and chordal paradigms,
various MMN studies have also been conducted using
randomized chord sequences consisting of two or more triad
chords (e.g., major chords as standards and minor chords as
deviants). These studies have been conducted using several
paradigms and there is no paradigm we could nominate as
the prevalent paradigm (unlike in looped musical paradigms).
Here, the first paradigms only used two chords and thus had

the co-occurrence of acoustic and musical deviance; major
and minor chords were different from each other in both
manners [Tervaniemi et al., 1999; Brattico et al., 2009; and
Tervaniemi et al., 2011 with magnetoencephalography (MEG)
and Tervaniemi et al., 2000 with positron emission tomograpy
(PET)]. More recently, Virtala et al. (2011) with EEG; Figure 2C
created a paradigm in which the contribution of acoustical
deviance could be excluded. This was accomplished by creating
the stimulus chords from various tones at several frequency
levels. By this design it was possible to control and balance
how often each tone was presented either as part of a major
chord or as part of a minor chord. Thus, any difference
in the MMN evoked by the chords was a result of its
category (major/minor) and not its acoustical composition.
Using this chord-MMN paradigm, it was observed that already
newborn infants can differentiate major and minor chords
from each other (Virtala et al., 2013) and that music training
enhances this differentiation in adolescents and in adults
(Virtala et al., 2012, 2014).

In addition to major/minor mode, another dimension
of any musical interval or chord is its consonance or
dissonance. This attribute is often reduced as the pleasantness
and unpleasantness of the intervals or chords, respectively,
even if this nomenclature is not accurate since some
individuals prefer dissonant “unpleasant” intervals, chords,
and music excerpts over consonant “pleasant” intervals
(see next paragraph). To investigate the effects of musical
expertise on consonance/dissonance discrimination, Linnavalli
et al. (2020) created two types of dissonant chords and
introduced them in the context of consonant chords. They
included groups of professional musicians and non-musicians
as their participants. It was found that both groups of
participants discriminated dissonant chords from consonant
ones both neurally and behaviorally. In the behavioral task,
the musicians were more accurate than the non-musicians
without a group difference in the MMN elicitation. As the
dissonant chords elicited MMN responses for both groups,
sensory dissonance seems to be discriminated in an early
sensory level, irrespective of musical expertise, and the
facilitating effects of musical expertise for this discrimination
seems to be activated only in later stages of auditory
processing, as reflected by performance in the behavioral
auditory task.

As the last example of the use of MMN in music-
related studies, a recent paradigm developed by Sarasso
et al. (2022) will be introduced. Sarasso and colleagues used
intervals of two kinds: consonant (perfect fifth) and dissonant
(tritones) at low and high frequency levels. The novel aspect
in their study is that the data were analyzed based on
the participants’ preference for these intervals; half of them
preferred consonant intervals, half of them dissonant intervals.
It was found that irrespective of the acoustical and musical
characteristics of the intervals, it was the most preferred
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FIGURE 2

(A) Musical multifeature paradigm that includes sound patterns with six different deviant tones as indicated below the score. The sequence is
presented in one key for six bars and then transposed to a new key, in other words, it was presented at various pitch levels. Reprinted from
Vuust et al. (2012) with permission from Elsevier. (B) Melodic multifeatured paradigm that includes short melodies with three different acoustic
deviances and three different cognitive deviances as indicated on the right. Cognitive deviants change the content of the melody while acoustic
deviants do not. One of the cognitive deviants is transposition, meaning that the melody is presented at various pitch levels. Reproduced by
permission from Tervaniemi et al. (2014). (C) Chord paradigm with standard and two different deviant chords as indicated in the upper row.
During the experiment, these three chords are presented at randomly varying pitch levels (reproduced from Virtala et al. (2014) under CC-BY
license).
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and “attractive” interval that evoked larger MMN when
compared with the other, less attractive interval. Moreover,
computational Bayesian surprise index was associated with
both MMN and behavioral indices, suggesting that (early)
auditory learning is related to higher-order aesthetic processing
of music sounds.

Mismatch negativity generators

Main contribution to the scalp recorded auditory MMN
originates from the auditory cortices with an additional
generator in the right frontal lobe [for a review, see Näätänen
et al. (2010); see below]. Important in the current context is to
note that the MMN generator source within the auditory areas
may also vary as a function of the stimulus complexity: when
an identical pitch change was embedded in an oddball sequence
of sinusoidal tones versus musical chords, the MEG recordings
indicated the MMN generator to be more medially located
when more complex (musical) stimuli were used (Alho et al.,
1996). Furthermore, in non-musicians, the left vs. right auditory
cortices may adopt different roles as a function of the stimulus
type: in PET and MEG experiments, the left auditory areas
responded more strongly to changes in phonemes (Tervaniemi
et al., 2000) and rhythm (Vuust et al., 2005) while the right
auditory areas respond more strongly to changes in chords
(Tervaniemi et al., 1999, 2000). However, this asymmetry may
also be modulated by musical expertise: musicians were found
to have predominantly left-hemispheric (MEG counterpart of)
MMN to chord changes (Tervaniemi et al., 2011).

In addition to the auditory areas, also frontal areas,
particularly the right inferior frontal gyrus, can be activated
by the deviants when presented in an oddball paradigm, at
least when the stimulation has acoustically small deviances
(Opitz et al., 2002). Recently, using the melodic multifeature
paradigm, it was shown that while the sensory deviants
(e.g., timbre) were primarily processed in the auditory areas,
the cognitively more demanding deviants (e.g., transposition)
were primarily processed in the frontal areas (Bonetti et al.,
2022). Together, these findings point to the multifaceted
characteristics of the MMN generation along the sensory-
cognitive-axis of our auditory neurocognition and, respectively,
in the brain.

Finally, the deviance detection as indexed by the MMN may
be initiated already below cortical areas. This was shown by
fMRI findings using naturalistic stimuli (pseudoword/ba:ba/and
its close acoustical musical counterpart produced by saxophone)
in a semi-attend paradigm (Tervaniemi et al., 2006). There,
non-musicians were instructed to indicate by a button press
whether each sound was speech or music sound but not
to pay attention to slight deviances. It was found that in
addition to BOLD activations in the temporal and frontal areas,
deviances in sound pitch and duration activated also thalamic

structures. This finding is in line with increasing body of the
literature highlighting the roles of ascending auditory pathways
in deviance detection (Escera and Malmierca, 2014).

Future directions

This current perspective paper sought to highlight the
developments in past decades in paradigms that have been
developed in MMN studies for basic science and music-
related research projects (due to the space limitations of this
paper, clinical studies had to be ignored despite their high
relevance). Even if the MMN was originally considered as a
tool for investigating learning and neurocognition of simple
sounds in simple contexts, there are now several paradigms that
enable investigating higher-order phenomena, such as musical
development, musical expertise, and appreciation. Thus, the
progress of the paradigm development(s) enables theoretical
advancement that is needed in the larger field of auditory
cognitive neuroscience.

In the future, it is likely that also in MMN studies
the stimulus material will include elements of real music
instead of only isolated sounds or repetitive computer-generated
sound sequences. Even if this sounds implausible, there are
possibilities already available that enable such studies. One
means of meeting this challenge is offered by music information
retrieval (MIR) technology. Using a MIR toolbox (Lartillot
and Toiviainen, 2007) it is possible to identify acoustical
and musical events (sounds or sound sequences) and code
with trigger pulses any sound of interest, be it repetitive or
surprising in its context. This can be done before or after an
experiment to recorded music or after the experiment to a
music recording based on live performance during a study. MIR-
based ERP analyses were already conducted by Poikonen et al.
(2016) for sounds that had the largest computational values
related to timbre, harmony, and dynamics. After averaging
the ERPs following each of these sound categories, N100 and
P200 responses were computed and compared between three
different compositions. More recently, Haumann et al. (2021)
elaborated and further tested the feasibility of such analyses
with different musical excerpts, again with focus on P1-N1-
P2 responses.

Naturally, it should be considered that to utilize MIR-
based analysis in MMN studies, it is necessary to include some
repetitive sound features in the music excerpts. However, this
repetitiveness can also be interpreted in abstract terms, such
that sounds to be used as one category in the analyses differ
from each other in their exact acoustical features but also
simultaneously form a distinct category of the other sounds
of a given musical excerpt up to a sufficient degree (e.g.,
instrumental sounds that form a category “novel instrument”
even if they differ from each other acoustically). By careful
behavioral screening of the participants’ cognitive, emotional,
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and aesthetic ratings of the sounds as by Sarasso et al. (2022),
we can additionally categorize the sounds and subsequent
ERP/MMN responses not only based on their acoustical or
musical features but also by their perceptual loadings. By
these procedures, we can continue developing the MMN study
paradigms on sounds as part of music and not merely on sounds
as such.
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